1. 16 Nov, 2012 1 commit
    • Simon Marlow's avatar
      Add a write barrier for TVAR closures · 6d784c43
      Simon Marlow authored
      This improves GC performance when there are a lot of TVars in the
      heap.  For instance, a TChan with a lot of elements causes a massive
      GC drag without this patch.
      
      There's more to do - several other STM closure types don't have write
      barriers, so GC performance when there are a lot of threads blocked on
      STM isn't great.  But fixing the problem for TVar is a good start.
      6d784c43
  2. 08 Oct, 2012 1 commit
    • Simon Marlow's avatar
      Produce new-style Cmm from the Cmm parser · a7c0387d
      Simon Marlow authored
      The main change here is that the Cmm parser now allows high-level cmm
      code with argument-passing and function calls.  For example:
      
      foo ( gcptr a, bits32 b )
      {
        if (b > 0) {
           // we can make tail calls passing arguments:
           jump stg_ap_0_fast(a);
        }
      
        return (x,y);
      }
      
      More details on the new cmm syntax are in Note [Syntax of .cmm files]
      in CmmParse.y.
      
      The old syntax is still more-or-less supported for those occasional
      code fragments that really need to explicitly manipulate the stack.
      However there are a couple of differences: it is now obligatory to
      give a list of live GlobalRegs on every jump, e.g.
      
        jump %ENTRY_CODE(Sp(0)) [R1];
      
      Again, more details in Note [Syntax of .cmm files].
      
      I have rewritten most of the .cmm files in the RTS into the new
      syntax, except for AutoApply.cmm which is generated by the genapply
      program: this file could be generated in the new syntax instead and
      would probably be better off for it, but I ran out of enthusiasm.
      
      Some other changes in this batch:
      
       - The PrimOp calling convention is gone, primops now use the ordinary
         NativeNodeCall convention.  This means that primops and "foreign
         import prim" code must be written in high-level cmm, but they can
         now take more than 10 arguments.
      
       - CmmSink now does constant-folding (should fix #7219)
      
       - .cmm files now go through the cmmPipeline, and as a result we
         generate better code in many cases.  All the object files generated
         for the RTS .cmm files are now smaller.  Performance should be
         better too, but I haven't measured it yet.
      
       - RET_DYN frames are removed from the RTS, lots of code goes away
      
       - we now have some more canned GC points to cover unboxed-tuples with
         2-4 pointers, which will reduce code size a little.
      a7c0387d
  3. 07 Sep, 2012 1 commit
  4. 25 Aug, 2012 1 commit
    • ian@well-typed.com's avatar
      More CPP macros -> inline functions · 0ab537c5
      ian@well-typed.com authored
      All the wibble seem to have cancelled out, and (non-debug) object sizes
      are back to where they started.
      
      I'm not 100% sure that the types are optimal, but at least now the
      functions have types and we can fix them if necessary.
      0ab537c5
  5. 02 Mar, 2012 1 commit
    • Simon Marlow's avatar
      Drop the per-task timing stats, give a summary only (#5897) · 085c7fe5
      Simon Marlow authored
      We were keeping around the Task struct (216 bytes) for every worker we
      ever created, even though we only keep a maximum of 6 workers per
      Capability.  These Task structs accumulate and cause a space leak in
      programs that do lots of safe FFI calls; this patch frees the Task
      struct as soon as a worker exits.
      
      One reason we were keeping the Task structs around is because we print
      out per-Task timing stats in +RTS -s, but that isn't terribly useful.
      What is sometimes useful is knowing how *many* Tasks there were.  So
      now I'm printing a single-line summary, this is for the program in
      
        TASKS: 2001 (1 bound, 31 peak workers (2000 total), using -N1)
      
      So although we created 2k tasks overall, there were only 31 workers
      active at any one time (which is exactly what we expect: the program
      makes 30 safe FFI calls concurrently).
      
      This also gives an indication of how many capabilities were being
      used, which is handy if you use +RTS -N without an explicit number.
      085c7fe5
  6. 21 Nov, 2011 1 commit
  7. 11 Apr, 2011 1 commit
    • Simon Marlow's avatar
      Refactoring and tidy up · 1fb38442
      Simon Marlow authored
      This is a port of some of the changes from my private local-GC branch
      (which is still in darcs, I haven't converted it to git yet).  There
      are a couple of small functional differences in the GC stats: first,
      per-thread GC timings should now be more accurate, and secondly we now
      report average and maximum pause times. e.g. from minimax +RTS -N8 -s:
      
                                          Tot time (elapsed)  Avg pause  Max pause
        Gen  0      2755 colls,  2754 par   13.16s    0.93s     0.0003s    0.0150s
        Gen  1       769 colls,   769 par    3.71s    0.26s     0.0003s    0.0059s
      1fb38442
  8. 02 Feb, 2011 2 commits
  9. 15 Dec, 2010 1 commit
    • Simon Marlow's avatar
      Implement stack chunks and separate TSO/STACK objects · f30d5273
      Simon Marlow authored
      This patch makes two changes to the way stacks are managed:
      
      1. The stack is now stored in a separate object from the TSO.
      
      This means that it is easier to replace the stack object for a thread
      when the stack overflows or underflows; we don't have to leave behind
      the old TSO as an indirection any more.  Consequently, we can remove
      ThreadRelocated and deRefTSO(), which were a pain.
      
      This is obviously the right thing, but the last time I tried to do it
      it made performance worse.  This time I seem to have cracked it.
      
      2. Stacks are now represented as a chain of chunks, rather than
         a single monolithic object.
      
      The big advantage here is that individual chunks are marked clean or
      dirty according to whether they contain pointers to the young
      generation, and the GC can avoid traversing clean stack chunks during
      a young-generation collection.  This means that programs with deep
      stacks will see a big saving in GC overhead when using the default GC
      settings.
      
      A secondary advantage is that there is much less copying involved as
      the stack grows.  Programs that quickly grow a deep stack will see big
      improvements.
      
      In some ways the implementation is simpler, as nothing special needs
      to be done to reclaim stack as the stack shrinks (the GC just recovers
      the dead stack chunks).  On the other hand, we have to manage stack
      underflow between chunks, so there's a new stack frame
      (UNDERFLOW_FRAME), and we now have separate TSO and STACK objects.
      The total amount of code is probably about the same as before.
      
      There are new RTS flags:
      
         -ki<size> Sets the initial thread stack size (default 1k)  Egs: -ki4k -ki2m
         -kc<size> Sets the stack chunk size (default 32k)
         -kb<size> Sets the stack chunk buffer size (default 1k)
      
      -ki was previously called just -k, and the old name is still accepted
      for backwards compatibility.  These new options are documented.
      f30d5273
  10. 10 May, 2010 1 commit
  11. 01 Apr, 2010 2 commits
    • Simon Marlow's avatar
      Remove the IND_OLDGEN and IND_OLDGEN_PERM closure types · 70a2431f
      Simon Marlow authored
      These are no longer used: once upon a time they used to have different
      layout from IND and IND_PERM respectively, but that is no longer the
      case since we changed the remembered set to be an array of addresses
      instead of a linked list of closures.
      70a2431f
    • Simon Marlow's avatar
      Change the representation of the MVar blocked queue · f4692220
      Simon Marlow authored
      The list of threads blocked on an MVar is now represented as a list of
      separately allocated objects rather than being linked through the TSOs
      themselves.  This lets us remove a TSO from the list in O(1) time
      rather than O(n) time, by marking the list object.  Removing this
      linear component fixes some pathalogical performance cases where many
      threads were blocked on an MVar and became unreachable simultaneously
      (nofib/smp/threads007), or when sending an asynchronous exception to a
      TSO in a long list of thread blocked on an MVar.
      
      MVar performance has actually improved by a few percent as a result of
      this change, slightly to my surprise.
      
      This is the final cleanup in the sequence, which let me remove the old
      way of waking up threads (unblockOne(), MSG_WAKEUP) in favour of the
      new way (tryWakeupThread and MSG_TRY_WAKEUP, which is idempotent).  It
      is now the case that only the Capability that owns a TSO may modify
      its state (well, almost), and this simplifies various things.  More of
      the RTS is based on message-passing between Capabilities now.
      f4692220
  12. 29 Mar, 2010 1 commit
    • Simon Marlow's avatar
      New implementation of BLACKHOLEs · 5d52d9b6
      Simon Marlow authored
      This replaces the global blackhole_queue with a clever scheme that
      enables us to queue up blocked threads on the closure that they are
      blocked on, while still avoiding atomic instructions in the common
      case.
      
      Advantages:
      
       - gets rid of a locked global data structure and some tricky GC code
         (replacing it with some per-thread data structures and different
         tricky GC code :)
      
       - wakeups are more prompt: parallel/concurrent performance should
         benefit.  I haven't seen anything dramatic in the parallel
         benchmarks so far, but a couple of threading benchmarks do improve
         a bit.
      
       - waking up a thread blocked on a blackhole is now O(1) (e.g. if
         it is the target of throwTo).
      
       - less sharing and better separation of Capabilities: communication
         is done with messages, the data structures are strictly owned by a
         Capability and cannot be modified except by sending messages.
      
       - this change will utlimately enable us to do more intelligent
         scheduling when threads block on each other.  This is what started
         off the whole thing, but it isn't done yet (#3838).
      
      I'll be documenting all this on the wiki in due course.
      5d52d9b6
  13. 11 Mar, 2010 1 commit
    • Simon Marlow's avatar
      Use message-passing to implement throwTo in the RTS · 7408b392
      Simon Marlow authored
      This replaces some complicated locking schemes with message-passing
      in the implementation of throwTo. The benefits are
      
       - previously it was impossible to guarantee that a throwTo from
         a thread running on one CPU to a thread running on another CPU
         would be noticed, and we had to rely on the GC to pick up these
         forgotten exceptions. This no longer happens.
      
       - the locking regime is simpler (though the code is about the same
         size)
      
       - threads can be unblocked from a blocked_exceptions queue without
         having to traverse the whole queue now.  It's a rare case, but
         replaces an O(n) operation with an O(1).
      
       - generally we move in the direction of sharing less between
         Capabilities (aka HECs), which will become important with other
         changes we have planned.
      
      Also in this patch I replaced several STM-specific closure types with
      a generic MUT_PRIM closure type, which allowed a lot of code in the GC
      and other places to go away, hence the line-count reduction.  The
      message-passing changes resulted in about a net zero line-count
      difference.
      7408b392
  14. 09 Mar, 2010 1 commit
    • Simon Marlow's avatar
      Split part of the Task struct into a separate struct InCall · 7effbbbb
      Simon Marlow authored
      The idea is that this leaves Tasks and OSThread in one-to-one
      correspondence.  The part of a Task that represents a call into
      Haskell from C is split into a separate struct InCall, pointed to by
      the Task and the TSO bound to it.  A given OSThread/Task thus always
      uses the same mutex and condition variable, rather than getting a new
      one for each callback.  Conceptually it is simpler, although there are
      more types and indirections in a few places now.
      
      This improves callback performance by removing some of the locks that
      we had to take when making in-calls.  Now we also keep the current Task
      in a thread-local variable if supported by the OS and gcc (currently
      only Linux).
      7effbbbb
  15. 21 Dec, 2009 1 commit
  16. 03 Dec, 2009 1 commit
    • Simon Marlow's avatar
      GC refactoring, remove "steps" · 214b3663
      Simon Marlow authored
      The GC had a two-level structure, G generations each of T steps.
      Steps are for aging within a generation, mostly to avoid premature
      promotion.  
      
      Measurements show that more than 2 steps is almost never worthwhile,
      and 1 step is usually worse than 2.  In theory fractional steps are
      possible, so the ideal number of steps is somewhere between 1 and 3.
      GHC's default has always been 2.
      
      We can implement 2 steps quite straightforwardly by having each block
      point to the generation to which objects in that block should be
      promoted, so blocks in the nursery point to generation 0, and blocks
      in gen 0 point to gen 1, and so on.
      
      This commit removes the explicit step structures, merging generations
      with steps, thus simplifying a lot of code.  Performance is
      unaffected.  The tunable number of steps is now gone, although it may
      be replaced in the future by a way to tune the aging in generation 0.
      214b3663
  17. 08 Oct, 2009 1 commit
  18. 02 Aug, 2009 1 commit
    • Simon Marlow's avatar
      RTS tidyup sweep, first phase · a2a67cd5
      Simon Marlow authored
      The first phase of this tidyup is focussed on the header files, and in
      particular making sure we are exposinng publicly exactly what we need
      to, and no more.
      
       - Rts.h now includes everything that the RTS exposes publicly,
         rather than a random subset of it.
      
       - Most of the public header files have moved into subdirectories, and
         many of them have been renamed.  But clients should not need to
         include any of the other headers directly, just #include the main
         public headers: Rts.h, HsFFI.h, RtsAPI.h.
      
       - All the headers needed for via-C compilation have moved into the
         stg subdirectory, which is self-contained.  Most of the headers for
         the rest of the RTS APIs have moved into the rts subdirectory.
      
       - I left MachDeps.h where it is, because it is so widely used in
         Haskell code.
       
       - I left a deprecated stub for RtsFlags.h in place.  The flag
         structures are now exposed by Rts.h.
      
       - Various internal APIs are no longer exposed by public header files.
      
       - Various bits of dead code and declarations have been removed
      
       - More gcc warnings are turned on, and the RTS code is more
         warning-clean.
      
       - More source files #include "PosixSource.h", and hence only use
         standard POSIX (1003.1c-1995) interfaces.
      
      There is a lot more tidying up still to do, this is just the first
      pass.  I also intend to standardise the names for external RTS APIs
      (e.g use the rts_ prefix consistently), and declare the internal APIs
      as hidden for shared libraries.
      a2a67cd5
  19. 30 Jun, 2009 1 commit
  20. 06 Mar, 2009 1 commit
    • Simon Marlow's avatar
      Partial fix for #2917 · 1b62aece
      Simon Marlow authored
       - add newAlignedPinnedByteArray# for allocating pinned BAs with
         arbitrary alignment
      
       - the old newPinnedByteArray# now aligns to 16 bytes
      
      Foreign.alloca will use newAlignedPinnedByteArray#, and so might end
      up wasting less space than before (we used to align to 8 by default).
      Foreign.allocaBytes and Foreign.mallocForeignPtrBytes will get 16-byte
      aligned memory, which is enough to avoid problems with SSE
      instructions on x86, for example.
      
      There was a bug in the old newPinnedByteArray#: it aligned to 8 bytes,
      but would have failed if the header was not a multiple of 8
      (fortunately it always was, even with profiling).  Also we
      occasionally wasted some space unnecessarily due to alignment in
      allocatePinned().
      
      I haven't done anything about Foreign.malloc/mallocBytes, which will
      give you the same alignment guarantees as malloc() (8 bytes on
      Linux/x86 here).
      1b62aece
  21. 12 Jan, 2009 1 commit
    • Simon Marlow's avatar
      Keep the remembered sets local to each thread during parallel GC · 6a405b1e
      Simon Marlow authored
      This turns out to be quite vital for parallel programs:
      
        - The way we discover which threads to traverse is by finding
          dirty threads via the remembered sets (aka mutable lists).
      
        - A dirty thread will be on the remembered set of the capability
          that was running it, and we really want to traverse that thread's
          stack using the GC thread for the capability, because it is in
          that CPU's cache.  If we get this wrong, we get penalised badly by
          the memory system.
      
      Previously we had per-capability mutable lists but they were
      aggregated before GC and traversed by just one of the GC threads.
      This resulted in very poor performance particularly for parallel
      programs with deep stacks.
      
      Now we keep per-capability remembered sets throughout GC, which also
      removes a lock (recordMutableGen_sync).
      6a405b1e
  22. 18 Nov, 2008 1 commit
    • Simon Marlow's avatar
      Add optional eager black-holing, with new flag -feager-blackholing · d600bf7a
      Simon Marlow authored
      Eager blackholing can improve parallel performance by reducing the
      chances that two threads perform the same computation.  However, it
      has a cost: one extra memory write per thunk entry.  
      
      To get the best results, any code which may be executed in parallel
      should be compiled with eager blackholing turned on.  But since
      there's a cost for sequential code, we make it optional and turn it on
      for the parallel package only.  It might be a good idea to compile
      applications (or modules) with parallel code in with
      -feager-blackholing.
      
      ToDo: document -feager-blackholing.
      d600bf7a
  23. 09 Sep, 2008 2 commits
  24. 09 Jun, 2008 1 commit
  25. 24 Apr, 2008 1 commit
  26. 16 Apr, 2008 6 commits
  27. 11 Oct, 2007 1 commit
    • Simon Marlow's avatar
      Add a proper write barrier for MVars · 1ed01a87
      Simon Marlow authored
      Previously MVars were always on the mutable list of the old
      generation, which meant every MVar was visited during every minor GC.
      With lots of MVars hanging around, this gets expensive.  We addressed
      this problem for MUT_VARs (aka IORefs) a while ago, the solution is to
      use a traditional GC write-barrier when the object is modified.  This
      patch does the same thing for MVars.
      
      TVars are still done the old way, they could probably benefit from the
      same treatment too.
      1ed01a87
  28. 30 Jul, 2007 1 commit
    • Simon Marlow's avatar
      FIX compacting GC (bug1010, and other failures) · 6494b3cb
      Simon Marlow authored
      Compacting GC interacts badly with the new pointer-tagging feature, as
      it also uses the low bits of a pointer to encode some information
      during a collection.  My original workaround didn't work, this more
      elaborate fix should be better.
      6494b3cb
  29. 27 Jul, 2007 1 commit
    • Simon Marlow's avatar
      Pointer Tagging · 6015a94f
      Simon Marlow authored
        
      This patch implements pointer tagging as per our ICFP'07 paper "Faster
      laziness using dynamic pointer tagging".  It improves performance by
      10-15% for most workloads, including GHC itself.
      
      The original patches were by Alexey Rodriguez Yakushev
      <mrchebas@gmail.com>, with additions and improvements by me.  I've
      re-recorded the development as a single patch.
      
      The basic idea is this: we use the low 2 bits of a pointer to a heap
      object (3 bits on a 64-bit architecture) to encode some information
      about the object pointed to.  For a constructor, we encode the "tag"
      of the constructor (e.g. True vs. False), for a function closure its
      arity.  This enables some decisions to be made without dereferencing
      the pointer, which speeds up some common operations.  In particular it
      enables us to avoid costly indirect jumps in many cases.
      
      More information in the commentary:
      
      http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
      6015a94f
  30. 28 Feb, 2007 1 commit
  31. 27 Feb, 2007 1 commit
  32. 14 Feb, 2007 1 commit