1. 12 Aug, 2017 1 commit
    • Ryan Scott's avatar
      Use NonEmpty lists to represent lists of duplicate elements · 7d699782
      Ryan Scott authored
      Summary:
      Three functions in `ListSetOps` which compute duplicate elements
      represent lists of duplicates of `[a]`. This is a really bad way to go about
      things, because these lists are guaranteed to always have at least one element
      (the "representative" of the duplicates), and several places in the GHC API
      call `head` (a partial function) on these lists of duplicates to retrieve the
      representative.
      
      This changes the representation of duplicates to `NonEmpty` lists instead,
      which allow for many partial uses of `head` to be made total.
      
      Fixes #13823.
      
      Test Plan: ./validate
      
      Reviewers: bgamari, austin, goldfire
      
      Reviewed By: bgamari
      
      Subscribers: goldfire, rwbarton, thomie
      
      GHC Trac Issues: #13823
      
      Differential Revision: https://phabricator.haskell.org/D3823
      7d699782
  2. 01 Aug, 2017 1 commit
    • Ryan Scott's avatar
      Drop GHC 7.10 compatibility · c13720c8
      Ryan Scott authored
      GHC 8.2.1 is out, so now GHC's support window only extends back to GHC
      8.0. This means we can delete gobs of code that was only used for GHC
      7.10 support. Hooray!
      
      Test Plan: ./validate
      
      Reviewers: hvr, bgamari, austin, goldfire, simonmar
      
      Reviewed By: bgamari
      
      Subscribers: Phyx, rwbarton, thomie
      
      Differential Revision: https://phabricator.haskell.org/D3781
      c13720c8
  3. 27 Jul, 2017 3 commits
    • Richard Eisenberg's avatar
      Track visibility in TypeEqOrigin · fb752133
      Richard Eisenberg authored
      A type equality error can arise from a mismatch between
      *invisible* arguments just as easily as from visible arguments.
      But we should really prefer printing out errors from visible
      arguments over invisible ones. Suppose we have a mismatch between
      `Proxy Int` and `Proxy Maybe`. Would you rather get an error
      between `Int` and `Maybe`? Or between `*` and `* -> *`? I thought
      so, too.
      
      There is a fair amount of plumbing with this one, but I think
      it's worth it.
      
      This commit introduces a performance regression in test
      perf/compiler/T5631. The cause of the regression is not the
      new visibility stuff, directly: it's due to a change from
      zipWithM to zipWith3M in TcUnify. To my surprise, zipWithM
      is nicely optimized (it fuses away), but zipWith3M is not.
      There are other examples of functions that could be made faster,
      so I've posted a separate ticket, #14037, to track these
      improvements. For now, I've accepted the small (6.6%) regression.
      fb752133
    • Richard Eisenberg's avatar
      Fix #13819 by refactoring TypeEqOrigin.uo_thing · c2417b87
      Richard Eisenberg authored
      The uo_thing field of TypeEqOrigin is used to track the
      "thing" (either term or type) that has the type (kind) stored
      in the TypeEqOrigin fields. Previously, this was sometimes a
      proper Core Type, which needed zonking and tidying. Now, it
      is only HsSyn: much simpler, and the error messages now use
      the user-written syntax.
      
      But this aspect of uo_thing didn't cause #13819; it was the
      sibling field uo_arity that did. uo_arity stored the number
      of arguments of uo_thing, useful when reporting something
      like "should have written 2 fewer arguments". We wouldn't want
      to say that if the thing didn't have two arguments. However,
      in practice, GHC was getting this wrong, and this message
      didn't seem all that helpful. Furthermore, the calculation
      of the number of arguments is what caused #13819 to fall over.
      This patch just removes uo_arity. In my opinion, the change
      to error messages is a nudge in the right direction.
      
      Test case: typecheck/should_fail/T13819
      c2417b87
    • Richard Eisenberg's avatar
      Improve error messages around kind mismatches. · 8e15e3d3
      Richard Eisenberg authored
      Previously, when canonicalizing (or unifying, in uType) a
      heterogeneous equality, we emitted a kind equality and used the
      resulting coercion to cast one side of the heterogeneous equality.
      
      While sound, this led to terrible error messages. (See the bugs
      listed below.) The problem is that using the coercion built from
      the emitted kind equality is a bit like a wanted rewriting a wanted.
      The solution is to keep heterogeneous equalities as irreducible.
      
      See Note [Equalities with incompatible kinds] in TcCanonical.
      
      This commit also removes a highly suspicious switch to FM_SubstOnly
      when flattening in the kinds of a type variable. I have no idea
      why this was there, other than as a holdover from pre-TypeInType.
      I've not left a Note because there is simply no reason I can conceive
      of that the FM_SubstOnly should be there.
      
      One challenge with this patch is that the emitted derived equalities
      might get emitted several times: when a heterogeneous equality is
      in an implication and then gets floated out from the implication,
      the Derived is present both in and out of the implication. This
      causes a duplicate error message. (Test case:
      typecheck/should_fail/T7368) Solution: track the provenance of
      Derived constraints and refuse to float out a constraint that has
      an insoluble Derived.
      
      Lastly, this labels one test (dependent/should_fail/RAE_T32a)
      as expect_broken, because the problem is really #12919. The
      different handling of constraints in this patch exposes the error.
      
      This fixes bugs #11198, #12373, #13530, and #13610.
      
      test cases:
      typecheck/should_fail/{T8262,T8603,tcail122,T12373,T13530,T13610}
      8e15e3d3
  4. 07 Jun, 2017 1 commit
  5. 02 Jun, 2017 1 commit
    • Ryan Scott's avatar
      Use lengthIs and friends in more places · a786b136
      Ryan Scott authored
      While investigating #12545, I discovered several places in the code
      that performed length-checks like so:
      
      ```
      length ts == 4
      ```
      
      This is not ideal, since the length of `ts` could be much longer than 4,
      and we'd be doing way more work than necessary! There are already a slew
      of helper functions in `Util` such as `lengthIs` that are designed to do
      this efficiently, so I found every place where they ought to be used and
      did just that. I also defined a couple more utility functions for list
      length that were common patterns (e.g., `ltLength`).
      
      Test Plan: ./validate
      
      Reviewers: austin, hvr, goldfire, bgamari, simonmar
      
      Reviewed By: bgamari, simonmar
      
      Subscribers: goldfire, rwbarton, thomie
      
      Differential Revision: https://phabricator.haskell.org/D3622
      a786b136
  6. 26 May, 2017 3 commits
    • Gabor Greif's avatar
      Typos in comments [ci skip] · 19c4203f
      Gabor Greif authored
      19c4203f
    • Simon Peyton Jones's avatar
      Some tidying up of type pretty-printing · ad14efd5
      Simon Peyton Jones authored
      Triggered by the changes in #13677, I ended up doing a bit of
      refactoring in type pretty-printing.
      
      * We were using TyOpPrec and FunPrec rather inconsitently, so
        I made it consisent.
      
      * That exposed the fact that we were a bit undecided about whether
        to print
           a + b -> c + d   vs   (a+b) -> (c+d)
        and similarly
           a ~ [b] => blah  vs   (a ~ [b]) => blah
      
        I decided to make TyOpPrec and FunPrec compare equal
        (in BasicTypes), so (->) is treated as equal precedence with
        other type operators, so you get the unambiguous forms above,
        even though they have more parens.
      
        We could readily reverse this decision.
        See Note [Type operator precedence] in BasicTypes
      
      * I fixed a bug in pretty-printing of HsType where some
        parens were omitted by mistake.
      ad14efd5
    • Simon Peyton Jones's avatar
      Re-engineer Given flatten-skolems · 8dc6d645
      Simon Peyton Jones authored
      The big change here is to fix an outright bug in flattening of Givens,
      albeit one that is very hard to exhibit.  Suppose we have the constraint
          forall a. (a ~ F b) => ..., (forall c. ....(F b)...) ...
      
      Then
       - we'll flatten the (F) b to a fsk, say  (F b ~ fsk1)
       - we'll rewrite the (F b) inside the inner implication to 'fsk1'
       - when we leave the outer constraint we are suppose to unflatten;
         but that fsk1 will still be there
       - if we re-simplify the entire outer implication, we'll re-flatten
         the Given (F b) to, say, (F b ~ fsk2)
      Now we have two fsks standing for the same thing, and that is very
      wrong.
      
      Solution: make fsks behave more like fmvs:
       - A flatten-skolem is now a MetaTyVar, whose MetaInfo is FlatSkolTv
       - We "fill in" that meta-tyvar when leaving the implication
       - The old FlatSkol form of TcTyVarDetails is gone completely
       - We track the flatten-skolems for the current implication in
         a new field of InertSet, inert_fsks.
      
      See Note [The flattening story] in TcFlatten.
      
      In doing this I found various other things to fix:
      
      * I removed the zonkSimples from TcFlatten.unflattenWanteds; it wasn't
        needed.   But I added one in TcSimplify.floatEqualities, which does
        the zonk precisely when it is needed.
      
      * Trac #13674 showed up a case where we had
           - an insoluble Given,   e.g.  a ~ [a]
           - the same insoluble Wanted   a ~ [a]
        We don't use the Given to rewwrite the Wanted (obviously), but
        we therefore ended up reporting
            Can't deduce (a ~ [a]) from (a ~ [a])
        which is silly.
      
        Conclusion: when reporting errors, make the occurs check "win"
        See Note [Occurs check wins] in TcErrors
      8dc6d645
  7. 13 Apr, 2017 1 commit
  8. 12 Apr, 2017 1 commit
  9. 06 Apr, 2017 1 commit
  10. 31 Mar, 2017 1 commit
    • Ben Gamari's avatar
      Clean up coreView/tcView. · 6575f4b6
      Ben Gamari authored
      In Core, Constraint should be considered fully equal to
      TYPE LiftedRep, in all ways. Accordingly, coreView should
      unwrap Constraint to become TYPE LiftedRep. Of course, this
      would be a disaster in the type checker.
      
      So, where previously we used coreView in both the type checker
      and in Core, we now have coreView and tcView, which differ only
      in their treatment of Constraint.
      
      Historical note: once upon a past, we had tcView distinct from
      coreView. Back then, it was because newtypes were unwrapped in
      Core but not in the type checker. The distinction is back, but
      for a different reason than before.
      
      This had a few knock-on effects:
      
       * The Typeable solver must explicitly handle Constraint to ensure
         that we produce the correct evidence.
      
       * TypeMap now respects the Constraint/Type distinction
      
      Finished by: bgamari
      
      Test Plan: ./validate
      
      Reviewers: simonpj, austin, bgamari
      
      Reviewed By: simonpj
      
      Subscribers: rwbarton, thomie
      
      Differential Revision: https://phabricator.haskell.org/D3316
      6575f4b6
  11. 30 Mar, 2017 1 commit
  12. 29 Mar, 2017 2 commits
    • Matthías Páll Gissurarson's avatar
      Show valid substitutions for typed holes · 26c95f46
      Matthías Páll Gissurarson authored
      The idea is to implement a mechanism similar to PureScript, where they
      suggest which identifiers in scope would fit the given hole. In
      PureScript, they use subsumption (which is what we would like here as
      well). For subsumption, we would have to check each type in scope
      whether the hole is a subtype of the given type, but that would require
      `tcSubType` and constraint satisfiability checking. Currently,
      `TcSimplify` uses a lot of functions from `TcErrors`, so that would
      require more of a rewrite, I will hold on with that for now, and submit
      the more simpler type equality version.
      
      As an example, consider
      
      ```
      ps :: String -> IO ()
      ps = putStrLn
      
      ps2 :: a -> IO ()
      ps2 _ = putStrLn "hello, world"
      
      main :: IO ()
      main = _ "hello, world"
      ```
      
      The results would be something like
      
      ```
          • Found hole: _ :: [Char] -> IO ()
          • In the expression: _
            In a stmt of a 'do' block: _ "hello, world"
            In the expression:
              do _ "hello, world"
          • Relevant bindings include
              main :: IO () (bound at test.hs:13:1)
              ps :: String -> IO () (bound at test.hs:7:1)
              ps2 :: forall a. a  -> IO () (bound at test.hs:10:1)
            Valid substitutions include
              putStrLn :: String
                          -> IO () (imported from ‘Prelude’ at
      test.hs:1:1-14
                                    (and originally defined in
      ‘System.IO’))
              putStr :: String
                        -> IO () (imported from ‘Prelude’ at
      test.hs:1:1-14
                                  (and originally defined in ‘System.IO’))
      ```
      
      We'd like here for ps2 to be suggested as well, but for that we require
      subsumption.
      
      Reviewers: austin, bgamari, dfeuer, mpickering
      
      Reviewed By: dfeuer, mpickering
      
      Subscribers: mpickering, Wizek, dfeuer, rwbarton, thomie
      
      Differential Revision: https://phabricator.haskell.org/D3361
      26c95f46
    • Simon Peyton Jones's avatar
      Fix ASSERT failure in TcErrors · f88ac374
      Simon Peyton Jones authored
      This fixes Trac #13494, by improving
      
         commit e0ad55f8
         Author: Simon Peyton Jones <simonpj@microsoft.com>
         Date:   Mon Mar 27 10:32:08 2017 +0100
      
         Fix error-message suppress on given equalities
      
      which in turn was a fix to #13446
      f88ac374
  13. 27 Mar, 2017 1 commit
    • Simon Peyton Jones's avatar
      Fix error-message suppress on given equalities · e0ad55f8
      Simon Peyton Jones authored
      I'd got the logic slightly wrong when reporting type errors
      for insoluble 'given' equalities.  We suppress insoluble givens
      under some circumstances (see Note [Given errors]), but we then
      suppressed subsequent 'wanted' errors because the (suppressed)
      'given' error "won".  Result: no errors at all :-(.
      
      This patch fixes it and
       - Renames TcType.isTyVarUnderDatatype to the more
         perspicuous TcType.isInsolubleOccursCheck
      
      In doing this I realise that I don't understand why we need
      to keep the insolubles partitioned out separately at all...
      but that is for another day.
      e0ad55f8
  14. 10 Mar, 2017 1 commit
    • Simon Peyton Jones's avatar
      Improve error messages for skolems · 48d1866e
      Simon Peyton Jones authored
      In error messages like this
          • Couldn't match type ‘c’ with ‘f0 (a -> b)’
            ‘c’ is a rigid type variable bound by
              the type signature for:
                f :: ((a -> b) -> b) -> forall c. c -> a
      
      we need to take case both to actually show that 'forall c',
      and to make sure that its name lines with the 'c' in the
      error message.
      
      This has been shaky for some time, and this commit puts it on solid
      ground.  See TcRnTypes: Note [SigSkol SkolemInfo]
      
      The main changes are
      
      * SigSkol gets an extra field that records the way in which the
        type signature was skolemised.
      
      * The type in SigSkol is now the /un/-skolemised version
      
      * pprSkolemInfo uses the info to make the tidy type line up
        nicely
      
      Lots of error message wibbles!
      48d1866e
  15. 26 Feb, 2017 1 commit
  16. 07 Feb, 2017 1 commit
  17. 03 Feb, 2017 1 commit
    • Sylvain Henry's avatar
      Ditch static flags · bbd3c399
      Sylvain Henry authored
      This patch converts the 4 lasting static flags (read from the command
      line and unsafely stored in immutable global variables) into dynamic
      flags. Most use cases have been converted into reading them from a DynFlags.
      
      In cases for which we don't have easy access to a DynFlags, we read from
      'unsafeGlobalDynFlags' that is set at the beginning of each 'runGhc'.
      It's not perfect (not thread-safe) but it is still better as we can
      set/unset these 4 flags before each run when using GHC API.
      
      Updates haddock submodule.
      
      Rebased and finished by: bgamari
      
      Test Plan: validate
      
      Reviewers: goldfire, erikd, hvr, austin, simonmar, bgamari
      
      Reviewed By: simonmar
      
      Subscribers: thomie
      
      Differential Revision: https://phabricator.haskell.org/D2839
      
      GHC Trac Issues: #8440
      bbd3c399
  18. 25 Jan, 2017 1 commit
  19. 19 Jan, 2017 1 commit
    • Richard Eisenberg's avatar
      Update levity polymorphism · e7985ed2
      Richard Eisenberg authored
      This commit implements the proposal in
      https://github.com/ghc-proposals/ghc-proposals/pull/29 and
      https://github.com/ghc-proposals/ghc-proposals/pull/35.
      
      Here are some of the pieces of that proposal:
      
      * Some of RuntimeRep's constructors have been shortened.
      
      * TupleRep and SumRep are now parameterized over a list of RuntimeReps.
      * This
      means that two types with the same kind surely have the same
      representation.
      Previously, all unboxed tuples had the same kind, and thus the fact
      above was
      false.
      
      * RepType.typePrimRep and friends now return a *list* of PrimReps. These
      functions can now work successfully on unboxed tuples. This change is
      necessary because we allow abstraction over unboxed tuple types and so
      cannot
      always handle unboxed tuples specially as we did before.
      
      * We sometimes have to create an Id from a PrimRep. I thus split PtrRep
      * into
      LiftedRep and UnliftedRep, so that the created Ids have the right
      strictness.
      
      * The RepType.RepType type was removed, as it didn't seem to help with
      * much.
      
      * The RepType.repType function is also removed, in favor of typePrimRep.
      
      * I have waffled a good deal on whether or not to keep VoidRep in
      TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
      represented in RuntimeRep, and typePrimRep will never return a list
      including
      VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
      imagine another design choice where we have a PrimRepV type that is
      PrimRep
      with an extra constructor. That seemed to be a heavier design, though,
      and I'm
      not sure what the benefit would be.
      
      * The last, unused vestiges of # (unliftedTypeKind) have been removed.
      
      * There were several pretty-printing bugs that this change exposed;
      * these are fixed.
      
      * We previously checked for levity polymorphism in the types of binders.
      * But we
      also must exclude levity polymorphism in function arguments. This is
      hard to check
      for, requiring a good deal of care in the desugarer. See Note [Levity
      polymorphism
      checking] in DsMonad.
      
      * In order to efficiently check for levity polymorphism in functions, it
      * was necessary
      to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
      
      * It is now safe for unlifted types to be unsaturated in Core. Core Lint
      * is updated
      accordingly.
      
      * We can only know strictness after zonking, so several checks around
      * strictness
      in the type-checker (checkStrictBinds, the check for unlifted variables
      under a ~
      pattern) have been moved to the desugarer.
      
      * Along the way, I improved the treatment of unlifted vs. banged
      * bindings. See
      Note [Strict binds checks] in DsBinds and #13075.
      
      * Now that we print type-checked source, we must be careful to print
      * ConLikes correctly.
      This is facilitated by a new HsConLikeOut constructor to HsExpr.
      Particularly troublesome
      are unlifted pattern synonyms that get an extra void# argument.
      
      * Includes a submodule update for haddock, getting rid of #.
      
      * New testcases:
        typecheck/should_fail/StrictBinds
        typecheck/should_fail/T12973
        typecheck/should_run/StrictPats
        typecheck/should_run/T12809
        typecheck/should_fail/T13105
        patsyn/should_fail/UnliftedPSBind
        typecheck/should_fail/LevPolyBounded
        typecheck/should_compile/T12987
        typecheck/should_compile/T11736
      
      * Fixed tickets:
        #12809
        #12973
        #11736
        #13075
        #12987
      
      * This also adds a test case for #13105. This test case is
      * "compile_fail" and
      succeeds, because I want the testsuite to monitor the error message.
      When #13105 is fixed, the test case will compile cleanly.
      e7985ed2
  20. 12 Jan, 2017 1 commit
  21. 15 Dec, 2016 1 commit
  22. 25 Nov, 2016 2 commits
    • Simon Peyton Jones's avatar
      Allow TyVars in TcTypes · 18d0bdd3
      Simon Peyton Jones authored
      Up to now we've had a rule that a TyVar can't apppear in a type
      seen by the type checker; they should all be TcTyVars.  But:
      
      a) With -XTypeInType it becomes much harder to exclude them;
         see Note [TcTyVars in the typechecker] in TcType.
      
      b) It's unnecessary to exculde them; instead we can just treat
         a TyVar just like vanillaSkolemTv.
      
      This is what was causing an ASSERT error in
      indexed-types/should_fail/T12041, reported in Trac #12826.
      
      That patch allows a TyVar in a TcType.  The most significant
      change is to make Var.tcTyVarDetails return vanillaSkolemTv.
      In fact it already did, but (a) it was not documented, and
      (b) we never exploited it.  Now we rely on it.
      18d0bdd3
    • Simon Peyton Jones's avatar
      Another major constraint-solver refactoring · 1eec1f21
      Simon Peyton Jones authored
      This patch takes further my refactoring of the constraint
      solver, which I've been doing over the last couple of months
      in consultation with Richard.
      
      It fixes a number of tricky bugs that made the constraint
      solver actually go into a loop, including
      
        Trac #12526
        Trac #12444
        Trac #12538
      
      The main changes are these
      
      * Flatten unification variables (fmvs/fuvs) appear on the LHS
        of a tvar/tyvar equality; thus
                 fmv ~ alpha
        and not
                 alpha ~ fmv
      
        See Note [Put flatten unification variables on the left]
        in TcUnify.  This is implemented by TcUnify.swapOverTyVars.
      
      * Don't reduce a "loopy" CFunEqCan where the fsk appears on
        the LHS:
            F t1 .. tn ~ fsk
        where 'fsk' is free in t1..tn.
        See Note [FunEq occurs-check principle] in TcInteract
      
        This neatly stops some infinite loops that people reported;
        and it allows us to delete some crufty code in reduce_top_fun_eq.
        And it appears to be no loss whatsoever.
      
        As well as fixing loops, ContextStack2 and T5837 both terminate
        when they didn't before.
      
      * Previously we generated "derived shadow" constraints from
        Wanteds, but we could (and sometimes did; Trac #xxxx) repeatedly
        generate a derived shadow from the same Wanted.
      
        A big change in this patch is to have two kinds of Wanteds:
           [WD] behaves like a pair of a Wanted and a Derived
           [W]  behaves like a Wanted only
        See CtFlavour and ShadowInfo in TcRnTypes, and the ctev_nosh
        field of a Wanted.
      
        This turned out to be a lot simpler.  A [WD] gets split into a
        [W] and a [D] in TcSMonad.maybeEmitShaodow.
      
        See TcSMonad Note [The improvement story and derived shadows]
      
      * Rather than have a separate inert_model in the InertCans, I've
        put the derived equalities back into inert_eqs.  We weren't
        gaining anything from a separate field.
      
      * Previously we had a mode for the constraint solver in which it
        would more aggressively solve Derived constraints; it was used
        for simplifying the context of a 'deriving' clause, or a 'default'
        delcaration, for example.
      
        But the complexity wasn't worth it; now I just make proper Wanted
        constraints.  See TcMType.cloneWC
      
      * Don't generate injectivity improvement for Givens; see
        Note [No FunEq improvement for Givens] in TcInteract
      
      * solveSimpleWanteds leaves the insolubles in-place rather than
        returning them.  Simpler.
      
      I also did lots of work on comments, including fixing Trac #12821.
      1eec1f21
  23. 13 Nov, 2016 1 commit
    • Ben Gamari's avatar
      Kill Type pretty-printer · 6c0f10fa
      Ben Gamari authored
      Here we consolidate the pretty-printing logic for types in IfaceType. We
      need IfaceType regardless and the printer for Type can be implemented in
      terms of that for IfaceType. See #11660.
      
      Note that this is very much a work-in-progress. Namely I still have yet
      to ponder how to ease the hs-boot file situation, still need to rip out
      more dead code, need to move some of the special cases for, e.g., `*` to
      the IfaceType printer, and need to get it to validate. That being said,
      it comes close to validating as-is.
      
      Test Plan: Validate
      
      Reviewers: goldfire, austin
      
      Subscribers: goldfire, thomie, simonpj
      
      Differential Revision: https://phabricator.haskell.org/D2528
      
      GHC Trac Issues: #11660
      6c0f10fa
  24. 21 Oct, 2016 3 commits
    • Simon Peyton Jones's avatar
      Refactor occurrence-check logic · 9417e579
      Simon Peyton Jones authored
      This patch does two related things
      
      * Combines the occurrence-check logic in the on-the-fly unifier with
        that in the constraint solver.  They are both doing the same job,
        after all.  The resulting code is now in TcUnify:
           metaTyVarUpdateOK
           occCheckExpand
           occCheckForErrors (called in TcErrors)
      
      * In doing this I disovered checking for family-free-ness and foralls
        can be unnecessarily inefficient, because it expands type synonyms.
        It's easy just to cache this info in the type syononym TyCon, which
        I am now doing.
      9417e579
    • Simon Peyton Jones's avatar
      A collection of type-inference refactorings. · 3f5673f3
      Simon Peyton Jones authored
      This patch does a raft of useful tidy-ups in the type checker.
      I've been meaning to do this for some time, and finally made
      time to do it en route to ICFP.
      
      1. Modify TcType.ExpType to make a distinct data type,
         InferResult for the Infer case, and consequential
         refactoring.
      
      2. Define a new function TcUnify.fillInferResult, to fill in
         an InferResult. It uses TcMType.promoteTcType to promote
         the type to the level of the InferResult.
         See TcMType Note [Promoting a type]
         This refactoring is in preparation for an improvement
         to typechecking pattern bindings, coming next.
      
         I flirted with an elaborate scheme to give better
         higher rank inference, but it was just too complicated.
         See TcMType Note [Promotion and higher rank types]
      
      3. Add to InferResult a new field ir_inst :: Bool to say
         whether or not the type used to fill in the
         InferResult should be deeply instantiated.  See
         TcUnify Note [Deep instantiation of InferResult].
      
      4. Add a TcLevel to SkolemTvs. This will be useful generally
      
          - it's a fast way to see if the type
            variable escapes when floating (not used yet)
      
          - it provides a good consistency check when updating a
            unification variable (TcMType.writeMetaTyVarRef, the
            level_check_ok check)
      
         I originally had another reason (related to the flirting
         in (2), but I left it in because it seems like a step in
         the right direction.
      
      5. Reduce and simplify the plethora of uExpType,
         tcSubType and related functions in TcUnify.  It was
         such an opaque mess and it's still not great, but it's
         better.
      
      6. Simplify the uo_expected field of TypeEqOrigin.  Richard
         had generatlised it to a ExpType, but it was almost always
         a Check type.  Now it's back to being a plain TcType which
         is much, much easier.
      
      7. Improve error messages by refraining from skolemisation when
         it's clear that there's an error: see
         TcUnify Note [Don't skolemise unnecessarily]
      
      8. Type.isPiTy and isForAllTy seem to be missing a coreView check,
         so I added it
      
      9. Kill off tcs_used_tcvs.  Its purpose is to track the
         givens used by wanted constraints.  For dictionaries etc
         we do that via the free vars of the /bindings/ in the
         implication constraint ic_binds.  But for coercions we
         just do update-in-place in the type, rather than
         generating a binding.  So we need something analogous to
         bindings, to track what coercions we have added.
      
         That was the purpose of tcs_used_tcvs.  But it only
         worked for a /single/ iteration, whereas we may have
         multiple iterations of solving an implication.  Look
         at (the old) 'setImplicationStatus'.  If the constraint
         is unsolved, it just drops the used_tvs on the floor.
         If it becomes solved next time round, we'll pick up
         coercions used in that round, but ignore ones used in
         the first round.
      
         There was an outright bug.  Result = (potentialy) bogus
         unused-constraint errors.  Constructing a case where this
         actually happens seems quite trick so I did not do so.
      
         Solution: expand EvBindsVar to include the (free vars of
         the) coercions, so that the coercions are tracked in
         essentially the same way as the bindings.
      
         This turned out to be much simpler.  Less code, more
         correct.
      
      10. Make the ic_binds field in an implication have type
            ic_binds :: EvBindsVar
          instead of (as previously)
             ic_binds :: Maybe EvBindsVar
          This is notably simpler, and faster to use -- less
          testing of the Maybe.  But in the occaional situation
          where we don't have anywhere to put the bindings, the
          belt-and-braces error check is lost.  So I put it back
          as an ASSERT in 'setImplicationStatus' (see the use of
          'termEvidenceAllowed')
      
      All these changes led to quite bit of error message wibbling
      3f5673f3
    • Gabor Greif's avatar
      Typos in comments · ff225b49
      Gabor Greif authored
      ff225b49
  25. 17 Oct, 2016 1 commit
  26. 30 Sep, 2016 1 commit
  27. 12 Sep, 2016 1 commit
    • Simon Peyton Jones's avatar
      Be less picky about reporing inaccessible code · 03541cba
      Simon Peyton Jones authored
      Triggered by the discussion on Trac #12466, this patch
      makes GHC less aggressive about reporting an error when
      there are insoluble Givens.
      
      Being so agressive was making some libraries fail to
      compile, and is arguably wrong in at least some cases.
      See the discussion on the ticket.
      
      Several test now pass when they failed before; see
      the files-modified list for this patch.
      03541cba
  28. 31 Aug, 2016 1 commit
  29. 17 Aug, 2016 1 commit
  30. 01 Aug, 2016 1 commit
  31. 28 Jun, 2016 1 commit
    • Simon Peyton Jones's avatar
      Don't omit any evidence bindings · af21e388
      Simon Peyton Jones authored
      This fixes Trac #12156, where we were omitting to make an
      evidence binding (because cec_suppress was on), but yet the
      program was compiled and run.
      
      The fix is easy, and involves deleting code :-).
      af21e388
  32. 25 Jun, 2016 1 commit
    • eir@cis.upenn.edu's avatar
      s/Invisible/Inferred/g s/Visible/Required/g · 5fdb854c
      eir@cis.upenn.edu authored
      This renames VisibilityFlag from
      
      > data VisibilityFlag = Visible | Specified | Invisible
      
      to
      
      > data ArgFlag = Required | Specified | Inferred
      
      The old name was quite confusing, because both Specified
      and Invisible were invisible! The new names are hopefully clearer.
      5fdb854c