1. 02 Jan, 2013 9 commits
  2. 01 Jan, 2013 6 commits
    • Simon Peyton Jones's avatar
      Make the comments about SingI and EvLit match current reality · 215cf423
      Simon Peyton Jones authored
      See Note [SingI and EvLit] in TcEvidence.
      215cf423
    • Simon Peyton Jones's avatar
      Comments and white space only · b43fdcfe
      Simon Peyton Jones authored
      b43fdcfe
    • Simon Peyton Jones's avatar
      Refactor the invariants for ClsInsts · 5efe9b11
      Simon Peyton Jones authored
      We now have the invariant for a ClsInst that the is_tvs field
      is always completely fresh type variables. See
      Note [Template tyvars are fresh] in InstEnv.
      
      (Previously we frehened them when extending the instance environment,
      but that seems messier because it was an invariant only when the
      ClsInst was in an InstEnv.  Moreover, there was an invariant that
      thet tyvars of the DFunid in the ClsInst had to match, and I have
      removed that invariant altogether; there is no need for it.)
      
      Other changes I made at the same time:
      
       * Make is_tvs into a *list*, in the right order for the dfun type
         arguments.  This removes the wierd need for the dfun to have the
         same tyvars as the ClsInst template, an invariant I have always
         hated. The cost is that we need to make it a VarSet when matching.
         We could cache an is_tv_set instead.
      
       * Add a cached is_cls field to the ClsInst, to save fishing
         the Class out of the DFun.  (Renamed is_cls to is_cls_nm.)
      
       * Make tcSplitDFunTy return the dfun args, not just the *number*
         of dfun args
      
       * Make InstEnv.instanceHead return just the *head* of the
         instance declaration.  Add instanceSig to return the whole
         thing.
      5efe9b11
    • Simon Peyton Jones's avatar
      Fix typo in comment (Trac #7526) · 18003c9e
      Simon Peyton Jones authored
      18003c9e
    • Ben Millwood's avatar
      Remove references to GHC 6.6 in docs · 9929172c
      Ben Millwood authored
      9929172c
    • ian@well-typed.com's avatar
  3. 29 Dec, 2012 1 commit
    • Iavor S. Diatchki's avatar
      Fix dictionaries for SingI. · 45279919
      Iavor S. Diatchki authored
      This adds the missing coercions in the constructed evidence for SingI.
      Previously we simply passed an integer or a string for the evidence,
      which was not quite correct and causes errors when the core lint is
      enabled.   This patch corrects this by inserting the necessary
      coercions.
      45279919
  4. 24 Dec, 2012 3 commits
  5. 23 Dec, 2012 3 commits
  6. 22 Dec, 2012 1 commit
    • eir@cis.upenn.edu's avatar
      Implement overlapping type family instances. · 8366792e
      eir@cis.upenn.edu authored
      An ordered, overlapping type family instance is introduced by 'type
      instance
      where', followed by equations. See the new section in the user manual
      (7.7.2.2) for details. The canonical example is Boolean equality at the
      type
      level:
      
      type family Equals (a :: k) (b :: k) :: Bool
      type instance where
        Equals a a = True
        Equals a b = False
      
      A branched family instance, such as this one, checks its equations in
      order
      and applies only the first the matches. As explained in the note
      [Instance
      checking within groups] in FamInstEnv.lhs, we must be careful not to
      simplify,
      say, (Equals Int b) to False, because b might later unify with Int.
      
      This commit includes all of the commits on the overlapping-tyfams
      branch. SPJ
      requested that I combine all my commits over the past several months
      into one
      monolithic commit. The following GHC repos are affected: ghc, testsuite,
      utils/haddock, libraries/template-haskell, and libraries/dph.
      
      Here are some details for the interested:
      
      - The definition of CoAxiom has been moved from TyCon.lhs to a
        new file CoAxiom.lhs. I made this decision because of the
        number of definitions necessary to support BranchList.
      
      - BranchList is a GADT whose type tracks whether it is a
        singleton list or not-necessarily-a-singleton-list. The reason
        I introduced this type is to increase static checking of places
        where GHC code assumes that a FamInst or CoAxiom is indeed a
        singleton. This assumption takes place roughly 10 times
        throughout the code. I was worried that a future change to GHC
        would invalidate the assumption, and GHC might subtly fail to
        do the right thing. By explicitly labeling CoAxioms and
        FamInsts as being Unbranched (singleton) or
        Branched (not-necessarily-singleton), we make this assumption
        explicit and checkable. Furthermore, to enforce the accuracy of
        this label, the list of branches of a CoAxiom or FamInst is
        stored using a BranchList, whose constructors constrain its
        type index appropriately.
      
      I think that the decision to use BranchList is probably the most
      controversial decision I made from a code design point of view.
      Although I provide conversions to/from ordinary lists, it is more
      efficient to use the brList... functions provided in CoAxiom than
      always to convert. The use of these functions does not wander far
      from the core CoAxiom/FamInst logic.
      
      BranchLists are motivated and explained in the note [Branched axioms] in
      CoAxiom.lhs.
      
      - The CoAxiom type has changed significantly. You can see the new
        type in CoAxiom.lhs. It uses a CoAxBranch type to track
        branches of the CoAxiom. Correspondingly various functions
        producing and consuming CoAxioms had to change, including the
        binary layout of interface files.
      
      - To get branched axioms to work correctly, it is important to have a
        notion
        of type "apartness": two types are apart if they cannot unify, and no
        substitution of variables can ever get them to unify, even after type
      family
        simplification. (This is different than the normal failure to unify
      because
        of the type family bit.) This notion in encoded in tcApartTys, in
      Unify.lhs.
        Because apartness is finer-grained than unification, the tcUnifyTys
      now
        calls tcApartTys.
      
      - CoreLinting axioms has been updated, both to reflect the new
        form of CoAxiom and to enforce the apartness rules of branch
        application. The formalization of the new rules is in
        docs/core-spec/core-spec.pdf.
      
      - The FamInst type (in types/FamInstEnv.lhs) has changed
        significantly, paralleling the changes to CoAxiom. Of course,
        this forced minor changes in many files.
      
      - There are several new Notes in FamInstEnv.lhs, including one
        discussing confluent overlap and why we're not doing it.
      
      - lookupFamInstEnv, lookupFamInstEnvConflicts, and
        lookup_fam_inst_env' (the function that actually does the work)
        have all been more-or-less completely rewritten. There is a
        Note [lookup_fam_inst_env' implementation] describing the
        implementation. One of the changes that affects other files is
        to change the type of matches from a pair of (FamInst, [Type])
        to a new datatype (which now includes the index of the matching
        branch). This seemed a better design.
      
      - The TySynInstD constructor in Template Haskell was updated to
        use the new datatype TySynEqn. I also bumped the TH version
        number, requiring changes to DPH cabal files. (That's why the
        DPH repo has an overlapping-tyfams branch.)
      
      - As SPJ requested, I refactored some of the code in HsDecls:
      
       * splitting up TyDecl into SynDecl and DataDecl, correspondingly
         changing HsTyDefn to HsDataDefn (with only one constructor)
      
       * splitting FamInstD into TyFamInstD and DataFamInstD and
         splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl
      
       * making the ClsInstD take a ClsInstDecl, for parallelism with
         InstDecl's other constructors
      
       * changing constructor TyFamily into FamDecl
      
       * creating a FamilyDecl type that stores the details for a family
         declaration; this is useful because FamilyDecls can appear in classes
      but
         other decls cannot
      
       * restricting the associated types and associated type defaults for a
       * class
         to be the new, more restrictive types
      
       * splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts,
         according to the new types
      
       * perhaps one or two more that I'm overlooking
      
      None of these changes has far-reaching implications.
      
      - The user manual, section 7.7.2.2, is updated to describe the new type
        family
        instances.
      8366792e
  7. 21 Dec, 2012 7 commits
  8. 20 Dec, 2012 4 commits
  9. 19 Dec, 2012 6 commits