1. 21 Jun, 2002 1 commit
  2. 14 Jun, 2002 1 commit
  3. 26 Nov, 2001 1 commit
    • simonpj's avatar
      [project @ 2001-11-26 09:20:25 by simonpj] · 5e3f005d
      simonpj authored
      ----------------------
      	Implement Rank-N types
      	----------------------
      
      This commit implements the full glory of Rank-N types, using
      the Odersky/Laufer approach described in their paper
      	"Putting type annotations to work"
      
      In fact, I've had to adapt their approach to deal with the
      full glory of Haskell (including pattern matching, and the
      scoped-type-variable extension).  However, the result is:
      
      * There is no restriction to rank-2 types.  You can nest forall's
        as deep as you like in a type.  For example, you can write a type
        like
      	p :: ((forall a. Eq a => a->a) -> Int) -> Int
        This is a rank-3 type, illegal in GHC 5.02
      
      * When matching types, GHC uses the cunning Odersky/Laufer coercion
        rules.  For example, suppose we have
      	q :: (forall c. Ord c => c->c) -> Int
        Then, is this well typed?
      	x :: Int
      	x = p q
        Yes, it is, but GHC has to generate the right coercion.  Here's
        what it looks like with all the big lambdas and dictionaries put in:
      
      	x = p (\ f :: (forall a. Eq a => a->a) ->
      		 q (/\c \d::Ord c -> f c (eqFromOrd d)))
      
        where eqFromOrd selects the Eq superclass dictionary from the Ord
        dicationary:		eqFromOrd :: Ord a -> Eq a
      
      
      * You can use polymorphic types in pattern type signatures.  For
        example:
      
      	f (g :: forall a. a->a) = (g 'c', g True)
      
        (Previously, pattern type signatures had to be monotypes.)
      
      * The basic rule for using rank-N types is that you must specify
        a type signature for every binder that you want to have a type
        scheme (as opposed to a plain monotype) as its type.
      
        However, you don't need to give the type signature on the
        binder (as I did above in the defn for f).  You can give it
        in a separate type signature, thus:
      
      	f :: (forall a. a->a) -> (Char,Bool)
      	f g = (g 'c', g True)
      
        GHC will push the external type signature inwards, and use
        that information to decorate the binders as it comes across them.
        I don't have a *precise* specification of this process, but I
        think it is obvious enough in practice.
      
      * In a type synonym you can use rank-N types too.  For example,
        you can write
      
      	type IdFun = forall a. a->a
      
      	f :: IdFun -> (Char,Bool)
      	f g = (g 'c', g True)
      
        As always, type synonyms must always occur saturated; GHC
        expands them before it does anything else.  (Still, GHC goes
        to some trouble to keep them unexpanded in error message.)
      
      
      The main plan is as before.  The main typechecker for expressions,
      tcExpr, takes an "expected type" as its argument.  This greatly
      improves error messages.  The new feature is that when this
      "expected type" (going down) meets an "actual type" (coming up)
      we use the new subsumption function
      	TcUnify.tcSub
      which checks that the actual type can be coerced into the
      expected type (and produces a coercion function to demonstrate).
      
      The main new chunk of code is TcUnify.tcSub.  The unifier itself
      is unchanged, but it has moved from TcMType into TcUnify.  Also
      checkSigTyVars has moved from TcMonoType into TcUnify.
      Result: the new module, TcUnify, contains all stuff relevant
      to subsumption and unification.
      
      Unfortunately, there is now an inevitable loop between TcUnify
      and TcSimplify, but that's just too bad (a simple TcUnify.hi-boot
      file).
      
      
      All of this doesn't come entirely for free.  Here's the typechecker
      line count (INCLUDING comments)
      	Before	16,551
      	After	17,116
      5e3f005d
  4. 24 Nov, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-11-24 17:02:01 by simonpj] · 83eef621
      simonpj authored
      1. Make the new version machinery work.
         I think it does now!
      
      2. Consequence of (1): Move the generation of
         default method names to one place (namely
         in RdrHsSyn.mkClassOpSigDM
      
      3. Major clean up on HsDecls.TyClDecl
         These big constructors should have been records
         ages ago, and they are now.  At last.
      83eef621
  5. 08 Jan, 1996 1 commit