1. 27 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-27 13:24:12 by simonpj] · a127213c
      simonpj authored
      a) Move Unfolding and UnfoldingGuidance to CoreSyn
         As a result, remove several SOURCE imports
         Shrink CoreSyn.hi-boot considerably
         Delete CoreUnfold.hi-boot altogether
      
      b) Add CoreUtils.exprIsConApp_maybe
         Use in PrelRules to fix a bug in the dataToTag rule
      
      c) Fix boolean polarity error in Simplify.lhs
      a127213c
  2. 25 Mar, 2000 1 commit
    • panne's avatar
      [project @ 2000-03-25 12:38:40 by panne] · cca2c69f
      panne authored
      Adding a bunch of `import PprType ()' to make 4.07 compile itself.
      Strangely enough, compilation with 4.06 worked without these, so
      this is probably only fighting the symptoms of something deeper,
      and somebody should have a look at it. But for now, I simply need
      a bootstrapping 4.07...
      cca2c69f
  3. 23 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-23 17:45:17 by simonpj] · 111cee3f
      simonpj authored
      This utterly gigantic commit is what I've been up to in background
      mode in the last couple of months.  Originally the main goal
      was to get rid of Con (staturated constant applications)
      in the CoreExpr type, but one thing led to another, and I kept
      postponing actually committing.   Sorry.
      
      	Simon, 23 March 2000
      
      
      I've tested it pretty thoroughly, but doubtless things will break.
      
      Here are the highlights
      
      * Con is gone; the CoreExpr type is simpler
      * NoRepLits have gone
      * Better usage info in interface files => less recompilation
      * Result type signatures work
      * CCall primop is tidied up
      * Constant folding now done by Rules
      * Lots of hackery in the simplifier
      * Improvements in CPR and strictness analysis
      
      Many bug fixes including
      
      * Sergey's DoCon compiles OK; no loop in the strictness analyser
      * Volker Wysk's programs don't crash the CPR analyser
      
      I have not done much on measuring compilation times and binary sizes;
      they could have got worse.  I think performance has got significantly
      better, though, in most cases.
      
      
      Removing the Con form of Core expressions
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      The big thing is that
      
        For every constructor C there are now *two* Ids:
      
      	C is the constructor's *wrapper*. It evaluates and unboxes arguments
      	before calling $wC.  It has a perfectly ordinary top-level defn
      	in the module defining the data type.
      
      	$wC is the constructor's *worker*.  It is like a primop that simply
      	allocates and builds the constructor value.  Its arguments are the
      	actual representation arguments of the constructor.
      	Its type may be different to C, because:
      		- useless dict args are dropped
      		- strict args may be flattened
      
        For every primop P there is *one* Id, its (curried) Id
      
        Neither contructor worker Id nor the primop Id have a defminition anywhere.
        Instead they are saturated during the core-to-STG pass, and the code generator
        generates code for them directly. The STG language still has saturated
        primops and constructor applications.
      
      * The Const type disappears, along with Const.lhs.  The literal part
        of Const.lhs reappears as Literal.lhs.  Much tidying up in here,
        to bring all the range checking into this one module.
      
      * I got rid of NoRep literals entirely.  They just seem to be too much trouble.
      
      * Because Con's don't exist any more, the funny C { args } syntax
        disappears from inteface files.
      
      
      Parsing
      ~~~~~~~
      * Result type signatures now work
      	f :: Int -> Int = \x -> x
      	-- The Int->Int is the type of f
      
      	g x y :: Int = x+y
      	-- The Int is the type of the result of (g x y)
      
      
      Recompilation checking and make
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * The .hi file for a modules is not touched if it doesn't change.  (It used to
        be touched regardless, forcing a chain of recompilations.)  The penalty for this
        is that we record exported things just as if they were mentioned in the body of
        the module.  And the penalty for that is that we may recompile a module when
        the only things that have changed are the things it is passing on without using.
        But it seems like a good trade.
      
      * -recomp is on by default
      
      Foreign declarations
      ~~~~~~~~~~~~~~~~~~~~
      * If you say
      	foreign export zoo :: Int -> IO Int
        then you get a C produre called 'zoo', not 'zzoo' as before.
        I've also added a check that complains if you export (or import) a C
        procedure whose name isn't legal C.
      
      
      Code generation and labels
      ~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Now that constructor workers and wrappers have distinct names, there's
        no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
        I nuked the entire StaticClosure story.  This has effects in some of
        the RTS headers (i.e. s/static_closure/closure/g)
      
      
      Rules, constant folding
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Constant folding becomes just another rewrite rule, attached to the Id for the
        PrimOp.   To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
        The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
      
      * Appending of constant strings now works, using fold/build fusion, plus
        the rewrite rule
      	unpack "foo" c (unpack "baz" c n)  =  unpack "foobaz" c n
        Implemented in PrelRules.lhs
      
      * The CCall primop is tidied up quite a bit.  There is now a data type CCall,
        defined in PrimOp, that packages up the info needed for a particular CCall.
        There is a new Id for each new ccall, with an big "occurrence name"
      	{__ccall "foo" gc Int# -> Int#}
        In interface files, this is parsed as a single Id, which is what it is, really.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * There were numerous places where the host compiler's
        minInt/maxInt was being used as the target machine's minInt/maxInt.
        I nuked all of these; everything is localised to inIntRange and inWordRange,
        in Literal.lhs
      
      * Desugaring record updates was broken: it didn't generate correct matches when
        used withe records with fancy unboxing etc.  It now uses matchWrapper.
      
      * Significant tidying up in codeGen/SMRep.lhs
      
      * Add __word, __word64, __int64 terminals to signal the obvious types
        in interface files.  Add the ability to print word values in hex into
        C code.
      
      * PrimOp.lhs is no longer part of a loop.  Remove PrimOp.hi-boot*
      
      
      Types
      ~~~~~
      * isProductTyCon no longer returns False for recursive products, nor
        for unboxed products; you have to test for these separately.
        There's no reason not to do CPR for recursive product types, for example.
        Ditto splitProductType_maybe.
      
      Simplification
      ~~~~~~~~~~~~~~~
      * New -fno-case-of-case flag for the simplifier.  We use this in the first run
        of the simplifier, where it helps to stop messing up expressions that
        the (subsequent) full laziness pass would otherwise find float out.
        It's much more effective than previous half-baked hacks in inlining.
      
        Actually, it turned out that there were three places in Simplify.lhs that
        needed to know use this flag.
      
      * Make the float-in pass push duplicatable bindings into the branches of
        a case expression, in the hope that we never have to allocate them.
        (see FloatIn.sepBindsByDropPoint)
      
      * Arrange that top-level bottoming Ids get a NOINLINE pragma
        This reduced gratuitous inlining of error messages.
        But arrange that such things still get w/w'd.
      
      * Arrange that a strict argument position is regarded as an 'interesting'
        context, so that if we see
      	foldr k z (g x)
        then we'll be inclined to inline g; this can expose a build.
      
      * There was a missing case in CoreUtils.exprEtaExpandArity that meant
        we were missing some obvious cases for eta expansion
        Also improve the code when handling applications.
      
      * Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
      	  [The change is a 2-liner in CoreUtils.exprIsCheap]
        This means that record selection may be inlined into function bodies, which
        greatly improves the arities of overloaded functions.
      
      * Make a cleaner job of inlining "lone variables".  There was some distributed
        cunning, but I've centralised it all now in SimplUtils.analyseCont, which
        analyses the context of a call to decide whether it is "interesting".
      
      * Don't specialise very small functions in Specialise.specDefn
        It's better to inline it.  Rather like the worker/wrapper case.
      
      * Be just a little more aggressive when floating out of let rhss.
        See comments with Simplify.wantToExpose
        A small change with an occasional big effect.
      
      * Make the inline-size computation think that
      	case x of I# x -> ...
        is *free*.
      
      
      CPR analysis
      ~~~~~~~~~~~~
      * Fix what was essentially a bug in CPR analysis.  Consider
      
      	letrec f x = let g y = let ... in f e1
      		     in
      		     if ... then (a,b) else g x
      
        g has the CPR property if f does; so when generating the final annotated
        RHS for f, we must use an envt in which f is bound to its final abstract
        value.  This wasn't happening.  Instead, f was given the CPR tag but g
        wasn't; but of course the w/w pass gives rotten results in that case!!
        (Because f's CPR-ness relied on g's.)
      
        On they way I tidied up the code in CprAnalyse.  It's quite a bit shorter.
      
        The fact that some data constructors return a constructed product shows
        up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
      
      
      
      Strictness analysis and worker/wrapper
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * BIG THING: pass in the demand to StrictAnal.saExpr.  This affects situations
        like
      	f (let x = e1 in (x,x))
        where f turns out to have strictness u(SS), say.  In this case we can
        mark x as demanded, and use a case expression for it.
      
        The situation before is that we didn't "know" that there is the u(SS)
        demand on the argument, so we simply computed that the body of the let
        expression is lazy in x, and marked x as lazily-demanded.  Then even after
        f was w/w'd we got
      
      	let x = e1 in case (x,x) of (a,b) -> $wf a b
      
        and hence
      
      	let x = e1 in $wf a b
      
        I found a much more complicated situation in spectral/sphere/Main.shade,
        which improved quite a bit with this change.
      
      * Moved the StrictnessInfo type from IdInfo to Demand.  It's the logical
        place for it, and helps avoid module loops
      
      * Do worker/wrapper for coerces even if the arity is zero.  Thus:
      	stdout = coerce Handle (..blurg..)
        ==>
      	wibble = (...blurg...)
      	stdout = coerce Handle wibble
        This is good because I found places where we were saying
      	case coerce t stdout of { MVar a ->
      	...
      	case coerce t stdout of { MVar b ->
      	...
        and the redundant case wasn't getting eliminated because of the coerce.
      111cee3f
  4. 08 Mar, 2000 1 commit
    • simonmar's avatar
      [project @ 2000-03-08 17:48:24 by simonmar] · de896403
      simonmar authored
      - generalise the per-module initialisation stubs so that we use it
        in normal (non-profiled) code too.  The initialisation stubs are
        now called '__init_<module>' rather than '_reg<module>'.
      
      - Register foreign exported functions as stable pointers in the
        initialisation code for the module.  This fixes the foreign export
        problems reported by several people.
      
      - remove the concept of "module groups" from the profiling subsystem.
      
      - change the profiling semantics slightly; it should be unnecessary
        to use '-caf-all' to get reasonable profiles now.
      de896403
  5. 06 Sep, 1999 1 commit
  6. 27 Jul, 1999 1 commit
    • sof's avatar
      [project @ 1999-07-27 10:53:53 by sof] · bc3bcc2c
      sof authored
      If calling a 'foreign export'ed Haskell function resulted in an error,
      localise the error by supplying the module name as well as the name
      of the function.
      bc3bcc2c
  7. 15 Jul, 1999 1 commit
    • keithw's avatar
      [project @ 1999-07-15 14:08:03 by keithw] · 9d787ef5
      keithw authored
      This commit makes a start at implementing polymorphic usage
      annotations.
      
      * The module Type has now been split into TypeRep, containing the
        representation Type(..) and other information for `friends' only,
        and Type, providing the public interface to Type.  Due to a bug in
        the interface-file slurping prior to ghc-4.04, {-# SOURCE #-}
        dependencies must unfortunately still refer to TypeRep even though
        they are not friends.
      
      * Unfoldings in interface files now print as __U instead of __u.
        UpdateInfo now prints as __UA instead of __U.
      
      * A new sort of variables, UVar, in their own namespace, uvName, has
        been introduced for usage variables.
      
      * Usage binders __fuall uv have been introduced.  Usage annotations
        are now __u - ty (used once), __u ! ty (used possibly many times),
        __u uv ty (used uv times), where uv is a UVar.  __o and __m have
        gone.  All this still lives only in a TyNote, *for now* (but not for
        much longer).
      
      * Variance calculation for TyCons has moved from
        typecheck/TcTyClsDecls to types/Variance.
      
      * Usage annotation and inference are now done together in a single
        pass.  Provision has been made for inferring polymorphic usage
        annotations (with __fuall) but this has not yet been implemented.
        Watch this space!
      9d787ef5
  8. 14 Jul, 1999 1 commit
    • simonpj's avatar
      [project @ 1999-07-14 14:40:20 by simonpj] · 4e7d56fd
      simonpj authored
      Main things:
      
      * Add splitProductType_maybe to DataCon.lhs, with type
        splitProductType_maybe
      	:: Type 			-- A product type, perhaps
      	-> Maybe (TyCon, 		-- The type constructor
      		  [Type],		-- Type args of the tycon
      		  DataCon,		-- The data constructor
      		  [Type])		-- Its *representation* arg types
      
        Then use it in many places (e.g. worker-wrapper places) instead
        of a pile of junk
      
      * Clean up various uses of dataConArgTys, which were plain wrong because
        they weren't passed the existential type arguments.  Most of these calls
        are eliminated by using splitProductType_maybe above.  I hope I correctly
        squashed the others. This fixes a bug that Meurig's programs showed up.
      
          module FailGHC (killSustainer) where
          import Weak
          import IOExts
      
          data Sustainer = forall a . Sustainer (IORef (Maybe a)) (IO ())
      
          killSustainer :: Sustainer -> IO ()
          killSustainer (Sustainer _ act) = act
      
        The above program used to kill the compiler.
      
      * A fairly concerted attack on the Dreaded Space Leak.
      	- Add Type.seqType, CoreSyn.seqExpr, CoreSyn.seqRules
      
      	- Add some seq'ing when building Ids and IdInfos
      		These reduce the space usage a lot
      
      	- Add CoreSyn.coreBindsSize, which is pretty strict in the program,
      		and call it when we have -dshow-passes.
      
      	- Do not put the inlining in an Id that is being plugged into
      		the result-expression of the simplifier.  This cures
      		a the 'wedge' in the space profile for reasons I don't understand fully
      
        Together, these things reduce the max space usage when compiling PrelNum from
        17M to about 7Mbytes.
      
        I think there are now *too many* seqs, and they waste work, but I don't have
        time to find which ones.
      
        Furthermore, we aren't done. For some reason, some of the stuff allocated by
        the simplifier makes it through all during code generation and I don't see why.
        There's a should-be-unnecessary call to coreBindsSize in Main.main which
        zaps some, but not all of this space.
      
        -dshow-passes reduces space usage a bit, but I don't think it should really.
      
        All the measurements were made on a compiler compiled with profiling by
        GHC 3.03.    I hope they carry over to other builds!
      
      * One trivial thing: changed all variables 'label' to 'lbl', becuase the
        former is a keyword with -fglagow-exts in GHC 3.03 (which I was compiling with).
        Something similar in StringBuffer.
      4e7d56fd
  9. 17 Jun, 1999 1 commit
  10. 18 May, 1999 1 commit
  11. 02 Mar, 1999 1 commit
  12. 05 Feb, 1999 1 commit
    • sof's avatar
      [project @ 1999-02-05 16:37:13 by sof] · 88ca0162
      sof authored
      -fwarn-type-defaults is your friend; misc changes to avoid H98's
      'default default' of Integer to kick when what we really want is Int.
      88ca0162
  13. 27 Jan, 1999 1 commit
    • simonpj's avatar
      [project @ 1999-01-27 14:51:14 by simonpj] · 18976e61
      simonpj authored
      Finally!  This commits the ongoing saga of Simon's hygiene sweep
      
      FUNCTIONALITY
      ~~~~~~~~~~~~~
      a) The 'unused variable' warnings from the renamer work.  
      b) Better error messages here and there, esp type checker
      c) Fixities for Haskell 98 (maybe I'd done that before)
      d) Lazy reporting of name clashes for Haskell 98 (ditto)
      
      HYGIENE
      ~~~~~~~
      a) type OccName has its own module.  OccNames are represented
         by a single FastString, not three as in the last round.  This
         string is held in Z-encoded form; a decoding function decodes
         for printing in user error messages.  There's a nice tight
         encoding for (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)
      
      b) type Module is a proper ADT, in module OccName
      
      c) type RdrName is a proper ADT, in its own module
      
      d) type Name has a new, somwhat tidier, representation
      
      e) much grunting in the renamer to get Provenances right.
         This makes error messages look better (no spurious qualifiers)
      18976e61
  14. 21 Jan, 1999 1 commit
  15. 18 Jan, 1999 1 commit
  16. 02 Dec, 1998 1 commit
  17. 13 Nov, 1998 1 commit
  18. 09 Nov, 1998 1 commit
  19. 08 Nov, 1998 1 commit
  20. 21 Oct, 1998 1 commit
    • sof's avatar
      [project @ 1998-10-21 11:28:00 by sof] · e88bfcee
      sof authored
      - added primops for read&writing StablePtrs to ByteArrays, Adds and FOs
      - egcs crashes in odd ways when encountering the typedefs we need to
        produce when compiling 'foreign import dynamic's. To workaround the
        problem, kludgily add a CCallTypedef constructor to AbsCSyn.AbstractC
        which the flattener will produce (at the toplevel) when encountering
        CCallOps inside COptStmts.
      - augmented PrimOp.CCallOp to carry a unique when it represents a
        'foreign import dynamic' call. The CoreToStg pass ensures that these
        uniques are exactly that. They're used to eventuall generate (unique)
        typedef names.
      e88bfcee
  21. 14 Aug, 1998 1 commit