- 17 Jun, 2020 1 commit
-
-
This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
-
- 13 Jun, 2020 1 commit
-
-
Currently, `HsForAllTy` permits the combination of `ForallVis` and `Inferred`, but you can't actually typecheck code that uses it (e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a new `HsForAllTelescope` data type that makes a type-level distinction between visible and invisible `forall`s such that visible `forall`s do not track `Specificity`. That part of the patch is actually quite small; the rest is simply changing consumers of `HsType` to accommodate this new type. Fixes #18235. Bumps the `haddock` submodule.
-
- 10 Jun, 2020 1 commit
-
-
This implements a first step towards #16762 by changing the renamer to always use `rnImplicitBndrs` to bring implicitly bound type variables into scope. The main change is in `rnFamInstEqn` and `bindHsQTyVars`, which previously used _ad hoc_ methods of binding their implicit tyvars. There are a number of knock-on consequences: * One of the reasons that `rnFamInstEqn` used an _ad hoc_ binding mechanism was to give more precise source locations in `-Wunused-type-patterns` warnings. (See #16762 (comment 273343) for an example of this.) However, these warnings are actually a little _too_ precise, since implicitly bound type variables don't have exact binding sites like explicitly bound type variables do. A similar problem existed for "`Different names for the same type variable`" errors involving implicit tyvars bound by `bindHsQTyVars`. Therefore, we simply accept the less precise (but more accurate) source locations from `rnImplicitBndrs` in `rnFamInstEqn` and `bindHsQTyVars`. See `Note [Source locations for implicitly bound type variables]` in `GHC.Rename.HsType` for the full story. * In order for `rnImplicitBndrs` to work in `rnFamInstEqn`, it needs to be able to look up names from the parent class (in the event that we are renaming an associated type family instance). As a result, `rnImplicitBndrs` now takes an argument of type `Maybe assoc`, which is `Just` in the event that a type family instance is associated with a class. * Previously, GHC kept track of three type synonyms for free type variables in the renamer: `FreeKiTyVars`, `FreeKiTyVarsDups` (which are allowed to contain duplicates), and `FreeKiTyVarsNoDups` (which contain no duplicates). However, making is a distinction between `-Dups` and `-NoDups` is now pointless, as all code that returns `FreeKiTyVars{,Dups,NoDups}` will eventually end up being passed to `rnImplicitBndrs`, which removes duplicates. As a result, I decided to just get rid of `FreeKiTyVarsDups` and `FreeKiTyVarsNoDups`, leaving only `FreeKiTyVars`. * The `bindLRdrNames` and `deleteBys` functions are now dead code, so I took the liberty of removing them.
-
- 09 Jun, 2020 1 commit
-
-
Issue #18191 revealed that the types of GADT constructors don't quite adhere to the `forall`-or-nothing rule. This patch serves to clean up this sad state of affairs somewhat. The main change is not in the code itself, but in the documentation, as this patch introduces two sections to the GHC User's Guide: * A "Formal syntax for GADTs" section that presents a BNF-style grammar for what is and isn't allowed in GADT constructor types. This mostly exists to codify GHC's existing behavior, but it also imposes a new restriction that addresses #18191: the outermost `forall` and/or context in a GADT constructor is not allowed to be surrounded by parentheses. Doing so would make these `forall`s/contexts nested, and GADTs do not support nested `forall`s/contexts at present. * A "`forall`-or-nothing rule" section that describes exactly what the `forall`-or-nothing rule is all about. Surprisingly, there was no mention of this anywhere in the User's Guide up until now! To adhere the new specification in the "Formal syntax for GADTs" section of the User's Guide, the following code changes were made: * A new function, `GHC.Hs.Type.splitLHsGADTPrefixTy`, was introduced. This is very much like `splitLHsSigmaTy`, except that it avoids splitting apart any parentheses, which can be syntactically significant for GADT types. See `Note [No nested foralls or contexts in GADT constructors]` in `GHC.Hs.Type`. * `ConDeclGADTPrefixPs`, an extension constructor for `XConDecl`, was introduced so that `GHC.Parser.PostProcess.mkGadtDecl` can return it when given a prefix GADT constructor. Unlike `ConDeclGADT`, `ConDeclGADTPrefixPs` does not split the GADT type into its argument and result types, as this cannot be done until after the type is renamed (see `Note [GADT abstract syntax]` in `GHC.Hs.Decls` for why this is the case). * `GHC.Renamer.Module.rnConDecl` now has an additional case for `ConDeclGADTPrefixPs` that (1) splits apart the full `LHsType` into its `forall`s, context, argument types, and result type, and (2) checks for nested `forall`s/contexts. Step (2) used to be performed the typechecker (in `GHC.Tc.TyCl.badDataConTyCon`) rather than the renamer, but now the relevant code from the typechecker can simply be deleted. One nice side effect of this change is that we are able to give a more accurate error message for GADT constructors that use visible dependent quantification (e.g., `MkFoo :: forall a -> a -> Foo a`), which improves the stderr in the `T16326_Fail6` test case. Fixes #18191. Bumps the Haddock submodule.
-
- 05 Jun, 2020 1 commit
-
-
This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195)
-
- 01 Jun, 2020 1 commit
-
- 24 May, 2020 1 commit
-
-
See discussion in #13009 (comment 268610)
-
- 21 May, 2020 1 commit
-
-
Implementation for Ticket #16393. Explicit specificity allows users to manually create inferred type variables, by marking them with braces. This way, the user determines which variables can be instantiated through visible type application. The additional syntax is included in the parser, allowing users to write braces in type variable binders (type signatures, data constructors etc). This information is passed along through the renamer and verified in the type checker. The AST for type variable binders, data constructors, pattern synonyms, partial signatures and Template Haskell has been updated to include the specificity of type variables. Minor notes: - Bumps haddock submodule - Disables pattern match checking in GHC.Iface.Type with GHC 8.8
-
- 14 May, 2020 1 commit
-
-
This implements chunks (2) and (3) of #16762 (comment 270170). Namely, it introduces a dedicated `HsPatSigType` AST type, which represents the types that can appear in pattern signatures and term-level `RULE` binders. Previously, these were represented with `LHsSigWcType`. Although `LHsSigWcType` is isomorphic to `HsPatSigType`, the intended semantics of the two types are slightly different, as evidenced by the fact that they have different code paths in the renamer and typechecker. See also the new `Note [Pattern signature binders and scoping]` in `GHC.Hs.Types`.
-
- 26 Apr, 2020 1 commit
-
-
Update Haddock submodule Metric Increase: haddock.compiler
-
- 18 Apr, 2020 1 commit
-
-
Sylvain Henry authored
* SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
-
- 07 Apr, 2020 2 commits
-
-
Ryan Scott authored
This changes every unused TTG extension constructor to be strict in its field so that the pattern-match coverage checker is smart enough any such constructors are unreachable in pattern matches. This lets us remove nearly every use of `noExtCon` in the GHC API. The only ones we cannot remove are ones underneath uses of `ghcPass`, but that is only because GHC 8.8's and 8.10's coverage checkers weren't smart enough to perform this kind of reasoning. GHC HEAD's coverage checker, on the other hand, _is_ smart enough, so we guard these uses of `noExtCon` with CPP for now. Bumps the `haddock` submodule. Fixes #17992.
-
Update Haddock submodule
-
- 29 Mar, 2020 1 commit
-
-
Update Haddock submodule Metric Increase: haddock.compiler
-
- 17 Mar, 2020 1 commit
-
-
Update submodule: haddock
-
- 25 Feb, 2020 1 commit
-
-
* Remove outdated Note [HsForAllTy tyvar binders] and [Context quantification]. Since the wildcard refactor 1e041b73, HsForAllTy no longer has an flag controlling explicity. The field `hsq_implicit` is gone too. The current situation is covered by Note [HsType binders] which is already linked from LHsQTyVars. * Small refactor in CoreLint, extracting common code to a function * Remove "not so sure about WpFun" in TcEvidence, per Richard's comment !852 (comment 223226) * Use mkIfThenElse in Foreign/Call, as it does exactly what we need.
-
- 24 Feb, 2020 1 commit
-
-
Before this patch, GHC relied on Ord SrcSpan to identify source elements, by using SrcSpan as Map keys: blackList :: Map SrcSpan () -- compiler/GHC/HsToCore/Coverage.hs instanceMap :: Map SrcSpan Name -- compiler/GHC/HsToCore/Docs.hs Firstly, this design is not valid in presence of UnhelpfulSpan, as it distinguishes between UnhelpfulSpan "X" and UnhelpfulSpan "Y", but those strings are messages for the user, unfit to serve as identifiers for source elements. Secondly, this design made it hard to extend SrcSpan with additional data. Recall that the definition of SrcSpan is: data SrcSpan = RealSrcSpan !RealSrcSpan | UnhelpfulSpan !FastString Say we want to extend the RealSrcSpan constructor with additional information: data SrcSpan = RealSrcSpan !RealSrcSpan !AdditionalInformation | UnhelpfulSpan !FastString getAdditionalInformation :: SrcSpan -> AdditionalInformation getAdditionalInformation (RealSrcSpan _ a) = a Now, in order for Map SrcSpan to keep working correctly, we must *ignore* additional information when comparing SrcSpan values: instance Ord SrcSpan where compare (RealSrcSpan r1 _) (RealSrcSpan r2 _) = compare r1 r2 ... However, this would violate an important law: a == b therefore f a == f b Ignoring AdditionalInformation in comparisons would mean that with f=getAdditionalInformation, the law above does not hold. A more robust design is to avoid Ord SrcSpan altogether, which is what this patch implements. The mappings are changed to use RealSrcSpan instead: blackList :: Set RealSrcSpan -- compiler/GHC/HsToCore/Coverage.hs instanceMap :: Map RealSrcSpan Name -- compiler/GHC/HsToCore/Docs.hs All SrcSpan comparisons are now done with explicit comparison strategies: SrcLoc.leftmost_smallest SrcLoc.leftmost_largest SrcLoc.rightmost_smallest These strategies are not subject to the law mentioned above and can easily discard both the string stored in UnhelpfulSpan and AdditionalInformation. Updates haddock submodule.
-
- 08 Feb, 2020 1 commit
-
-
There are two main payloads of this patch: 1. This introduces IsPass, which allows e.g. printing code to ask what pass it is running in (Renamed vs Typechecked) and thus print extension fields. See Note [IsPass] in Hs.Extension 2. This moves the HsWrap constructor into an extension field, where it rightly belongs. This is done for HsExpr and HsCmd, but not for HsPat, which is left as an exercise for the reader. There is also some refactoring around SyntaxExprs, but this is really just incidental. This patch subsumes !1721 (sorry @chreekat). Along the way, there is a bit of refactoring in GHC.Hs.Extension, including the removal of NameOrRdrName in favor of NoGhcTc. This meant that we had no real need for GHC.Hs.PlaceHolder, so I got rid of it. Updates haddock submodule. ------------------------- Metric Decrease: haddock.compiler -------------------------
-
- 27 Jan, 2020 1 commit
-
-
Richard points out in #17688 that we use `splitLHsForAllTy` and `splitLHsSigmaTy` in places that we ought to be using the corresponding `-Invis` variants instead, identifying two bugs that are caused by this oversight: * Certain TH-quoted type signatures, such as those that appear in quoted `SPECIALISE` pragmas, silently turn visible `forall`s into invisible `forall`s. * When quoted, the type `forall a -> (a ~ a) => a` will turn into `forall a -> a` due to a bug in `DsMeta.repForall` that drops contexts that follow visible `forall`s. These are both ultimately caused by the fact that `splitLHsForAllTy` and `splitLHsSigmaTy` split apart visible `forall`s in addition to invisible ones. This patch cleans things up: * We now use `splitLHsForAllTyInvis` and `splitLHsSigmaTyInvis` throughout the codebase. Relatedly, the `splitLHsForAllTy` and `splitLHsSigmaTy` have been removed, as they are easy to misuse. * `DsMeta.repForall` now only handles invisible `forall`s to reduce the chance for confusion with visible `forall`s, which need to be handled differently. I also renamed it from `repForall` to `repForallT` to emphasize that its distinguishing characteristic is the fact that it desugars down to `L.H.TH.Syntax.ForallT`. Fixes #17688.
-
- 25 Jan, 2020 1 commit
-
-
Ryan Scott authored
Previously, `hsScopedTvs` (and its cousin `hsWcScopedTvs`) pretended that visible dependent quantification could not possibly happen at the term level, and cemented that assumption with an `ASSERT`: ```hs hsScopedTvs (HsForAllTy { hst_fvf = vis_flag, ... }) = ASSERT( vis_flag == ForallInvis ) ... ``` It turns out that this assumption is wrong. You can end up tripping this `ASSERT` if you stick it to the man and write a type for a term that uses visible dependent quantification anyway, like in this example: ```hs {-# LANGUAGE ScopedTypeVariables #-} x :: forall a -> a -> a x = x ``` That won't typecheck, but that's not the point. Before the typechecker has a chance to reject this, the renamer will try to use `hsScopedTvs` to bring `a` into scope over the body of `x`, since `a` is quantified by a `forall`. This, in turn, causes the `ASSERT` to fail. Bummer. Instead of walking on this dangerous ground, this patch makes GHC adopt a more hardline stance by pattern-matching directly on `ForallInvis` in `hsScopedTvs`: ```hs hsScopedTvs (HsForAllTy { hst_fvf = ForallInvis, ... }) = ... ``` Now `a` will not be brought over the body of `x` at all (which is how it should be), there's no chance of the `ASSERT` failing anymore (as it's gone), and best of all, the behavior of `hsScopedTvs` does not change. Everyone wins! Fixes #17687.
-
- 13 Jan, 2020 1 commit
-
-
- 08 Jan, 2020 1 commit
-
-
- 06 Jan, 2020 1 commit
-
-
- 05 Dec, 2019 1 commit
-
-
Before this patch, GHC always printed the * kind unparenthesized. This led to two issues: 1. Sometimes GHC printed invalid or incorrect code. For example, GHC would print: type F @* x = x when it meant to print: type F @(*) x = x In the former case, instead of a kind application we were getting a type operator (@*). 2. Sometimes GHC printed kinds that were correct but hard to read. Should Either * Int be read as Either (*) Int or as (*) Either Int ? This depends on whether -XStarIsType is enabled, but it would be easier if we didn't have to check for the flag when reading the code. We can solve both problems by assigning (*) a different precedence. Note that Haskell98 kinds are not affected: ((* -> *) -> *) -> * does NOT become (((*) -> (*)) -> (*)) -> (*) The parentheses are added when (*) is used in a function argument position: F * * * becomes F (*) (*) (*) F A * B becomes F A (*) B Proxy * becomes Proxy (*) a * -> * becomes a (*) -> *
-
- 30 Nov, 2019 1 commit
-
-
Metric Decrease: haddock.compiler
-
- 25 Nov, 2019 1 commit
-
-
Krzysztof Gogolewski authored
This reverts the change in #9096. The specialcasing done for prefix (->) is brittle and does not support VTA, type families, type synonyms etc.
-
- 07 Nov, 2019 1 commit
-
-
!1906 left some loose ends in regards to Template Haskell's treatment of unary tuples. This patch ends to tie up those loose ends: * In addition to having `TupleT 1` produce unary tuples, `TupE [exp]` and `TupP [pat]` also now produce unary tuples. * I have added various special cases in GHC's pretty-printers to ensure that explicit 1-tuples are printed using the `Unit` type. See `testsuite/tests/th/T17380`. * The GHC 8.10.1 release notes entry has been tidied up a little. Fixes #16881. Fixes #17371. Fixes #17380.
-
- 28 Oct, 2019 1 commit
-
-
Use FlexibleInstances for `Outputable (* p)` instead of match-all instances with equality constraints In #17304, Richard and Simon dicovered that using `-XFlexibleInstances` for `Outputable` instances of AST data types means users can provide orphan `Outputable` instances for passes other than `GhcPass`. Type inference doesn't currently to suffer, and Richard gave an example in #17304 that shows how rare a case would be where the slightly worse type inference would matter. So I went ahead with the refactoring, attempting to fix #17304.
-
- 25 Sep, 2019 1 commit
-
-
Vladislav Zavialov authored
Implements GHC Proposal #54: .../ghc-proposals/blob/master/proposals/0054-kind-signatures.rst With this patch, a type constructor can now be given an explicit standalone kind signature: {-# LANGUAGE StandaloneKindSignatures #-} type Functor :: (Type -> Type) -> Constraint class Functor f where fmap :: (a -> b) -> f a -> f b This is a replacement for CUSKs (complete user-specified kind signatures), which are now scheduled for deprecation. User-facing changes ------------------- * A new extension flag has been added, -XStandaloneKindSignatures, which implies -XNoCUSKs. * There is a new syntactic construct, a standalone kind signature: type <name> :: <kind> Declarations of data types, classes, data families, type families, and type synonyms may be accompanied by a standalone kind signature. * A standalone kind signature enables polymorphic recursion in types, just like a function type signature enables polymorphic recursion in terms. This obviates the need for CUSKs. * TemplateHaskell AST has been extended with 'KiSigD' to represent standalone kind signatures. * GHCi :info command now prints the kind signature of type constructors: ghci> :info Functor type Functor :: (Type -> Type) -> Constraint ... Limitations ----------- * 'forall'-bound type variables of a standalone kind signature do not scope over the declaration body, even if the -XScopedTypeVariables is enabled. See #16635 and #16734. * Wildcards are not allowed in standalone kind signatures, as partial signatures do not allow for polymorphic recursion. * Associated types may not be given an explicit standalone kind signature. Instead, they are assumed to have a CUSK if the parent class has a standalone kind signature and regardless of the -XCUSKs flag. * Standalone kind signatures do not support multiple names at the moment: type T1, T2 :: Type -> Type -- rejected type T1 = Maybe type T2 = Either String See #16754. * Creative use of equality constraints in standalone kind signatures may lead to GHC panics: type C :: forall (a :: Type) -> a ~ Int => Constraint class C a where f :: C a => a -> Int See #16758. Implementation notes -------------------- * The heart of this patch is the 'kcDeclHeader' function, which is used to kind-check a declaration header against its standalone kind signature. It does so in two rounds: 1. check user-written binders 2. instantiate invisible binders a la 'checkExpectedKind' * 'kcTyClGroup' now partitions declarations into declarations with a standalone kind signature or a CUSK (kinded_decls) and declarations without either (kindless_decls): * 'kinded_decls' are kind-checked with 'checkInitialKinds' * 'kindless_decls' are kind-checked with 'getInitialKinds' * DerivInfo has been extended with a new field: di_scoped_tvs :: ![(Name,TyVar)] These variables must be added to the context in case the deriving clause references tcTyConScopedTyVars. See #16731.
-
- 20 Sep, 2019 1 commit
-
-
Add GHC.Hs module hierarchy replacing hsSyn. Metric Increase: haddock.compiler
-
- 15 Aug, 2019 1 commit
-
-
These kinds of imports are necessary in some cases such as importing instances of typeclasses or intentionally creating dependencies in the build system, but '-Wunused-imports' can't detect when they are no longer needed. This commit removes the unused ones currently in the code base (not including test files or submodules), with the hope that doing so may increase parallelism in the build system by removing unnecessary dependencies.
-
- 25 Jul, 2019 1 commit
-
-
- 09 Jul, 2019 1 commit
-
-
To avoid having to `panic` any time a TTG extension constructor is consumed, this MR introduces an uninhabited 'NoExtCon' type and uses that in every extension constructor's type family instance where it is appropriate. This also introduces a 'noExtCon' function which eliminates a 'NoExtCon', much like 'Data.Void.absurd' eliminates a 'Void'. I also renamed the existing `NoExt` type to `NoExtField` to better distinguish it from `NoExtCon`. Unsurprisingly, there is a lot of code churn resulting from this. Bumps the Haddock submodule. Fixes #15247.
-
- 14 Jun, 2019 1 commit
-
-
GHC Proposal: 0013-unlifted-newtypes.rst Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/98 Issues: #15219, #1311, #13595, #15883 Implementation Details: Note [Implementation of UnliftedNewtypes] Note [Unifying data family kinds] Note [Compulsory newtype unfolding] This patch introduces the -XUnliftedNewtypes extension. When this extension is enabled, GHC drops the restriction that the field in a newtype must be of kind (TYPE 'LiftedRep). This allows types like Int# and ByteArray# to be used in a newtype. Additionally, coerce is made levity-polymorphic so that it can be used with newtypes over unlifted types. The bulk of the changes are in TcTyClsDecls.hs. With -XUnliftedNewtypes, getInitialKind is more liberal, introducing a unification variable to return the kind (TYPE r0) rather than just returning (TYPE 'LiftedRep). When kind-checking a data constructor with kcConDecl, we attempt to unify the kind of a newtype with the kind of its field's type. When typechecking a data declaration with tcTyClDecl, we again perform a unification. See the implementation note for more on this. Co-authored-by:
Richard Eisenberg <rae@richarde.dev>
-
- 20 Apr, 2019 1 commit
-
-
Rather than massaging the output of the parser to re-arrange docs and bangs, it is simpler to patch the two places in which the strictness info is needed (to accept that the `HsBangTy` may be inside an `HsDocTy`). Fixes #16585.
-
- 15 Mar, 2019 1 commit
-
-
This moves all URL references to Trac tickets to their corresponding GitLab counterparts.
-
- 09 Mar, 2019 1 commit
-
-
Before this patch GHC was trying to be too clever (Trac #16344); it succeeded in kind-checking this polymorphic-recursive declaration data T ka (a::ka) b = MkT (T Type Int Bool) (T (Type -> Type) Maybe Bool) As Note [No polymorphic recursion] discusses, the "solution" was horribly fragile. So this patch deletes the key lines in TcHsType, and a wodge of supporting stuff in the renamer. There were two regressions, both the same: a closed type family decl like this (T12785b) does not have a CUSK: type family Payload (n :: Peano) (s :: HTree n x) where Payload Z (Point a) = a Payload (S n) (a `Branch` stru) = a To kind-check the equations we need a dependent kind for Payload, and we don't get that any more. Solution: make it a CUSK by giving the result kind -- probably a good thing anyway. The other case (T12442) was very similar: a close type family declaration without a CUSK.
-
- 05 Mar, 2019 1 commit
-
-
This patch fixes two rather gnarly test cases: * Trac #16342 (mutual recursion) See Note [Tricky scoping in generaliseTcTyCon] * Trac #16221 (shadowing) See Note [Unification variables need fresh Names] The main changes are: * Substantial reworking of TcTyClsDecls.generaliseTcTyCon This is the big change, and involves the rather tricky function TcHsSyn.zonkRecTyVarBndrs. See Note [Inferring kinds for type declarations] and Note [Tricky scoping in generaliseTcTyCon] for the details. * bindExplicitTKBndrs_Tv and bindImplicitTKBndrs_Tv both now allocate /freshly-named/ unification variables. Indeed, more generally, unification variables are always fresh; see Note [Unification variables need fresh Names] in TcMType * Clarify the role of tcTyConScopedTyVars. See Note [Scoped tyvars in a TcTyCon] in TyCon As usual, this dragged in some more refactoring: * Renamed TcMType.zonkTyCoVarBndr to zonkAndSkolemise * I renamed checkValidTelescope to checkTyConTelescope; it's only used on TyCons, and indeed takes a TyCon as argument. * I folded the slightly-mysterious reportFloatingKvs into checkTyConTelescope. (Previously all its calls immediately followed a call to checkTyConTelescope.) It makes much more sense there. * I inlined some called-once functions to simplify checkValidTyFamEqn. It's less spaghetti-like now. * This patch also fixes Trac #16251. I'm not quite sure why #16251 went wrong in the first place, nor how this patch fixes it, but hey, it's good, and life is short.
-
- 01 Mar, 2019 1 commit
-
-
This implements GHC proposal 35 (https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0035-forall-arrow.rst) by adding the ability to write kinds with visible dependent quantification (VDQ). Most of the work for supporting VDQ was actually done _before_ this patch. That is, GHC has been able to reason about kinds with VDQ for some time, but it lacked the ability to let programmers directly write these kinds in the source syntax. This patch is primarly about exposing this ability, by: * Changing `HsForAllTy` to add an additional field of type `ForallVisFlag` to distinguish between invisible `forall`s (i.e, with dots) and visible `forall`s (i.e., with arrows) * Changing `Parser.y` accordingly The rest of the patch mostly concerns adding validity checking to ensure that VDQ is never used in the type of a term (as permitting this would require full-spectrum dependent types). This is accomplished by: * Adding a `vdqAllowed` predicate to `TcValidity`. * Introducing `splitLHsSigmaTyInvis`, a variant of `splitLHsSigmaTy` that only splits invisible `forall`s. This function is used in certain places (e.g., in instance declarations) to ensure that GHC doesn't try to split visible `forall`s (e.g., if it tried splitting `instance forall a -> Show (Blah a)`, then GHC would mistakenly allow that declaration!) This also updates Template Haskell by introducing a new `ForallVisT` constructor to `Type`. Fixes #16326. Also fixes #15658 by documenting this feature in the users' guide.
-
- 14 Feb, 2019 1 commit
-
-
Simon Peyton Jones authored
This patch finally delivers on Trac #15952. Specifically * Completely remove Note [The tcType invariant], along with its complicated consequences (IT1-IT6). * Replace Note [The well-kinded type invariant] with: Note [The Purely Kinded Type Invariant (PKTI)] * Instead, establish the (PKTI) in TcHsType.tcInferApps, by using a new function mkAppTyM when building a type application. See Note [mkAppTyM]. * As a result we can remove the delicate mkNakedXX functions entirely. Specifically, mkNakedCastTy retained lots of extremly delicate Refl coercions which just cluttered everything up, and(worse) were very vulnerable to being silently eliminated by (say) substTy. This led to a succession of bug reports. The result is noticeably simpler to explain, simpler to code, and Richard and I are much more confident that it is correct. It does not actually fix any bugs, but it brings us closer. E.g. I hoped it'd fix #15918 and #15799, but it doesn't quite do so. However, it makes it much easier to fix. I also did a raft of other minor refactorings: * Use tcTypeKind consistently in the type checker * Rename tcInstTyBinders to tcInvisibleTyBinders, and refactor it a bit * Refactor tcEqType, pickyEqType, tcEqTypeVis Simpler, probably more efficient. * Make zonkTcType zonk TcTyCons, at least if they have any free unification variables -- see zonk_tc_tycon in TcMType.zonkTcTypeMapper. Not zonking these TcTyCons was actually a bug before. * Simplify try_to_reduce_no_cache in TcFlatten (a lot) * Combine checkExpectedKind and checkExpectedKindX. And then combine the invisible-binder instantation code Much simpler now. * Fix a little bug in TcMType.skolemiseQuantifiedTyVar. I'm not sure how I came across this originally. * Fix a little bug in TyCoRep.isUnliftedRuntimeRep (the ASSERT was over-zealous). Again I'm not certain how I encountered this. * Add a missing solveLocalEqualities in TcHsType.tcHsPartialSigType. I came across this when trying to get level numbers right.
-