- 27 Mar, 2020 1 commit
-
-
Simon Peyton Jones authored
This refactoring of Lint was triggered by #17923, which is fixed by this patch. The main change is this. Instead of lintType :: Type -> LintM LintedKind we now have lintType :: Type -> LintM LintedType Previously, all of typeKind was effectively duplicate in lintType. Moreover, since we have an ambient substitution, we still had to apply the substition here and there, sometimes more than once. It was all very tricky, in the end, and made my head hurt. Now, lintType returns a fully linted type, with all substitutions performed on it. This is much simpler. The same thing is needed for Coercions. Instead of lintCoercion :: OutCoercion -> LintM (LintedKind, LintedKind, LintedType, LintedType, Role) we now have lintCoercion :: Coercion -> LintM LintedCoercion Much simpler! The code is shorter and less bug-prone. There are a lot of knock on effects. But life is now better.
-
- 26 Mar, 2020 1 commit
-
-
Sylvain Henry authored
Use Platform instead of DynFlags when possible: * `tARGET_MIN_INT` et al. replaced with `platformMinInt` et al. * no more DynFlags in PreRules: added a new `RuleOpts` datatype * don't use `wORD_SIZE` in the compiler * make `wordAlignment` use `Platform` * make `dOUBLE_SIZE` a constant Metric Decrease: T13035 T1969
-
- 21 Mar, 2020 1 commit
-
-
Richard Eisenberg authored
Key changes: * Adds a new rule for forall-coercions over coercion variables, which was implemented but conspicuously missing from the spec. * Adds treatment for FunCo. * Adds treatment for ForAllTy over coercion variables. * Improves commentary (including restoring a Note lost in 03d48526) in the source. No changes to running code.
-
- 18 Mar, 2020 1 commit
-
-
Sylvain Henry authored
-
- 17 Mar, 2020 2 commits
-
-
Richard Eisenberg authored
All the details are in new Note [Datatype return kinds] in TcTyClsDecls. Test case: typecheck/should_fail/T17021{,b} typecheck/should_compile/T17021a Updates haddock submodule
-
Sylvain Henry authored
Update submodule: haddock
-
- 14 Mar, 2020 1 commit
-
-
Simon Peyton Jones authored
Ticket #17590 pointed out a bug in the way the linter dealt with type lets, exposed by the new uniqAway story. The fix is described in Note [Linting type lets]. I ended up putting the in-scope Ids in a different env field, le_ids, rather than (as before) sneaking them into the TCvSubst. Surprisingly tiresome, but done. Metric Decrease: hie002
-
- 10 Mar, 2020 2 commits
-
-
Krzysztof Gogolewski authored
-
Ben Price authored
When developing a plugin I had a shadowing problem, where I generated code app = \f{v r7B} x{v r7B} -> f{v r7B} x{v r7B} This is obviously wrong, since the occurrence of `f` to the right of the arrow refers to the `x` binder (they share a Unique). However, it is rather confusing when Lint reports Mismatch in type between binder and occurrence Var: x{v rB7} since it is printing the binder, rather than the occurrence. It is rather easy to read this as claiming there is something wrong with the `x` occurrence! We change the report to explicitly print both the binder and the occurrence variables.
-
- 26 Feb, 2020 1 commit
-
-
Sylvain Henry authored
Update haddock submodule
-
- 25 Feb, 2020 1 commit
-
-
Krzysztof Gogolewski authored
* Remove outdated Note [HsForAllTy tyvar binders] and [Context quantification]. Since the wildcard refactor 1e041b73, HsForAllTy no longer has an flag controlling explicity. The field `hsq_implicit` is gone too. The current situation is covered by Note [HsType binders] which is already linked from LHsQTyVars. * Small refactor in CoreLint, extracting common code to a function * Remove "not so sure about WpFun" in TcEvidence, per Richard's comment !852 (comment 223226) * Use mkIfThenElse in Foreign/Call, as it does exactly what we need.
-
- 22 Feb, 2020 1 commit
-
-
Sylvain Henry authored
submodule updates: nofib, haddock
-
- 21 Feb, 2020 1 commit
-
-
Simon Peyton Jones authored
(Commit message written by Omer, most of the code is written by Simon and Richard) See Note [Implementing unsafeCoerce] for how unsafe equality proofs and the new unsafeCoerce# are implemented. New notes added: - [Checking for levity polymorphism] in CoreLint.hs - [Implementing unsafeCoerce] in base/Unsafe/Coerce.hs - [Patching magic definitions] in Desugar.hs - [Wiring in unsafeCoerce#] in Desugar.hs Only breaking change in this patch is unsafeCoerce# is not exported from GHC.Exts, instead of GHC.Prim. Fixes #17443 Fixes #16893 NoFib ----- -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.1% 0.0% -0.0% -0.0% -0.0% CSD -0.1% 0.0% -0.0% -0.0% -0.0% FS -0.1% 0.0% -0.0% -0.0% -0.0% S -0.1% 0.0% -0.0% -0.0% -0.0% VS -0.1% 0.0% -0.0% -0.0% -0.0% VSD -0.1% 0.0% -0.0% -0.0% -0.1% VSM -0.1% 0.0% -0.0% -0.0% -0.0% anna -0.0% 0.0% -0.0% -0.0% -0.0% ansi -0.1% 0.0% -0.0% -0.0% -0.0% atom -0.1% 0.0% -0.0% -0.0% -0.0% awards -0.1% 0.0% -0.0% -0.0% -0.0% banner -0.1% 0.0% -0.0% -0.0% -0.0% bernouilli -0.1% 0.0% -0.0% -0.0% -0.0% binary-trees -0.1% 0.0% -0.0% -0.0% -0.0% boyer -0.1% 0.0% -0.0% -0.0% -0.0% boyer2 -0.1% 0.0% -0.0% -0.0% -0.0% bspt -0.1% 0.0% -0.0% -0.0% -0.0% cacheprof -0.1% 0.0% -0.0% -0.0% -0.0% calendar -0.1% 0.0% -0.0% -0.0% -0.0% cichelli -0.1% 0.0% -0.0% -0.0% -0.0% circsim -0.1% 0.0% -0.0% -0.0% -0.0% clausify -0.1% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.1% 0.0% -0.0% -0.0% -0.0% compress -0.1% 0.0% -0.0% -0.0% -0.0% compress2 -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.1% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.1% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.1% 0.0% -0.0% -0.0% -0.0% cse -0.1% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.1% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.1% 0.0% -0.0% -0.0% -0.0% dom-lt -0.1% 0.0% -0.0% -0.0% -0.0% eliza -0.1% 0.0% -0.0% -0.0% -0.0% event -0.1% 0.0% -0.0% -0.0% -0.0% exact-reals -0.1% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.1% 0.0% -0.0% -0.0% -0.0% expert -0.1% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.1% 0.0% -0.0% -0.0% -0.0% fasta -0.1% 0.0% -0.5% -0.3% -0.4% fem -0.1% 0.0% -0.0% -0.0% -0.0% fft -0.1% 0.0% -0.0% -0.0% -0.0% fft2 -0.1% 0.0% -0.0% -0.0% -0.0% fibheaps -0.1% 0.0% -0.0% -0.0% -0.0% fish -0.1% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.1% 0.0% +0.0% +0.0% +0.0% gamteb -0.1% 0.0% -0.0% -0.0% -0.0% gcd -0.1% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.1% 0.0% -0.0% -0.0% -0.0% genfft -0.1% 0.0% -0.0% -0.0% -0.0% gg -0.1% 0.0% -0.0% -0.0% -0.0% grep -0.1% 0.0% -0.0% -0.0% -0.0% hidden -0.1% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.1% 0.0% -0.0% -0.0% -0.0% infer -0.1% 0.0% -0.0% -0.0% -0.0% integer -0.1% 0.0% -0.0% -0.0% -0.0% integrate -0.1% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.1% 0.0% -0.0% -0.0% -0.0% kahan -0.1% 0.0% -0.0% -0.0% -0.0% knights -0.1% 0.0% -0.0% -0.0% -0.0% lambda -0.1% 0.0% -0.0% -0.0% -0.0% last-piece -0.1% 0.0% -0.0% -0.0% -0.0% lcss -0.1% 0.0% -0.0% -0.0% -0.0% life -0.1% 0.0% -0.0% -0.0% -0.0% lift -0.1% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.1% 0.0% -0.0% -0.0% -0.0% listcopy -0.1% 0.0% -0.0% -0.0% -0.0% maillist -0.1% 0.0% -0.0% -0.0% -0.0% mandel -0.1% 0.0% -0.0% -0.0% -0.0% mandel2 -0.1% 0.0% -0.0% -0.0% -0.0% mate -0.1% 0.0% -0.0% -0.0% -0.0% minimax -0.1% 0.0% -0.0% -0.0% -0.0% mkhprog -0.1% 0.0% -0.0% -0.0% -0.0% multiplier -0.1% 0.0% -0.0% -0.0% -0.0% n-body -0.1% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.1% 0.0% -0.0% -0.0% -0.0% para -0.1% 0.0% -0.0% -0.0% -0.0% paraffins -0.1% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.1% 0.0% -0.0% -0.0% -0.0% pidigits -0.1% 0.0% -0.0% -0.0% -0.0% power -0.1% 0.0% -0.0% -0.0% -0.0% pretty -0.1% 0.0% -0.1% -0.1% -0.1% primes -0.1% 0.0% -0.0% -0.0% -0.0% primetest -0.1% 0.0% -0.0% -0.0% -0.0% prolog -0.1% 0.0% -0.0% -0.0% -0.0% puzzle -0.1% 0.0% -0.0% -0.0% -0.0% queens -0.1% 0.0% -0.0% -0.0% -0.0% reptile -0.1% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.1% 0.0% -0.0% -0.0% -0.0% rewrite -0.1% 0.0% -0.0% -0.0% -0.0% rfib -0.1% 0.0% -0.0% -0.0% -0.0% rsa -0.1% 0.0% -0.0% -0.0% -0.0% scc -0.1% 0.0% -0.1% -0.1% -0.1% sched -0.1% 0.0% -0.0% -0.0% -0.0% scs -0.1% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.1% 0.0% -0.0% -0.0% -0.0% sorting -0.1% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.1% 0.0% -0.0% -0.0% -0.0% sphere -0.1% 0.0% -0.0% -0.0% -0.0% symalg -0.1% 0.0% -0.0% -0.0% -0.0% tak -0.1% 0.0% -0.0% -0.0% -0.0% transform -0.1% 0.0% -0.0% -0.0% -0.0% treejoin -0.1% 0.0% -0.0% -0.0% -0.0% typecheck -0.1% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.1% 0.0% -0.0% -0.0% -0.0% wave4main -0.1% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.1% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.1% 0.0% -0.0% -0.0% -0.0% x2n1 -0.1% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.5% -0.3% -0.4% Max -0.0% 0.0% +0.0% +0.0% +0.0% Geometric Mean -0.1% -0.0% -0.0% -0.0% -0.0% Test changes ------------ - break006 is marked as broken, see #17833 - The compiler allocates less when building T14683 (an unsafeCoerce#- heavy happy-generated code) on 64-platforms. Allocates more on 32-bit platforms. - Rest of the increases are tiny amounts (still enough to pass the threshold) in micro-benchmarks. I briefly looked at each one in a profiling build: most of the increased allocations seem to be because of random changes in the generated code. Metric Decrease: T14683 Metric Increase: T12150 T12234 T12425 T13035 T14683 T5837 T6048 Co-Authored-By:
Richard Eisenberg <rae@cs.brynmawr.edu> Co-Authored-By:
Ömer Sinan Ağacan <omeragacan@gmail.com>
-
- 12 Feb, 2020 1 commit
-
-
Sebastian Graf authored
The reasons for that can be found in the wiki: https://gitlab.haskell.org/ghc/ghc/wikis/nested-cpr/split-off-cpr We now run CPR after demand analysis (except for after the final demand analysis run just before code gen). CPR got its own dump flags (`-ddump-cpr-anal`, `-ddump-cpr-signatures`), but not its own flag to activate/deactivate. It will run with `-fstrictness`/`-fworker-wrapper`. As explained on the wiki page, this step is necessary for a sane Nested CPR analysis. And it has quite positive impact on compiler performance: Metric Decrease: T9233 T9675 T9961 T15263
-
- 06 Jan, 2020 1 commit
-
-
Sylvain Henry authored
-
- 04 Jan, 2020 1 commit
-
-
Brian Wignall authored
-
- 31 Dec, 2019 1 commit
-
-
Sylvain Henry authored
-
- 18 Dec, 2019 1 commit
-
-
Sylvain Henry authored
* Add 'dumpAction' hook to DynFlags. It allows GHC API users to catch dumped intermediate codes and information. The format of the dump (Core, Stg, raw text, etc.) is now reported allowing easier automatic handling. * Add 'traceAction' hook to DynFlags. Some dumps go through the trace mechanism (for instance unfoldings that have been considered for inlining). This is problematic because: 1) dumps aren't written into files even with -ddump-to-file on 2) dumps are written on stdout even with GHC API 3) in this specific case, dumping depends on unsafe globally stored DynFlags which is bad for GHC API users We introduce 'traceAction' hook which allows GHC API to catch those traces and to avoid using globally stored DynFlags. * Avoid dumping empty logs via dumpAction/traceAction (but still write empty files to keep the existing behavior)
-
- 17 Dec, 2019 1 commit
-
-
Richard Eisenberg authored
Close #17583. Test case: typecheck/should_fail/T17563
-
- 19 Nov, 2019 1 commit
-
-
Alex D authored
Metric Decrease: T14683
-
- 13 Nov, 2019 1 commit
-
-
Ben Gamari authored
Previously an import cycle between Type and TyCoRep meant that several functions in TyCoRep ended up SOURCE import coreView. This is quite unfortunate as coreView is intended to be fused into a larger pattern match and not incur an extra call. Fix this with a bit of restructuring: * Move the functions in `TyCoRep` which depend upon things in `Type` into `Type` * Fold contents of `Kind` into `Type` and turn `Kind` into a simple wrapper re-exporting kind-ish things from `Type` * Clean up the redundant imports that popped up as a result Closes #17441. Metric Decrease: T4334
-
- 01 Nov, 2019 1 commit
-
-
Simon Peyton Jones authored
I found in #17415 that Lint was printing out truly gigantic warnings, unmanageably huge, with repeated copies of the same thing. This patch makes Lint less chatty, especially for warnings: * For **warnings**, I don't print details of the location, unless you add `-dppr-debug`. * For **errors**, I still print all the info. They are fatal and stop exection, whereas warnings appear repeatedly. * I've made much less use of `AnExpr` in `LintLocInfo`; the expression can be gigantic.
-
- 20 Sep, 2019 1 commit
-
-
Simon Peyton Jones authored
Issue #17056 revealed that we were sometimes building a case expression whose type field (in the Case constructor) was bogus. Consider a phantom type synonym type S a = Int and we want to form the case expression case x of K (a::*) -> (e :: S a) We must not make the type field of the Case constructor be (S a) because 'a' isn't in scope. We must instead expand the synonym. Changes in this patch: * Expand synonyms in the new function CoreUtils.mkSingleAltCase. * Use mkSingleAltCase in MkCore.wrapFloat, which was the proximate source of the bug (when called by exprIsConApp_maybe) * Use mkSingleAltCase elsewhere * Documentation CoreSyn new invariant (6) in Note [Case expression invariants] CoreSyn Note [Why does Case have a 'Type' field?] CoreUtils Note [Care with the type of a case expression] * I improved Core Lint's error reporting, which was pretty confusing in this case, because it didn't mention that the offending type was the return type of a case expression. * A little bit of cosmetic refactoring in CoreUtils
-
- 31 Jul, 2019 1 commit
-
-
Ben Gamari authored
This breaks up the monstrous TyCoReps module into several new modules by topic: * TyCoRep: Contains the `Coercion`, `Type`, and related type definitions and a few simple predicates but nothing further * TyCoPpr: Contains the the pretty-printer logic * TyCoFVs: Contains the free variable computations (and `tyConAppNeedsKindSig`, although I suspect this should change) * TyCoSubst: Contains the substitution logic for types and coercions * TyCoTidy: Contains the tidying logic for types While we are able to eliminate a good number of `SOURCE` imports (and make a few others smaller) with this change, we must introduce one new `hs-boot` file for `TyCoPpr` so that `TyCoRep` can define `Outputable` instances for the types it defines. Metric Increase: haddock.Cabal haddock.compiler
-
- 10 Jul, 2019 2 commits
-
-
Simon Peyton Jones authored
The simple optimiser was making an invalid transformation to join points -- yikes. The fix is easy. I also added some documentation about the fact that GHC uses a slightly more restrictive version of join points than does the paper. Fix #16918
-
Ömer Sinan Ağacan authored
When `join_ids` is empty `extendVarSetList existing_joins join_ids` is already no-op, so no need to check whether `join_ids` is empty or not before extending the joins set.
-
- 12 Jun, 2019 1 commit
-
-
Krzysztof Gogolewski authored
-
- 01 May, 2019 1 commit
-
-
Sebastian Graf authored
This does four things: 1. Look at `idArity` instead of manifest lambdas to decide whether to use LetUp 2. Compute the strictness signature in LetDown assuming at least `idArity` incoming arguments 3. Remove the special case for trivial RHSs, which is subsumed by 2 4. Don't perform the W/W split when doing so would eta expand a binding. Otherwise we would eta expand PAPs, causing unnecessary churn in the Simplifier. NoFib Results -------------------------------------------------------------------------------- Program Allocs Instrs -------------------------------------------------------------------------------- fannkuch-redux +0.3% 0.0% gg -0.0% -0.1% maillist +0.2% +0.2% minimax 0.0% +0.8% pretty 0.0% -0.1% reptile -0.0% -1.2% -------------------------------------------------------------------------------- Min -0.0% -1.2% Max +0.3% +0.8% Geometric Mean +0.0% -0.0%
-
- 14 Apr, 2019 1 commit
-
-
Krzysztof Gogolewski authored
Lint returns a pair (Maybe a, WarnsAndErrs). The Maybe monad allows to handle an unrecoverable failure. In case of such a failure, the error should be added to the second component of the pair. If this is not done, Lint will silently accept bad programs. This situation actually happened during development of linear types. This adds a safeguard.
-
- 25 Mar, 2019 1 commit
-
-
Takenobu Tani authored
This moves all URL references to Trac Wiki to their corresponding GitLab counterparts. This substitution is classified as follows: 1. Automated substitution using sed with Ben's mapping rule [1] Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy... New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy... 2. Manual substitution for URLs containing `#` index Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...#Zzz New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...#zzz 3. Manual substitution for strings starting with `Commentary` Old: Commentary/XxxYyy... New: commentary/xxx-yyy... See also !539 [1]: https://gitlab.haskell.org/bgamari/gitlab-migration/blob/master/wiki-mapping.json
-
- 15 Mar, 2019 1 commit
-
-
Ryan Scott authored
This moves all URL references to Trac tickets to their corresponding GitLab counterparts.
-
- 24 Feb, 2019 1 commit
-
-
Simon Peyton Jones authored
The big payload of this patch is: Add an AnonArgFlag to the FunTy constructor of Type, so that (FunTy VisArg t1 t2) means (t1 -> t2) (FunTy InvisArg t1 t2) means (t1 => t2) The big payoff is that we have a simple, local test to make when decomposing a type, leading to many fewer calls to isPredTy. To me the code seems a lot tidier, and probably more efficient (isPredTy has to take the kind of the type). See Note [Function types] in TyCoRep. There are lots of consequences * I made FunTy into a record, so that it'll be easier when we add a linearity field, something that is coming down the road. * Lots of code gets touched in a routine way, simply because it pattern matches on FunTy. * I wanted to make a pattern synonym for (FunTy2 arg res), which picks out just the argument and result type from the record. But alas the pattern-match overlap checker has a heart attack, and either reports false positives, or takes too long. In the end I gave up on pattern synonyms. There's some commented-out code in TyCoRep that shows what I wanted to do. * Much more clarity about predicate types, constraint types and (in particular) equality constraints in kinds. See TyCoRep Note [Types for coercions, predicates, and evidence] and Note [Constraints in kinds]. This made me realise that we need an AnonArgFlag on AnonTCB in a TyConBinder, something that was really plain wrong before. See TyCon Note [AnonTCB InivsArg] * When building function types we must know whether we need VisArg (mkVisFunTy) or InvisArg (mkInvisFunTy). This turned out to be pretty easy in practice. * Pretty-printing of types, esp in IfaceType, gets tidier, because we were already recording the (->) vs (=>) distinction in an ad-hoc way. Death to IfaceFunTy. * mkLamType needs to keep track of whether it is building (t1 -> t2) or (t1 => t2). See Type Note [mkLamType: dictionary arguments] Other minor stuff * Some tidy-up in validity checking involving constraints; Trac #16263
-
- 18 Jan, 2019 1 commit
-
-
Herbert Valerio Riedel authored
-
- 21 Dec, 2018 1 commit
-
-
Simon Peyton Jones authored
Trac #16038 exposed the fact that TcRnDriver.checkHiBootIface was creating a binding, in the module being compiled, for $fxBlah = $fBlah but $fxBlah was a /GlobalId/. But all bindings should be for /LocalIds/ else dependency analysis goes down the tubes. * I added a CoreLint check that an occurrence of a GlobalId is not bound by an binding of a LocalId. (There is already a binding-site check that no binding binds a GlobalId.) * I refactored (and actually signficantly simplified) the tricky code for dfuns in checkHiBootIface to ensure that we get LocalIds for those boot-dfuns. Alas, I then got "duplicate instance" messages when compiling HsExpr. It turns out that this is a long-standing, but extremely delicate, bug: even before this patch, if you compile HsExpr with -ddump-tc-trace, you get "duplicate instance". Without -ddump-tc-trace, it's OK. What a mess! The reason for the duplicate-instance is now explained in Note [Loading your own hi-boot file] in LoadIface. I fixed it by a Gross Hack in LoadIface.loadInterface. This is at least no worse than before. But there should be a better way. I have opened #16081 for this.
-
- 29 Nov, 2018 1 commit
-
-
Simon Peyton Jones authored
My original goal was (Trac #15809) to move towards using level numbers as the basis for deciding which type variables to generalise, rather than searching for the free varaibles of the environment. However it has turned into a truly major refactoring of the kind inference engine. Let's deal with the level-numbers part first: * Augment quantifyTyVars to calculate the type variables to quantify using level numbers, and compare the result with the existing approach. That is; no change in behaviour, just a WARNing if the two approaches give different answers. * To do this I had to get the level number right when calling quantifyTyVars, and this entailed a bit of care, especially in the code for kind-checking type declarations. * However, on the way I was able to eliminate or simplify a number of calls to solveEqualities. This work is incomplete: I'm not /using/ level numbers yet. When I subsequently get rid of any remaining WARNings in quantifyTyVars, that the level-number answers differ from the current answers, then I can rip out the current "free vars of the environment" stuff. Anyway, this led me into deep dive into kind inference for type and class declarations, which is an increasingly soggy part of GHC. Richard already did some good work recently in commit 5e45ad10 Date: Thu Sep 13 09:56:02 2018 +0200 Finish fix for #14880. The real change that fixes the ticket is described in Note [Naughty quantification candidates] in TcMType. but I kept turning over stones. So this patch has ended up with a pretty significant refactoring of that code too. Kind inference for types and classes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Major refactoring in the way we generalise the inferred kind of a TyCon, in kcTyClGroup. Indeed, I made it into a new top-level function, generaliseTcTyCon. Plus a new Note to explain it Note [Inferring kinds for type declarations]. * We decided (Trac #15592) not to treat class type variables specially when dealing with Inferred/Specified/Required for associated types. That simplifies things quite a bit. I also rewrote Note [Required, Specified, and Inferred for types] * Major refactoring of the crucial function kcLHsQTyVars: I split it into kcLHsQTyVars_Cusk and kcLHsQTyVars_NonCusk because the two are really quite different. The CUSK case is almost entirely rewritten, and is much easier because of our new decision not to treat the class variables specially * I moved all the error checks from tcTyClTyVars (which was a bizarre place for it) into generaliseTcTyCon and/or the CUSK case of kcLHsQTyVars. Now tcTyClTyVars is extremely simple. * I got rid of all the all the subtleties in tcImplicitTKBndrs. Indeed now there is no difference between tcImplicitTKBndrs and kcImplicitTKBndrs; there is now a single bindImplicitTKBndrs. Same for kc/tcExplicitTKBndrs. None of them monkey with level numbers, nor build implication constraints. scopeTyVars is gone entirely, as is kcLHsQTyVarBndrs. It's vastly simpler. I found I could get rid of kcLHsQTyVarBndrs entirely, in favour of the bnew bindExplicitTKBndrs. Quantification ~~~~~~~~~~~~~~ * I now deal with the "naughty quantification candidates" of the previous patch in candidateQTyVars, rather than in quantifyTyVars; see Note [Naughty quantification candidates] in TcMType. I also killed off closeOverKindsCQTvs in favour of the same strategy that we use for tyCoVarsOfType: namely, close over kinds at the occurrences. And candidateQTyVars no longer needs a gbl_tvs argument. * Passing the ContextKind, rather than the expected kind itself, to tc_hs_sig_type_and_gen makes it easy to allocate the expected result kind (when we are in inference mode) at the right level. Type families ~~~~~~~~~~~~~~ * I did a major rewrite of the impenetrable tcFamTyPats. The result is vastly more comprehensible. * I got rid of kcDataDefn entirely, quite a big function. * I re-did the way that checkConsistentFamInst works, so that it allows alpha-renaming of invisible arguments. * The interaction of kind signatures and family instances is tricky. Type families: see Note [Apparently-nullary families] Data families: see Note [Result kind signature for a data family instance] and Note [Eta-reduction for data families] * The consistent instantation of an associated type family is tricky. See Note [Checking consistent instantiation] and Note [Matching in the consistent-instantation check] in TcTyClsDecls. It's now checked in TcTyClsDecls because that is when we have the relevant info to hand. * I got tired of the compromises in etaExpandFamInst, so I did the job properly by adding a field cab_eta_tvs to CoAxBranch. See Coercion.etaExpandCoAxBranch. tcInferApps and friends ~~~~~~~~~~~~~~~~~~~~~~~ * I got rid of the mysterious and horrible ClsInstInfo argument to tcInferApps, checkExpectedKindX, and various checkValid functions. It was horrible! * I got rid of [Type] result of tcInferApps. This list was used only in tcFamTyPats, when checking the LHS of a type instance; and if there is a cast in the middle, the list is meaningless. So I made tcInferApps simpler, and moved the complexity (not much) to tcInferApps. Result: tcInferApps is now pretty comprehensible again. * I refactored the many function in TcMType that instantiate skolems. Smaller things * I rejigged the error message in checkValidTelescope; I think it's quite a bit better now. * checkValidType was not rejecting constraints in a kind signature forall (a :: Eq b => blah). blah2 That led to further errors when we then do an ambiguity check. So I make checkValidType reject it more aggressively. * I killed off quantifyConDecl, instead calling kindGeneralize directly. * I fixed an outright bug in tyCoVarsOfImplic, where we were not colleting the tyvar of the kind of the skolems * Renamed ClsInstInfo to AssocInstInfo, and made it into its own data type * Some fiddling around with pretty-printing of family instances which was trickier than I thought. I wanted wildcards to print as plain "_" in user messages, although they each need a unique identity in the CoAxBranch. Some other oddments * Refactoring around the trace messages from reportUnsolved. * A bit of extra tc-tracing in TcHsSyn.commitFlexi This patch fixes a raft of bugs, and includes tests for them. * #14887 * #15740 * #15764 * #15789 * #15804 * #15817 * #15870 * #15874 * #15881
-
- 24 Oct, 2018 1 commit
-
-
Simon Peyton Jones authored
Trac #15648 showed that GHC was a bit confused about the difference between the types for * Predicates * Coercions * Evidence (in the typechecker constraint solver) This patch cleans it up. See especially Type.hs Note [Types for coercions, predicates, and evidence] Particular changes * Coercion types (a ~# b) and (a ~#R b) are not predicate types (so isPredTy reports False for them) and are not implicitly instantiated by the type checker. This is a real change, but it consistently reflects that fact that (~#) and (~R#) really are different from predicates. * isCoercionType is renamed to isCoVarType * During type inference, simplifyInfer, we do /not/ want to infer a constraint (a ~# b), because that is no longer a predicate type. So we 'lift' it to (a ~ b). See TcType Note [Lift equality constaints when quantifying] * During type inference for pattern synonyms, we need to 'lift' provided constraints of type (a ~# b) to (a ~ b). See Note [Equality evidence in pattern synonyms] in PatSyn * But what about (forall a. Eq a => a ~# b)? Is that a predicate type? No -- it does not have kind Constraint. Is it an evidence type? Perhaps, but awkwardly so. In the end I decided NOT to make it an evidence type, and to ensure the the type inference engine never meets it. This made me /simplify/ the code in TcCanonical.makeSuperClasses; see TcCanonical Note [Equality superclasses in quantified constraints] Instead I moved the special treatment for primitive equality to TcInteract.doTopReactOther. See TcInteract Note [Looking up primitive equalities in quantified constraints] Also see Note [Evidence for quantified constraints] in Type. All this means I can have isEvVarType ty = isCoVarType ty || isPredTy ty which is nice. All in all, rather a lot of work for a small refactoring, but I think it's a real improvement.
-
- 19 Oct, 2018 1 commit
-
-
Ningning Xie authored
Summary: For the sake of consistency of the dependent core, there is a restriction on where a coercion variable can appear in ForAllCo: the coercion variable can appear nowhere except in coherence coercions. Currently this restriction is missing in Core. The goal of this patch is to add the missing restriction. After discussion, we decide: coercion variables can appear nowhere except in `GRefl` and `Refl`. Relaxing the restriction to include `Refl` should not break consistency, we premuse. Test Plan: ./validate Reviewers: goldfire, simonpj, bgamari Reviewed By: goldfire Subscribers: rwbarton, carter GHC Trac Issues: #15757 Differential Revision: https://phabricator.haskell.org/D5231
-
- 04 Oct, 2018 1 commit
-
-
Simon Peyton Jones authored
Check than an Id of type (t1 ~# t2) is a CoVar; if not, it ends up in the wrong simplifier environment, with strange consequences. (Trac #15648)
-
- 26 Sep, 2018 1 commit
-
-
Simon Peyton Jones authored
GHC allows types to have unsaturated type synonyms and type families, provided they /are/ saturated if you expand all type synonyms. TcValidity carefully checked this; see check_syn_tc_app. But Lint only did half the job, adn that led to Trac #15664. This patch just teaches Core Lint to be as clever as TcValidity.
-
- 15 Sep, 2018 1 commit
-
-
Ningning Xie authored
This patch corresponds to #15497. According to https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2, we would like to have coercion quantifications back. This will allow us to migrate (~#) to be homogeneous, instead of its current heterogeneous definition. This patch is (lots of) plumbing only. There should be no user-visible effects. An overview of changes: - Both `ForAllTy` and `ForAllCo` can quantify over coercion variables, but only in *Core*. All relevant functions are updated accordingly. - Small changes that should be irrelevant to the main task: 1. removed dead code `mkTransAppCo` in Coercion 2. removed out-dated Note Computing a coercion kind and roles in Coercion 3. Added `Eq4` in Note Respecting definitional equality in TyCoRep, and updated `mkCastTy` accordingly. 4. Various updates and corrections of notes and typos. - Haddock submodule needs to be changed too. Acknowledgments: This work was completed mostly during Ningning Xie's Google Summer of Code, sponsored by Google. It was advised by Richard Eisenberg, supported by NSF grant 1704041. Test Plan: ./validate Reviewers: goldfire, simonpj, bgamari, hvr, erikd, simonmar Subscribers: RyanGlScott, monoidal, rwbarton, carter GHC Trac Issues: #15497 Differential Revision: https://phabricator.haskell.org/D5054
-