- 12 Aug, 2020 1 commit
-
-
Sylvain Henry authored
- put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
-
- 14 Jun, 2020 1 commit
-
-
Tamar Christina authored
The initial version was rewritten by Tamar Christina. It was rewritten in large parts by Andreas Klebinger. Co-authored-by:
Andreas Klebinger <klebinger.andreas@gmx.at>
-
- 26 Apr, 2020 1 commit
-
-
Sylvain Henry authored
Update Haddock submodule Metric Increase: haddock.compiler
-
- 23 Apr, 2020 1 commit
-
-
Peter Trommler authored
Fixes #11261
-
- 21 Apr, 2020 1 commit
-
-
Sylvain Henry authored
* Remove `DynFlags` parameter from `isDynLinkName`: `isDynLinkName` used to test the global `ExternalDynamicRefs` flag. Now we test it outside of `isDynLinkName` * Add new fields into `NCGConfig`: current unit id, sse/bmi versions, externalDynamicRefs, etc. * Replace many uses of `DynFlags` by `NCGConfig` * Moved `BMI/SSE` datatypes into `GHC.Platform`
-
- 03 Apr, 2020 1 commit
-
-
Sylvain Henry authored
In !2959 we noticed that there was some redundant code (in GHC.Cmm.Utils and GHC.Cmm.StgToCmm.Utils) used to deal with `CmmStatics` datatype (before SRT generation) and `RawCmmStatics` datatype (after SRT generation). This patch removes this redundant code by using a single GADT for (Raw)CmmStatics.
-
- 29 Mar, 2020 1 commit
-
-
Sylvain Henry authored
Update Haddock submodule Metric Increase: haddock.compiler
-
- 19 Mar, 2020 1 commit
-
-
Sylvain Henry authored
Metric Decrease: ManyConstructors T12707 T13035 T1969
-
- 15 Mar, 2020 1 commit
-
-
Sylvain Henry authored
This patch disentangles a bit more DynFlags from the native code generator (CmmToAsm). In more details: - add a new NCGConfig datatype in GHC.CmmToAsm.Config which contains the configuration of a native code generation session - explicitly pass NCGConfig/Platform arguments when necessary - as a consequence `sdocWithPlatform` is gone and there are only a few `sdocWithDynFlags` left - remove the use of `unsafeGlobalDynFlags` from GHC.CmmToAsm.CFG - remove `sdocDebugLevel` (now we pass the debug level via NCGConfig) There are still some places where DynFlags is used, especially because of pretty-printing (CLabel), because of Cmm helpers (such as `cmmExprType`) and because of `Outputable` instance for the instructions. These are left for future refactoring as this patch is already big.
-
- 25 Feb, 2020 1 commit
-
-
Sylvain Henry authored
-
- 22 Feb, 2020 1 commit
-
-
Sylvain Henry authored
submodule updates: nofib, haddock
-
- 31 Jan, 2020 1 commit
-
-
Ömer Sinan Ağacan authored
This patch removes all CafInfo predictions and various hacks to preserve predicted CafInfos from the compiler and assigns final CafInfos to interface Ids after code generation. SRT analysis is extended to support static data, and Cmm generator is modified to allow generating static_link fields after SRT analysis. This also fixes `-fcatch-bottoms`, which introduces error calls in case expressions in CorePrep, which runs *after* CoreTidy (which is where we decide on CafInfos) and turns previously non-CAFFY things into CAFFY. Fixes #17648 Fixes #9718 Evaluation ========== NoFib ----- Boot with: `make boot mode=fast` Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1` -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.0% 0.0% -0.0% -0.0% -0.0% CSD -0.0% 0.0% -0.0% -0.0% -0.0% FS -0.0% 0.0% -0.0% -0.0% -0.0% S -0.0% 0.0% -0.0% -0.0% -0.0% VS -0.0% 0.0% -0.0% -0.0% -0.0% VSD -0.0% 0.0% -0.0% -0.0% -0.5% VSM -0.0% 0.0% -0.0% -0.0% -0.0% anna -0.1% 0.0% -0.0% -0.0% -0.0% ansi -0.0% 0.0% -0.0% -0.0% -0.0% atom -0.0% 0.0% -0.0% -0.0% -0.0% awards -0.0% 0.0% -0.0% -0.0% -0.0% banner -0.0% 0.0% -0.0% -0.0% -0.0% bernouilli -0.0% 0.0% -0.0% -0.0% -0.0% binary-trees -0.0% 0.0% -0.0% -0.0% -0.0% boyer -0.0% 0.0% -0.0% -0.0% -0.0% boyer2 -0.0% 0.0% -0.0% -0.0% -0.0% bspt -0.0% 0.0% -0.0% -0.0% -0.0% cacheprof -0.0% 0.0% -0.0% -0.0% -0.0% calendar -0.0% 0.0% -0.0% -0.0% -0.0% cichelli -0.0% 0.0% -0.0% -0.0% -0.0% circsim -0.0% 0.0% -0.0% -0.0% -0.0% clausify -0.0% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0% compress -0.0% 0.0% -0.0% -0.0% -0.0% compress2 -0.0% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0% cse -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0% dom-lt -0.0% 0.0% -0.0% -0.0% -0.0% eliza -0.0% 0.0% -0.0% -0.0% -0.0% event -0.0% 0.0% -0.0% -0.0% -0.0% exact-reals -0.0% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0% expert -0.0% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0% fasta -0.0% 0.0% -0.0% -0.0% -0.0% fem -0.0% 0.0% -0.0% -0.0% -0.0% fft -0.0% 0.0% -0.0% -0.0% -0.0% fft2 -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% fish -0.0% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.0% 0.0% -0.0% -0.0% -0.0% gamteb -0.0% 0.0% -0.0% -0.0% -0.0% gcd -0.0% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0% genfft -0.0% 0.0% -0.0% -0.0% -0.0% gg -0.0% 0.0% -0.0% -0.0% -0.0% grep -0.0% 0.0% -0.0% -0.0% -0.0% hidden -0.0% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.0% 0.0% -0.0% -0.0% -0.0% infer -0.0% 0.0% -0.0% -0.0% -0.0% integer -0.0% 0.0% -0.0% -0.0% -0.0% integrate -0.0% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0% kahan -0.0% 0.0% -0.0% -0.0% -0.0% knights -0.0% 0.0% -0.0% -0.0% -0.0% lambda -0.0% 0.0% -0.0% -0.0% -0.0% last-piece -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% life -0.0% 0.0% -0.0% -0.0% -0.0% lift -0.0% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.0% 0.0% -0.0% -0.0% -0.0% listcopy -0.0% 0.0% -0.0% -0.0% -0.0% maillist -0.0% 0.0% -0.0% -0.0% -0.0% mandel -0.0% 0.0% -0.0% -0.0% -0.0% mandel2 -0.0% 0.0% -0.0% -0.0% -0.0% mate -0.0% 0.0% -0.0% -0.0% -0.0% minimax -0.0% 0.0% -0.0% -0.0% -0.0% mkhprog -0.0% 0.0% -0.0% -0.0% -0.0% multiplier -0.0% 0.0% -0.0% -0.0% -0.0% n-body -0.0% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0% para -0.0% 0.0% -0.0% -0.0% -0.0% paraffins -0.0% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.0% 0.0% -0.0% -0.0% -0.0% pidigits -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% pretty -0.0% 0.0% -0.3% -0.4% -0.4% primes -0.0% 0.0% -0.0% -0.0% -0.0% primetest -0.0% 0.0% -0.0% -0.0% -0.0% prolog -0.0% 0.0% -0.0% -0.0% -0.0% puzzle -0.0% 0.0% -0.0% -0.0% -0.0% queens -0.0% 0.0% -0.0% -0.0% -0.0% reptile -0.0% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0% rewrite -0.0% 0.0% -0.0% -0.0% -0.0% rfib -0.0% 0.0% -0.0% -0.0% -0.0% rsa -0.0% 0.0% -0.0% -0.0% -0.0% scc -0.0% 0.0% -0.3% -0.5% -0.4% sched -0.0% 0.0% -0.0% -0.0% -0.0% scs -0.0% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.0% 0.0% -0.0% -0.0% -0.0% sorting -0.0% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0% sphere -0.0% 0.0% -0.0% -0.0% -0.0% symalg -0.0% 0.0% -0.0% -0.0% -0.0% tak -0.0% 0.0% -0.0% -0.0% -0.0% transform -0.0% 0.0% -0.0% -0.0% -0.0% treejoin -0.0% 0.0% -0.0% -0.0% -0.0% typecheck -0.0% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.0% 0.0% -0.0% -0.0% -0.0% wave4main -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0% x2n1 -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.3% -0.5% -0.5% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- circsim -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% gc_bench -0.0% 0.0% -0.0% -0.0% -0.0% hash -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% spellcheck -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.0% -0.0% -0.0% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0% Manual inspection of programs in testsuite/tests/programs --------------------------------------------------------- I built these programs with a bunch of dump flags and `-O` and compared STG, Cmm, and Asm dumps and file sizes. (Below the numbers in parenthesis show number of modules in the program) These programs have identical compiler (same .hi and .o sizes, STG, and Cmm and Asm dumps): - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3), andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2), jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4), jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1), bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1), strict_anns (1), thurston-module-arith (2), okeefe_neural (1), joao-circular (6), 10queens (1) Programs with different compiler outputs: - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level `[Int]` closures as CAFFY for no reason. With this patch we no longer make them CAFFY and generate less SRT entries. For some reason Main.o is slightly larger with this patch (1.3%) and the executable sizes are the same. (I'd expect both to be smaller) - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the executable sizes are the same. - galois_raytrace (13): Differences are in the Parse module. There are a lot, but some of the changes are caused by the fact that for some reason (I think a bug) GHC HEAD marks the dictionary for `Functor Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the same. - north_array: We now generate less SRT entries because some of array primops used in this program like `NewArrayOp` get eliminated during Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24% larger (9224 bytes from 9000 bytes), executable sizes are the same. - seward-space-leak: Difference in this program is better shown by this smaller example: module Lib where data CDS = Case [CDS] [(Int, CDS)] | Call CDS CDS instance Eq CDS where Case sels1 rets1 == Case sels2 rets2 = sels1 == sels2 && rets1 == rets2 Call a1 b1 == Call a2 b2 = a1 == a2 && b1 == b2 _ == _ = False In this program GHC HEAD builds a new SRT for the recursive group of `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==` in its SRT field, and `==` uses the SRT object as its SRT. With this patch we use the closure for `/=` as the SRT and add `==` there. Then `/=` gets an empty SRT field and `==` points to `/=` in its SRT field. This change looks fine to me. Main.o gets 0.07% larger, executable sizes are identical. head.hackage ------------ head.hackage's CI script builds 428 packages from Hackage using this patch with no failures. Compiler performance -------------------- The compiler perf tests report that the compiler allocates slightly more (worst case observed so far is 4%). However most programs in the test suite are small, single file programs. To benchmark compiler performance on something more realistic I build Cabal (the library, 236 modules) with different optimisation levels. For the "max residency" row I run GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows are generated with just `-s`. (This is because `-i0` causes running GC much more frequently and as a result "bytes copied" gets inflated by more than 25x in some cases) * -O0 | | GHC HEAD | This MR | Diff | | --------------- | -------------- | -------------- | ------ | | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% | | Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% | | Max residency | 421,225,624 | 424,324,264 | +0.73% | * -O1 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% | | Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% | | Max residency | 982,643,440 | 991,663,432 | +0.91% | * -O2 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% | | Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% | | Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% | Extra compiler allocations -------------------------- Runtime allocations of programs are as reported above (NoFib section). The compiler now allocates more than before. Main source of allocation in this patch compared to base commit is the new SRT algorithm (GHC.Cmm.Info.Build). Below is some of the extra work we do with this patch, numbers generated by profiled stage 2 compiler when building a pathological case (the test 'ManyConstructors') with '-O2': - We now sort the final STG for a module, which means traversing the entire program, generating free variable set for each top-level binding, doing SCC analysis, and re-ordering the program. In ManyConstructors this step allocates 97,889,952 bytes. - We now do SRT analysis on static data, which in a program like ManyConstructors causes analysing 10,000 bindings that we would previously just skip. This step allocates 70,898,352 bytes. - We now maintain an SRT map for the entire module as we compile Cmm groups: data ModuleSRTInfo = ModuleSRTInfo { ... , moduleSRTMap :: SRTMap } (SRTMap is just a strict Map from the 'containers' library) This map gets an entry for most bindings in a module (exceptions are THUNKs and CAFFY static functions). For ManyConstructors this map gets 50015 entries. - Once we're done with code generation we generate a NameSet from SRTMap for the non-CAFFY names in the current module. This set gets the same number of entries as the SRTMap. - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using the NameSet generated in the previous step. This usually does the least amount of allocation among the work listed here. Only place with this patch where we do less work in the CAF analysis in the tidying pass (CoreTidy). However that doesn't save us much, as the pass still needs to traverse the whole program and update IdInfos for other reasons. Only thing we don't here do is the `hasCafRefs` pass over the RHS of bindings, which is a stateless pass that returns a boolean value, so it doesn't allocate much. (Metric changes blow are all increased allocations) Metric changes -------------- Metric Increase: ManyAlternatives ManyConstructors T13035 T14683 T1969 T9961
-
- 25 Jan, 2020 1 commit
-
-
Sylvain Henry authored
-
- 04 Jan, 2020 1 commit
-
-
Brian Wignall authored
-
- 03 Dec, 2019 1 commit
-
-
Sylvain Henry authored
-
- 02 Dec, 2019 1 commit
-
-
Brian Wignall authored
-
- 28 Nov, 2019 1 commit
-
-
Brian Wignall authored
-
- 05 Oct, 2019 1 commit
-
-
John Ericson authored
- Remove unneeded ones - Use <..> for inter-package. Besides general clean up, helps distinguish between the RTS we link against vs the RTS we compile for.
-
- 13 Sep, 2019 1 commit
-
-
John Ericson authored
-
- 09 Sep, 2019 1 commit
-
-
Sylvain Henry authored
Add StgToCmm module hierarchy. Platform modules that are used in several other places (NCG, LLVM codegen, Cmm transformations) are put into GHC.Platform.
-
- 16 Jul, 2019 1 commit
-
-
Ben Gamari authored
Unfortunately this will require more work; register allocation is quite broken. This reverts commit acd79558.
-
- 03 Jul, 2019 1 commit
-
-
Abhiroop Sarkar authored
This adds support for constructing vector types from Float#, Double# etc and performing arithmetic operations on them Cleaned-Up-By:
Ben Gamari <ben@well-typed.com>
-
- 28 Jun, 2019 1 commit
-
-
Travis Whitaker authored
Here the following changes are introduced: - A read barrier machine op is added to Cmm. - The order in which a closure's fields are read and written is changed. - Memory barriers are added to RTS code to ensure correctness on out-or-order machines with weak memory ordering. Cmm has a new CallishMachOp called MO_ReadBarrier. On weak memory machines, this is lowered to an instruction that ensures memory reads that occur after said instruction in program order are not performed before reads coming before said instruction in program order. On machines with strong memory ordering properties (e.g. X86, SPARC in TSO mode) no such instruction is necessary, so MO_ReadBarrier is simply erased. However, such an instruction is necessary on weakly ordered machines, e.g. ARM and PowerPC. Weam memory ordering has consequences for how closures are observed and mutated. For example, consider a closure that needs to be updated to an indirection. In order for the indirection to be safe for concurrent observers to enter, said observers must read the indirection's info table before they read the indirectee. Furthermore, the entering observer makes assumptions about the closure based on its info table contents, e.g. an INFO_TYPE of IND imples the closure has an indirectee pointer that is safe to follow. When a closure is updated with an indirection, both its info table and its indirectee must be written. With weak memory ordering, these two writes can be arbitrarily reordered, and perhaps even interleaved with other threads' reads and writes (in the absence of memory barrier instructions). Consider this example of a bad reordering: - An updater writes to a closure's info table (INFO_TYPE is now IND). - A concurrent observer branches upon reading the closure's INFO_TYPE as IND. - A concurrent observer reads the closure's indirectee and enters it. (!!!) - An updater writes the closure's indirectee. Here the update to the indirectee comes too late and the concurrent observer has jumped off into the abyss. Speculative execution can also cause us issues, consider: - An observer is about to case on a value in closure's info table. - The observer speculatively reads one or more of closure's fields. - An updater writes to closure's info table. - The observer takes a branch based on the new info table value, but with the old closure fields! - The updater writes to the closure's other fields, but its too late. Because of these effects, reads and writes to a closure's info table must be ordered carefully with respect to reads and writes to the closure's other fields, and memory barriers must be placed to ensure that reads and writes occur in program order. Specifically, updates to a closure must follow the following pattern: - Update the closure's (non-info table) fields. - Write barrier. - Update the closure's info table. Observing a closure's fields must follow the following pattern: - Read the closure's info pointer. - Read barrier. - Read the closure's (non-info table) fields. This patch updates RTS code to obey this pattern. This should fix long-standing SMP bugs on ARM (specifically newer aarch64 microarchitectures supporting out-of-order execution) and PowerPC. This fixes issue #15449. Co-Authored-By:
Ben Gamari <ben@well-typed.com>
-
- 20 Jun, 2019 1 commit
-
-
John Ericson authored
ghc-pkg needs to be aware of platforms so it can figure out which subdire within the user package db to use. This is admittedly roundabout, but maybe Cabal could use the same notion of a platform as GHC to good affect too.
-
- 09 Jun, 2019 1 commit
-
-
chessai authored
Previously log and exp were primitives yet log1p and expm1 were FFI calls. Fix this non-uniformity.
-
- 31 May, 2019 1 commit
-
-
Sergei Trofimovich authored
On powerpc32 64-bit comparison code generated dangling target labels. This caused ghc build failure as: $ ./configure --target=powerpc-unknown-linux-gnu && make ... SCCs aren't in reverse dependent order bad blockId n3U This happened because condIntCode' in PPC codegen generated label name but did not place the label into `cmp_lo` code block. The change adds the `cmp_lo` label into the case of negative comparison. Signed-off-by:
Sergei Trofimovich <slyfox@gentoo.org>
-
- 11 Apr, 2019 1 commit
-
-
Carter Schonwald authored
* simplifies registers to have GPR, Float and Double, by removing the SSE2 and X87 Constructors * makes -msse2 assumed/default for x86 platforms, fixing a long standing nondeterminism in rounding behavior in 32bit haskell code * removes the 80bit floating point representation from the supported float sizes * theres still 1 tiny bit of x87 support needed, for handling float and double return values in FFI calls wrt the C ABI on x86_32, but this one piece does not leak into the rest of NCG. * Lots of code thats not been touched in a long time got deleted as a consequence of all of this all in all, this change paves the way towards a lot of future further improvements in how GHC handles floating point computations, along with making the native code gen more accessible to a larger pool of contributors.
-
- 01 Apr, 2019 1 commit
-
-
Alexandre R. Baldé authored
This commit includes the necessary changes in code and documentation to support a primop that reverses a word's bits. It also includes a test.
-
- 15 Mar, 2019 1 commit
-
-
Peter Trommler authored
We make liveness information for global registers available on `JMP` and `BCTR`, which were the last instructions missing. With complete liveness information we do not need to reserve global registers in `freeReg` anymore. Moreover we assign R9 and R10 to callee saves registers. Cleanup by removing `Reg_Su`, which was unused, from `freeReg` and removing unused register definitions. The calculation of the number of floating point registers is too conservative. Just follow X86 and specify the constants directly. Overall on PowerPC this results in 0.3 % smaller code size in nofib while runtime is slightly better in some tests.
-
- 31 Jan, 2019 1 commit
-
-
Peter Trommler authored
Fixes #16222
-
- 17 Jan, 2019 3 commits
-
-
Peter Trommler authored
Rename constructors in calling convention data type to reflect the fact that they represent an ELF ABI not only a Linux ABI.
-
Peter Trommler authored
-
Peter Trommler authored
All operating systems except AIX and Darwin follow the ELF specification.
-
- 01 Jan, 2019 1 commit
-
-
Peter Trommler authored
Support for Mac OS X on PowerPC has been dropped by Apple years ago. We follow suit and remove PowerPC support for Darwin. Fixes #16106.
-
- 30 Dec, 2018 1 commit
-
-
Peter Trommler authored
-
- 11 Dec, 2018 2 commits
-
-
Peter Trommler authored
Handle Int*QuotRemOP and Word*QuotRemOp in PPC NCG. Refactor common code with remainder operation. Test Plan: validate (I validated on Linux powerpc64le and x86_64) Reviewers: erikd, hvr, bgamari, simonmar Reviewed By: bgamari Subscribers: rwbarton, carter Differential Revision: https://phabricator.haskell.org/D5323
-
Peter Trommler authored
Generate code for MachOps with smaller than wordsize data. Refactor conversion MachOps. Fixes #15854 Test Plan: validate (I validated on powerpc64le and x86_64 Linux) Reviewers: bgamari, hvr, erikd, simonmar Subscribers: rwbarton, carter GHC Trac Issues: #15854 Differential Revision: https://phabricator.haskell.org/D5300
-
- 17 Nov, 2018 1 commit
-
-
Andreas Klebinger authored
Summary: This patch implements a new code layout algorithm. It has been tested for x86 and is disabled on other platforms. Performance varies slightly be CPU/Machine but in general seems to be better by around 2%. Nofib shows only small differences of about +/- ~0.5% overall depending on flags/machine performance in other benchmarks improved significantly. Other benchmarks includes at least the benchmarks of: aeson, vector, megaparsec, attoparsec, containers, text and xeno. While the magnitude of gains differed three different CPUs where tested with all getting faster although to differing degrees. I tested: Sandy Bridge(Xeon), Haswell, Skylake * Library benchmark results summarized: * containers: ~1.5% faster * aeson: ~2% faster * megaparsec: ~2-5% faster * xml library benchmarks: 0.2%-1.1% faster * vector-benchmarks: 1-4% faster * text: 5.5% faster On average GHC compile times go down, as GHC compiled with the new layout is faster than the overhead introduced by using the new layout algorithm, Things this patch does: * Move code responsilbe for block layout in it's own module. * Move the NcgImpl Class into the NCGMonad module. * Extract a control flow graph from the input cmm. * Update this cfg to keep it in sync with changes during asm codegen. This has been tested on x64 but should work on x86. Other platforms still use the old codelayout. * Assign weights to the edges in the CFG based on type and limited static analysis which are then used for block layout. * Once we have the final code layout eliminate some redundant jumps. In particular turn a sequences of: jne .foo jmp .bar foo: into je bar foo: .. Test Plan: ci Reviewers: bgamari, jmct, jrtc27, simonmar, simonpj, RyanGlScott Reviewed By: RyanGlScott Subscribers: RyanGlScott, trommler, jmct, carter, thomie, rwbarton GHC Trac Issues: #15124 Differential Revision: https://phabricator.haskell.org/D4726
-
- 21 Aug, 2018 1 commit
-
-
Artem Pelenitsyn authored
Reviewers: hvr, bgamari, simonmar, jrtc27 Reviewed By: bgamari Subscribers: alpmestan, rwbarton, thomie, carter Differential Revision: https://phabricator.haskell.org/D5034
-
- 16 May, 2018 1 commit
-
-
Simon Marlow authored
Summary: This change makes it possible to generate a static 32-bit relative label offset on x86_64. Currently we can only generate word-sized label offsets. This will be used in D4634 to shrink info tables. See D4632 for more details. Test Plan: See D4632 Reviewers: bgamari, niteria, michalt, erikd, jrtc27, osa1 Subscribers: thomie, carter Differential Revision: https://phabricator.haskell.org/D4633
-