- 15 Sep, 2006 5 commits
-
-
chak@cse.unsw.edu.au. authored
Thu Aug 3 19:29:38 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Added error checks & fixed bugs
-
chak@cse.unsw.edu.au. authored
Tue Aug 1 23:51:38 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Renaming of indexed types
-
chak@cse.unsw.edu.au. authored
Tue Aug 1 16:39:51 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Renaming of kind signatures (rnTySig)
-
chak@cse.unsw.edu.au. authored
Wed Jul 26 18:16:25 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Fix migrated AT support - Make it compile - Successfully parses and renames simple AT declarations - Should not affect non-AT programs
-
chak@cse.unsw.edu.au. authored
Wed Jul 26 17:46:55 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * Migrate cvs diff from fptools-assoc branch - Syntactic support for associated types - Renamer support for associated types - ATs are only allowed with -fglasgow-exts - Handle ATs in the type and class declaration kinding knot-tying exercise
-
- 17 Aug, 2006 1 commit
-
-
simonpj@microsoft.com authored
-
- 16 Aug, 2006 1 commit
-
-
simonpj@microsoft.com authored
Previously we checked the form of the arguments of a RULE lhs, to ensure that they were simple applications. There was no good reason for that, save to prevent you writing LHSs that were unlikely to match. And Don Stewart found he wanted to do something we didn't allow (a section, I think). So I have just disabled the check.
-
- 09 Aug, 2006 1 commit
-
-
Simon Marlow authored
See #815
-
- 26 Jul, 2006 1 commit
-
-
simonpj@microsoft.com authored
-
- 12 Jun, 2006 1 commit
-
-
simonpj@microsoft.com authored
Consider class C a where op :: forall b. a -> b -> b op = <rhs> Then 'b' should be in scope in <rhs>. I had omitted this case. This patch fixes it.
-
- 27 Apr, 2006 1 commit
-
-
David Himmelstrup authored
-
- 07 Apr, 2006 1 commit
-
-
Simon Marlow authored
Most of the other users of the fptools build system have migrated to Cabal, and with the move to darcs we can now flatten the source tree without losing history, so here goes. The main change is that the ghc/ subdir is gone, and most of what it contained is now at the top level. The build system now makes no pretense at being multi-project, it is just the GHC build system. No doubt this will break many things, and there will be a period of instability while we fix the dependencies. A straightforward build should work, but I haven't yet fixed binary/source distributions. Changes to the Building Guide will follow, too.
-
- 01 Mar, 2006 1 commit
-
-
David Himmelstrup authored
-
- 22 Feb, 2006 1 commit
-
-
David Himmelstrup authored
-
- 27 Oct, 2005 1 commit
-
-
simonpj authored
Add a new pragma: SPECIALISE INLINE This amounts to adding an INLINE pragma to the specialised version of the function. You can add phase stuff too (SPECIALISE INLINE [2]), and NOINLINE instead of INLINE. The reason for doing this is to support inlining of type-directed recursive functions. The main example is this: -- non-uniform array type data Arr e where ArrInt :: !Int -> ByteArray# -> Arr Int ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2) (!:) :: Arr e -> Int -> e {-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-} {-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-} ArrInt _ ba !: (I# i) = I# (indexIntArray# ba i) ArrPair _ a1 a2 !: i = (a1 !: i, a2 !: i) If we use (!:) at a particular array type, we want to inline (:!), which is recursive, until all the type specialisation is done. On the way I did a bit of renaming and tidying of the way that pragmas are carried, so quite a lot of files are touched in a fairly trivial way.
-
- 26 Oct, 2005 1 commit
-
-
simonpj authored
MERGE TO STABLE Fix two small Template Haskell bugs. (1) A bug in the renaming of [d| brackets |]. The problem was that when we renamed the bracket we messed up the name cache, because the module was still that of the parent module. Now we set a fake module before renaming it. TH_spliceDecl4 is the test. (2) An expression splice can in principle mention *any* variable, so the renamer really has to assume that it does when doing depdendency analysis. For example f = ... h = ...$(thing "f")... The renamer had better not put 'h' before 'f', else the type checker won't find a defn for 'f' in the type envt. TH_spliceE5 is the test
-
- 14 Oct, 2005 1 commit
-
-
simonpj authored
Add record syntax for GADTs ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Atrijus Tang wanted to add record syntax for GADTs and existential types, so he and I worked on it a bit at ICFP. This commit is the result. Now you can say data T a where T1 { x :: a } :: T [a] T2 { x :: a, y :: Int } :: T [a] forall b. Show b => T3 { naughty :: b, ok :: Int } :: T Int T4 :: Eq a => a -> b -> T (a,b) Here the constructors are declared using record syntax. Still to come after this commit: - User manual documentation - More regression tests - Some missing cases in the parser (e.g. T3 won't parse) Autrijus is going to do these. Here's a quick summary of the rules. (Atrijus is going to write proper documentation shortly.) Defnition: a 'vanilla' constructor has a type of the form forall a1..an. t1 -> ... -> tm -> T a1 ... an No existentials, no context, nothing. A constructor declared with Haskell-98 syntax is vanilla by construction. A constructor declared with GADT-style syntax is vanilla iff its type looks like the above. (In the latter case, the order of the type variables does not matter.) * You can mix record syntax and non-record syntax in a single decl * All constructors that share a common field 'x' must have the same result type (T [a] in the example). * You can use field names without restriction in record construction and record pattern matching. * Record *update* only works for data types that only have 'vanilla' constructors. * Consider the field 'naughty', which uses a type variable that does not appear in the result type ('b' in the example). You can use the field 'naughty' in pattern matching and construction, but NO SELECTOR function is generated for 'naughty'. [An attempt to use 'naughty' as a selector function will elicit a helpful error message.] * Data types declared in GADT syntax cannot have a context. So this is illegal: data (Monad m) => T a where .... * Constructors in GADT syntax can have a context (t.g. T3, T4 above) and that context is stored in the constructor and made available when the constructor is pattern-matched on. WARNING: not competely implemented yet, but that's the plan. Implementation notes ~~~~~~~~~~~~~~~~~~~~ - Data constructors (even vanilla ones) no longer share the type variables of their parent type constructor. - HsDecls.ConDecl has changed quite a bit - TyCons don't record the field labels and type any more (doesn't make sense for existential fields) - GlobalIdDetails records which selectors are 'naughty', and hence don't have real code.
-
- 19 Jul, 2005 1 commit
-
-
simonpj authored
WARNING: this is a big commit. You might want to wait a few days before updating, in case I've broken something. However, if any of the changes are what you wanted, please check it out and test! This commit does three main things: 1. A re-organisation of the way that GHC handles bindings in HsSyn. This has been a bit of a mess for quite a while. The key new types are -- Bindings for a let or where clause data HsLocalBinds id = HsValBinds (HsValBinds id) | HsIPBinds (HsIPBinds id) | EmptyLocalBinds -- Value bindings (not implicit parameters) data HsValBinds id = ValBindsIn -- Before typechecking (LHsBinds id) [LSig id] -- Not dependency analysed -- Recursive by default | ValBindsOut -- After typechecking [(RecFlag, LHsBinds id)]-- Dependency analysed 2. Implement Mark Jones's idea of increasing polymoprhism by using type signatures to cut the strongly-connected components of a recursive group. As a consequence, GHC no longer insists on the contexts of the type signatures of a recursive group being identical. This drove a significant change: the renamer no longer does dependency analysis. Instead, it attaches a free-variable set to each binding, so that the type checker can do the dep anal. Reason: the typechecker needs to do *two* analyses: one to find the true mutually-recursive groups (which we need so we can build the right CoreSyn) one to find the groups in which to typecheck, taking account of type signatures 3. Implement non-ground SPECIALISE pragmas, as promised, and as requested by Remi and Ross. Certainly, this should fix the current problem with GHC, namely that if you have g :: Eq a => a -> b -> b then you can now specialise thus SPECIALISE g :: Int -> b -> b (This didn't use to work.) However, it goes further than that. For example: f :: (Eq a, Ix b) => a -> b -> b then you can make a partial specialisation SPECIALISE f :: (Eq a) => a -> Int -> Int In principle, you can specialise f to *any* type that is "less polymorphic" (in the sense of subsumption) than f's actual type. Such as SPECIALISE f :: Eq a => [a] -> Int -> Int But I haven't tested that. I implemented this by doing the specialisation in the typechecker and desugarer, rather than leaving around the strange SpecPragmaIds, for the specialiser to find. Indeed, SpecPragmaIds have vanished altogether (hooray). Pragmas in general are handled more tidily. There's a new data type HsBinds.Prag, which lives in an AbsBinds, and carries pragma info from the typechecker to the desugarer. Smaller things - The loop in the renamer goes via RnExpr, instead of RnSource. (That makes it more like the type checker.) - I fixed the thing that was causing 'check_tc' warnings to be emitted.
-
- 05 May, 2005 1 commit
-
-
simonpj authored
Make it so that you can deprecate a data constructor. Previously {-# DEPRECATED T "no" #-} referred only to the type or class T. Now it refers to the data constructor T as well, just like in fixity declarations. There's no way to deprecate the data constructor T without also deprecating the type T, alas. Same problem in fixity decls. Main problem is coming up with a suitable concrete syntax to do so. We could consider merging this to the STABLE branch. NB: Sven, the manual fixes are not XML-valideated! I'm at home.
-
- 18 Mar, 2005 1 commit
-
-
simonmar authored
Flags cleanup. Basically the purpose of this commit is to move more of the compiler's global state into DynFlags, which is moving in the direction we need to go for the GHC API which can have multiple active sessions supported by a single GHC instance. Before: $ grep 'global_var' */*hs | wc -l 78 After: $ grep 'global_var' */*hs | wc -l 27 Well, it's an improvement. Most of what's left won't really affect our ability to host multiple sessions. Lots of static flags have become dynamic flags (yay!). Notably lots of flags that we used to think of as "driver" flags, like -I and -L, are now dynamic. The most notable static flags left behind are the "way" flags, eg. -prof. It would be nice to fix this, but it isn't urgent. On the way, lots of cleanup has happened. Everything related to static and dynamic flags lives in StaticFlags and DynFlags respectively, and they share a common command-line parser library in CmdLineParser. The flags related to modes (--makde, --interactive etc.) are now private to the front end: in fact private to Main itself, for now.
-
- 27 Jan, 2005 2 commits
-
-
simonpj authored
Import trimming
-
simonpj authored
-------------------------------------------- Replace hi-boot files with hs-boot files -------------------------------------------- This major commit completely re-organises the way that recursive modules are dealt with. * It should have NO EFFECT if you do not use recursive modules * It is a BREAKING CHANGE if you do ====== Warning: .hi-file format has changed, so if you are ====== updating into an existing HEAD build, you'll ====== need to make clean and re-make The details: [documentation still to be done] * Recursive loops are now broken with Foo.hs-boot (or Foo.lhs-boot), not Foo.hi-boot * An hs-boot files is a proper source file. It is compiled just like a regular Haskell source file: ghc Foo.hs generates Foo.hi, Foo.o ghc Foo.hs-boot generates Foo.hi-boot, Foo.o-boot * hs-boot files are precisely a subset of Haskell. In particular: - they have the same import, export, and scoping rules - errors (such as kind errors) in hs-boot files are checked You do *not* need to mention the "original" name of something in an hs-boot file, any more than you do in any other Haskell module. * The Foo.hi-boot file generated by compiling Foo.hs-boot is a machine- generated interface file, in precisely the same format as Foo.hi * When compiling Foo.hs, its exports are checked for compatibility with Foo.hi-boot (previously generated by compiling Foo.hs-boot) * The dependency analyser (ghc -M) knows about Foo.hs-boot files, and generates appropriate dependencies. For regular source files it generates Foo.o : Foo.hs Foo.o : Baz.hi -- Foo.hs imports Baz Foo.o : Bog.hi-boot -- Foo.hs source-imports Bog For a hs-boot file it generates similar dependencies Bog.o-boot : Bog.hs-boot Bog.o-boot : Nib.hi -- Bog.hs-boto imports Nib * ghc -M is also enhanced to use the compilation manager dependency chasing, so that ghc -M Main will usually do the job. No need to enumerate all the source files. * The -c flag is no longer a "compiler mode". It simply means "omit the link step", and synonymous with -no-link.
-
- 09 Nov, 2004 1 commit
-
-
simonpj authored
Fix a bug in fixity handling for tycons; we were rembering the data-con RdrName, not the tycon one
-
- 20 Oct, 2004 1 commit
-
-
simonpj authored
--------------------------------- Fix a bug in usage recording --------------------------------- As a result of the new stuff on hi-boot-file consistency checking, I accidentally caused Foo.hi to record a usage line for module Foo, and this in turn caused rather nasty bad things to happen. In particular, there were occasional crashes of form ghc-6.3: panic! (the `impossible' happened, GHC version 6.3.20041017): forkM Constructor Var.TcTyVar{d r1B9} At least I think that's why the crash happened. Anyway, it was certainly a bug, and this commit fixes it. The main payload of this fix is in Desugar.lhs; the rest is comments and tidying.
-
- 01 Oct, 2004 1 commit
-
-
simonpj authored
Allow kind signatures in GADT data type declarations
-
- 30 Sep, 2004 1 commit
-
-
simonpj authored
------------------------------------ Add Generalised Algebraic Data Types ------------------------------------ This rather big commit adds support for GADTs. For example, data Term a where Lit :: Int -> Term Int App :: Term (a->b) -> Term a -> Term b If :: Term Bool -> Term a -> Term a ..etc.. eval :: Term a -> a eval (Lit i) = i eval (App a b) = eval a (eval b) eval (If p q r) | eval p = eval q | otherwise = eval r Lots and lots of of related changes throughout the compiler to make this fit nicely. One important change, only loosely related to GADTs, is that skolem constants in the typechecker are genuinely immutable and constant, so we often get better error messages from the type checker. See TcType.TcTyVarDetails. There's a new module types/Unify.lhs, which has purely-functional unification and matching for Type. This is used both in the typechecker (for type refinement of GADTs) and in Core Lint (also for type refinement).
-
- 02 Apr, 2004 1 commit
-
-
simonpj authored
Extend the "newtype deriving" feature a little bit more (at the request of Wolfgang Jeltsch) Here's the example: class C a b instance C [a] Char newtype T = T Char deriving( C [a] ) Perfectly sensible, and no reason it should not work. Fixing this required me to generalise the abstract syntax of a 'deriving' item, hence the non-local effects.
-
- 16 Dec, 2003 1 commit
-
-
simonpj authored
-------------------- Towards type splices -------------------- Starts the move to supporting type splices, by making HsExpr.HsSplice a separate type of its own, and adding HsSpliceTy constructor to HsType.
-
- 10 Dec, 2003 2 commits
-
-
simonmar authored
fix bogosity spotted by -Wall
-
simonmar authored
Add accurate source location annotations to HsSyn ------------------------------------------------- Every syntactic entity in HsSyn is now annotated with a SrcSpan, which details the exact beginning and end points of that entity in the original source file. All honest compilers should do this, and it was about time GHC did the right thing. The most obvious benefit is that we now have much more accurate error messages; when running GHC inside emacs for example, the cursor will jump to the exact location of an error, not just a line somewhere nearby. We haven't put a huge amount of effort into making sure all the error messages are accurate yet, so there could be some tweaking still needed, although the majority of messages I've seen have been spot-on. Error messages now contain a column number in addition to the line number, eg. read001.hs:25:10: Variable not in scope: `+#' To get the full text span info, use the new option -ferror-spans. eg. read001.hs:25:10-11: Variable not in scope: `+#' I'm not sure whether we should do this by default. Emacs won't understand the new error format, for one thing. In a more elaborate editor setting (eg. Visual Studio), we can arrange to actually highlight the subexpression containing an error. Eventually this information will be used so we can find elements in the abstract syntax corresponding to text locations, for performing high-level editor functions (eg. "tell me the type of this expression I just highlighted"). Performance of the compiler doesn't seem to be adversely affected. Parsing is still quicker than in 6.0.1, for example. Implementation: This was an excrutiatingly painful change to make: both Simon P.J. and myself have been working on it for the last three weeks or so. The basic changes are: - a new datatype SrcSpan, which represents a beginning and end position in a source file. - To reduce the pain as much as possible, we also defined: data Located e = L SrcSpan e - Every datatype in HsSyn has an equivalent Located version. eg. type LHsExpr id = Located (HsExpr id) and pretty much everywhere we used to use HsExpr we now use LHsExpr. Believe me, we thought about this long and hard, and all the other options were worse :-) Additional changes/cleanups we made at the same time: - The abstract syntax for bindings is now less arcane. MonoBinds and HsBinds with their built-in list constructors have gone away, replaced by HsBindGroup and HsBind (see HsSyn/HsBinds.lhs). - The various HsSyn type synonyms have now gone away (eg. RdrNameHsExpr, RenamedHsExpr, and TypecheckedHsExpr are now HsExpr RdrName, HsExpr Name, and HsExpr Id respectively). - Utilities over HsSyn are now collected in a new module HsUtils. More stuff still needs to be moved in here. - MachChar now has a real Char instead of an Int. All GHC versions that can compile GHC now support 32-bit Chars, so this was a simplification.
-
- 06 Nov, 2003 1 commit
-
-
simonpj authored
------------------------------------ Major increment for Template Haskell ------------------------------------ 1. New abstract data type "Name" which appears where String used to be. E.g. data Exp = VarE Name | ... 2. New syntax 'x and ''T, for quoting Names. It's rather like [| x |] and [t| T |] respectively, except that a) it's non-monadic: 'x :: Name b) you get a Name not an Exp or Type 3. reify is an ordinary function reify :: Name -> Q Info New data type Info which tells what TH knows about Name 4. Local variables work properly. So this works now (crashed before): f x = $( [| x |] ) 5. THSyntax is split up into three modules: Language.Haskell.TH TH "clients" import this Language.Haskell.TH.THSyntax data type declarations and internal stuff Language.Haskell.TH.THLib Support library code (all re-exported by TH), including smart constructors and pretty printer 6. Error reporting and recovery are in (not yet well tested) report :: Bool {- True <=> fatal -} -> String -> Q () recover :: Q a -> Q a -> Q a 7. Can find current module currentModule :: Q String Much other cleaning up, needless to say.
-
- 09 Oct, 2003 1 commit
-
-
simonpj authored
------------------------- GHC heart/lung transplant ------------------------- This major commit changes the way that GHC deals with importing types and functions defined in other modules, during renaming and typechecking. On the way I've changed or cleaned up numerous other things, including many that I probably fail to mention here. Major benefit: GHC should suck in many fewer interface files when compiling (esp with -O). (You can see this with -ddump-rn-stats.) It's also some 1500 lines of code shorter than before. ** So expect bugs! I can do a 3-stage bootstrap, and run ** the test suite, but you may be doing stuff I havn't tested. ** Don't update if you are relying on a working HEAD. In particular, (a) External Core and (b) GHCi are very little tested. But please, please DO test this version! ------------------------ Big things ------------------------ Interface files, version control, and importing declarations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There is a totally new data type for stuff that lives in interface files: Original names IfaceType.IfaceExtName Types IfaceType.IfaceType Declarations (type,class,id) IfaceSyn.IfaceDecl Unfoldings IfaceSyn.IfaceExpr (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.) The new data types are in iface/IfaceType and iface/IfaceSyn. They are all instances of Binary, so they can be written into interface files. Previous engronkulation concering the binary instance of RdrName has gone away -- RdrName is not an instance of Binary any more. Nor does Binary.lhs need to know about the ``current module'' which it used to, which made it specialised to GHC. A good feature of this is that the type checker for source code doesn't need to worry about the possibility that we might be typechecking interface file stuff. Nor does it need to do renaming; we can typecheck direct from IfaceSyn, saving a whole pass (module TcIface) * Stuff from interface files is sucked in *lazily*, rather than being eagerly sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture a thunk for the unfolding of an imported function (say). If that unfolding is every pulled on, TcIface will scramble over the unfolding, which may in turn pull in the interface files of things mentioned in the unfolding. The External Package State is held in a mutable variable so that it can be side-effected by this lazy-sucking-in process (which may happen way later, e.g. when the simplifier runs). In effect, the EPS is a kind of lazy memo table, filled in as we suck things in. Or you could think of it as a global symbol table, populated on demand. * This lazy sucking is very cool, but it can lead to truly awful bugs. The intent is that updates to the symbol table happen atomically, but very bad things happen if you read the variable for the table, and then force a thunk which updates the table. Updates can get lost that way. I regret this subtlety. One example of the way it showed up is that the top level of TidyPgm (which updates the global name cache) to be much more disciplined about those updates, since TidyPgm may itself force thunks which allocate new names. * Version numbering in interface files has changed completely, fixing one major bug with ghc --make. Previously, the version of A.f changed only if A.f's type and unfolding was textually different. That missed changes to things that A.f's unfolding mentions; which was fixed by eagerly sucking in all of those things, and listing them in the module's usage list. But that didn't work with --make, because they might have been already sucked in. Now, A.f's version changes if anything reachable from A.f (via interface files) changes. A module with unchanged source code needs recompiling only if the versions of any of its free variables changes. [This isn't quite right for dictionary functions and rules, which aren't mentioned explicitly in the source. There are extensive comments in module MkIface, where all version-handling stuff is done.] * We don't need equality on HsDecls any more (because they aren't used in interface files). Instead we have a specialised equality for IfaceSyn (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type. See notes in IfaceSyn. * The horrid bit of the renamer that tried to predict what instance decls would be needed has gone entirely. Instead, the type checker simply sucks in whatever instance decls it needs, when it needs them. Easy! Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs' etc. Hooray! Types and type checking ~~~~~~~~~~~~~~~~~~~~~~~ * Kind-checking of types is far far tidier (new module TcHsTypes replaces the badly-named TcMonoType). Strangely, this was one of my original goals, because the kind check for types is the Right Place to do type splicing, but it just didn't fit there before. * There's a new representation for newtypes in TypeRep.lhs. Previously they were represented using "SourceTypes" which was a funny compromise. Now they have their own constructor in the Type datatype. SourceType has turned back into PredType, which is what it used to be. * Instance decl overlap checking done lazily. Consider instance C Int b instance C a Int These were rejected before as overlapping, because when seeking (C Int Int) one couldn't tell which to use. But there's no problem when seeking (C Bool Int); it can only be the second. So instead of checking for overlap when adding a new instance declaration, we check for overlap when looking up an Inst. If we find more than one matching instance, we see if any of the candidates dominates the others (in the sense of being a substitution instance of all the others); and only if not do we report an error. ------------------------ Medium things ------------------------ * The TcRn monad is generalised a bit further. It's now based on utils/IOEnv.lhs, the IO monad with an environment. The desugarer uses the monad too, so that anything it needs can get faulted in nicely. * Reduce the number of wired-in things; in particular Word and Integer are no longer wired in. The latter required HsLit.HsInteger to get a Type argument. The 'derivable type classes' data types (:+:, :*: etc) are not wired in any more either (see stuff about derivable type classes below). * The PersistentComilerState is now held in a mutable variable in the HscEnv. Previously (a) it was passed to and then returned by many top-level functions, which was painful; (b) it was invariably accompanied by the HscEnv. This change tidies up top-level plumbing without changing anything important. * Derivable type classes are treated much more like 'deriving' clauses. Previously, the Ids for the to/from functions lived inside the TyCon, but now the TyCon simply records their existence (with a simple boolean). Anyone who wants to use them must look them up in the environment. This in turn makes it easy to generate the to/from functions (done in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings) instead of CoreSyn, which in turn means that (a) we don't have to figure out all the type arguments etc; and (b) it'll be type-checked for us. Generally, the task of generating the code has become easier, which is good for Manuel, who wants to make it more sophisticated. * A Name now says what its "parent" is. For example, the parent of a data constructor is its type constructor; the parent of a class op is its class. This relationship corresponds exactly to the Avail data type; there may be other places we can exploit it. (I made the change so that version comparison in interface files would be a bit easier; but in fact it tided up other things here and there (see calls to Name.nameParent). For example, the declaration pool, of declararations read from interface files, but not yet used, is now keyed only by the 'main' name of the declaration, not the subordinate names. * New types OccEnv and OccSet, with the usual operations. OccNames can be efficiently compared, because they have uniques, thanks to the hashing implementation of FastStrings. * The GlobalRdrEnv is now keyed by OccName rather than RdrName. Not only does this halve the size of the env (because we don't need both qualified and unqualified versions in the env), but it's also more efficient because we can use a UniqFM instead of a FiniteMap. Consequential changes to Provenance, which has moved to RdrName. * External Core remains a bit of a hack, as it was before, done with a mixture of HsDecls (so that recursiveness and argument variance is still inferred), and IfaceExprs (for value declarations). It's not thoroughly tested. ------------------------ Minor things ------------------------ * DataCon fields dcWorkId, dcWrapId combined into a single field dcIds, that is explicit about whether the data con is a newtype or not. MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into MkId.mkDataConIds * Choosing the boxing strategy is done for *source* type decls only, and hence is now in TcTyDecls, not DataCon. * WiredIn names are distinguished by their n_sort field, not by their location, which was rather strange * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b] and use it here and there * Much better pretty-printing of interface files (--show-iface) Many, many other small things. ------------------------ File changes ------------------------ * New iface/ subdirectory * Much of RnEnv has moved to iface/IfaceEnv * MkIface and BinIface have moved from main/ to iface/ * types/Variance has been absorbed into typecheck/TcTyDecls * RnHiFiles and RnIfaces have vanished entirely. Their work is done by iface/LoadIface * hsSyn/HsCore has gone, replaced by iface/IfaceSyn * typecheck/TcIfaceSig has gone, replaced by iface/TcIface * typecheck/TcMonoType has been renamed to typecheck/TcHsType * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
-
- 24 Sep, 2003 1 commit
-
-
simonmar authored
The concensus seems to be that 'with' should go away now, after its customary period of deprecation. Hugs has already removed it, so we're following suit.
-
- 16 Sep, 2003 1 commit
-
-
simonmar authored
Legacy Removal ~~~~~~~~~~~~~~ The following features have been consigned to the bit bucket: _ccall_ _casm_ ``....'' (lit-lits) the CCallable class the CReturnable class
-
- 29 May, 2003 1 commit
-
-
sof authored
Support for interop'ing with .NET via FFI declarations along the lines of what Hugs98.NET offers, see http://haskell.org/pipermail/cvs-hugs/2003-March/001723.html for FFI decl details. To enable, configure with --enable-dotnet + have a look in ghc/rts/dotnet/Makefile for details of what tools are needed to build the .NET interop layer (tools from VS.NET / Framework SDK.) The commit doesn't include some library additions + wider-scale testing is required before this extension can be regarded as available for general use. 'foreign import dotnet' is currently only supported by the C backend.
-
- 21 Feb, 2003 1 commit
-
-
simonpj authored
------------------------------------- Improve the "unused binding" warnings ------------------------------------- We've had a succession of hacks for reporting warnings for unused bindings. Consider module M( f ) where f x = x g x = g x + h x h x = x Here, g mentions itself and h, but is not itself mentioned. So really both g and h are dead code. We've been getting this wrong for ages, and every hack so far has failed on some simple programs. This commit does a much better job. The renamer applied to a bunch of bindings returns a NameSet.DefUses, which is a dependency-ordered lists of def/use pairs. It's documented in NameSet. Given this, we can work out precisely what is not used, in a nice tidy way. It's less convenient in the case of type and class declarations, because the strongly-connected-component analysis can span module boundaries. So things are pretty much as they were for these. As usual, there was a lot of chuffing around tidying things up. I havn't tested it at all thoroughly yet. Various unrelated import-decl-pruning has been done too.
-
- 20 Feb, 2003 1 commit
-
-
simonpj authored
------------------------------------- Add Core Notes and the {-# CORE #-} pragma ------------------------------------- This is an idea of Hal Daume's. The key point is that Notes in Core are augmented thus: data Note = SCC CostCentre | ... | CoreNote String -- NEW These notes can be injected via a Haskell-source pragma: f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x) This wraps a (Note (CoreNote "foo")) around the 'show' variable, and a similar note around the argument to 'show'. These notes are basically ignored by GHC, but are emitted into External Core, where they may convey useful information. Exactly how code involving these notes is munged by the simplifier isn't very well defined. We'll see how it pans out. Meanwhile the impact on the rest of the compiler is minimal.
-
- 06 Nov, 2002 1 commit
-
-
simonpj authored
Dont bail out quite so fast
-
- 29 Oct, 2002 1 commit
-
-
simonpj authored
Oops... add missing free-vars
-
- 23 Oct, 2002 1 commit
-
-
simonpj authored
------------------------------------------------ Allow implicit-parameter bindings anywhere that a normal binding group is allowed. ------------------------------------------------ That is, you can have implicit parameters * in a let binding * in a where clause (but then you can't have non-implicit ones as well) * in a let group in a list comprehension or monad do-notation The implementation is simple: just add IPBinds to the allowable forms of HsBinds, and remove the HsWith expression form altogether. (It now comes in via the HsLet form.) It'a a nice generalisation really. Needs a bit of documentation, which I'll do next.
-