- 31 Jul, 2008 1 commit
-
-
batterseapower authored
-
- 29 Mar, 2008 1 commit
-
-
Ian Lynagh authored
Modules that need it import it themselves instead.
-
- 03 Feb, 2008 1 commit
-
-
twanvl authored
-
- 04 Sep, 2007 1 commit
-
-
Ian Lynagh authored
-
- 03 Sep, 2007 1 commit
-
-
Ian Lynagh authored
Older GHCs can't parse OPTIONS_GHC. This also changes the URL referenced for the -w options from WorkingConventions#Warnings to CodingStyle#Warnings for the compiler modules.
-
- 01 Sep, 2007 1 commit
-
-
Ian Lynagh authored
-
- 21 Jun, 2007 1 commit
-
-
David Himmelstrup authored
1. Record disambiguation (-fdisambiguate-record-fields) In record construction and pattern matching (although not in record updates) it is clear which field name is intended even if there are several in scope. This extension uses the constructor to disambiguate. Thus C { x=3 } uses the 'x' field from constructor C (assuming there is one) even if there are many x's in scope. 2. Record punning (-frecord-puns) In a record construction or pattern match or update you can omit the "=" part, thus C { x, y } This is just syntactic sugar for C { x=x, y=y } 3. Dot-dot notation for records (-frecord-dot-dot) In record construction or pattern match (but not update) you can use ".." to mean "all the remaining fields". So C { x=v, .. } means to fill in the remaining fields to give C { x=v, y=y } (assuming C has fields x and y). This might reasonably considered very dodgy stuff. For pattern-matching it brings into scope a bunch of things that are not explictly mentioned; and in record construction it just picks whatver 'y' is in scope for the 'y' field. Still, Lennart Augustsson really wants it, and it's a feature that is extremely easy to explain. Implementation ~~~~~~~~~~~~~~ I thought of using the "parent" field in the GlobalRdrEnv, but that's really used for import/export and just isn't right for this. For example, for import/export a field is a subordinate of the *type constructor* whereas here we need to know what fields belong to a particular *data* constructor. The main thing is that we need to map a data constructor to its fields, and we need to do so in the renamer. For imported modules it's easy: just look in the imported TypeEnv. For the module being compiled, we make a new field tcg_field_env in the TcGblEnv. The important functions are RnEnv.lookupRecordBndr RnEnv.lookupConstructorFields There is still a significant infelicity in the way the renamer works on patterns, which I'll tackle next. I also did quite a bit of refactoring in the representation of record fields (mainly in HsPat).***END OF DESCRIPTION*** Place the long patch description above the ***END OF DESCRIPTION*** marker. The first line of this file will be the patch name. This patch contains the following changes: M ./compiler/deSugar/Check.lhs -3 +5 M ./compiler/deSugar/Coverage.lhs -6 +7 M ./compiler/deSugar/DsExpr.lhs -6 +13 M ./compiler/deSugar/DsMeta.hs -8 +8 M ./compiler/deSugar/DsUtils.lhs -1 +1 M ./compiler/deSugar/MatchCon.lhs -2 +2 M ./compiler/hsSyn/Convert.lhs -3 +3 M ./compiler/hsSyn/HsDecls.lhs -9 +25 M ./compiler/hsSyn/HsExpr.lhs -13 +3 M ./compiler/hsSyn/HsPat.lhs -25 +63 M ./compiler/hsSyn/HsUtils.lhs -3 +3 M ./compiler/main/DynFlags.hs +6 M ./compiler/parser/Parser.y.pp -13 +17 M ./compiler/parser/RdrHsSyn.lhs -16 +18 M ./compiler/rename/RnBinds.lhs -2 +2 M ./compiler/rename/RnEnv.lhs -22 +82 M ./compiler/rename/RnExpr.lhs -34 +12 M ./compiler/rename/RnHsSyn.lhs -3 +2 M ./compiler/rename/RnSource.lhs -50 +78 M ./compiler/rename/RnTypes.lhs -50 +84 M ./compiler/typecheck/TcExpr.lhs -18 +18 M ./compiler/typecheck/TcHsSyn.lhs -20 +21 M ./compiler/typecheck/TcPat.lhs -8 +6 M ./compiler/typecheck/TcRnMonad.lhs -6 +15 M ./compiler/typecheck/TcRnTypes.lhs -2 +11 M ./compiler/typecheck/TcTyClsDecls.lhs -3 +4 M ./docs/users_guide/flags.xml +7 M ./docs/users_guide/glasgow_exts.xml +42
-
- 07 Jun, 2007 1 commit
-
-
David Himmelstrup authored
There was an outright bug in MatchCon.matchOneCon, in the construction of arg_tys. Easily fixed. It never showed up becuase the arg_tys are only used in WildPats, and they in turn seldom have their types looked (except by hsPatType). So I can't make a test case for htis. While I was investigating, I added a bit of clarifation and invariant-checking to dataConInstOrigArgTys and dataConInstArgTys
-
- 11 Oct, 2006 1 commit
-
-
Simon Marlow authored
This patch is a start on removing import lists and generally tidying up the top of each module. In addition to removing import lists: - Change DATA.IOREF -> Data.IORef etc. - Change List -> Data.List etc. - Remove $Id$ - Update copyrights - Re-order imports to put non-GHC imports last - Remove some unused and duplicate imports
-
- 05 Oct, 2006 1 commit
-
-
davve@dtek.chalmers.se authored
-
- 18 Sep, 2006 1 commit
-
-
chak@cse.unsw.edu.au. authored
Sun Aug 6 17:01:59 EDT 2006 Manuel M T Chakravarty <chak@cse.unsw.edu.au> * GADT pattern matching fix Wed Jul 19 10:53:09 EDT 2006 kevind@bu.edu
-
- 04 Aug, 2006 1 commit
-
-
chak@cse.unsw.edu.au. authored
Broken up massive patch -=chak Original log message: This is (sadly) all done in one patch to avoid Darcs bugs. It's not complete work... more FC stuff to come. A compiler using just this patch will fail dismally.
-
- 07 Apr, 2006 1 commit
-
-
Simon Marlow authored
Most of the other users of the fptools build system have migrated to Cabal, and with the move to darcs we can now flatten the source tree without losing history, so here goes. The main change is that the ghc/ subdir is gone, and most of what it contained is now at the top level. The build system now makes no pretense at being multi-project, it is just the GHC build system. No doubt this will break many things, and there will be a period of instability while we fix the dependencies. A straightforward build should work, but I haven't yet fixed binary/source distributions. Changes to the Building Guide will follow, too.
-
- 02 Feb, 2006 1 commit
-
-
simonpj@microsoft.com authored
We must record the type of a TuplePat after typechecking, just like a ConPatOut, so that desugaring works correctly for GADTs. See comments with the declaration of HsPat.TuplePat, and test gadt15
-
- 27 Oct, 2005 1 commit
-
-
simonpj authored
Add a new pragma: SPECIALISE INLINE This amounts to adding an INLINE pragma to the specialised version of the function. You can add phase stuff too (SPECIALISE INLINE [2]), and NOINLINE instead of INLINE. The reason for doing this is to support inlining of type-directed recursive functions. The main example is this: -- non-uniform array type data Arr e where ArrInt :: !Int -> ByteArray# -> Arr Int ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2) (!:) :: Arr e -> Int -> e {-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-} {-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-} ArrInt _ ba !: (I# i) = I# (indexIntArray# ba i) ArrPair _ a1 a2 !: i = (a1 !: i, a2 !: i) If we use (!:) at a particular array type, we want to inline (:!), which is recursive, until all the type specialisation is done. On the way I did a bit of renaming and tidying of the way that pragmas are carried, so quite a lot of files are touched in a fairly trivial way.
-
- 14 Oct, 2005 1 commit
-
-
simonpj authored
Add record syntax for GADTs ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Atrijus Tang wanted to add record syntax for GADTs and existential types, so he and I worked on it a bit at ICFP. This commit is the result. Now you can say data T a where T1 { x :: a } :: T [a] T2 { x :: a, y :: Int } :: T [a] forall b. Show b => T3 { naughty :: b, ok :: Int } :: T Int T4 :: Eq a => a -> b -> T (a,b) Here the constructors are declared using record syntax. Still to come after this commit: - User manual documentation - More regression tests - Some missing cases in the parser (e.g. T3 won't parse) Autrijus is going to do these. Here's a quick summary of the rules. (Atrijus is going to write proper documentation shortly.) Defnition: a 'vanilla' constructor has a type of the form forall a1..an. t1 -> ... -> tm -> T a1 ... an No existentials, no context, nothing. A constructor declared with Haskell-98 syntax is vanilla by construction. A constructor declared with GADT-style syntax is vanilla iff its type looks like the above. (In the latter case, the order of the type variables does not matter.) * You can mix record syntax and non-record syntax in a single decl * All constructors that share a common field 'x' must have the same result type (T [a] in the example). * You can use field names without restriction in record construction and record pattern matching. * Record *update* only works for data types that only have 'vanilla' constructors. * Consider the field 'naughty', which uses a type variable that does not appear in the result type ('b' in the example). You can use the field 'naughty' in pattern matching and construction, but NO SELECTOR function is generated for 'naughty'. [An attempt to use 'naughty' as a selector function will elicit a helpful error message.] * Data types declared in GADT syntax cannot have a context. So this is illegal: data (Monad m) => T a where .... * Constructors in GADT syntax can have a context (t.g. T3, T4 above) and that context is stored in the constructor and made available when the constructor is pattern-matched on. WARNING: not competely implemented yet, but that's the plan. Implementation notes ~~~~~~~~~~~~~~~~~~~~ - Data constructors (even vanilla ones) no longer share the type variables of their parent type constructor. - HsDecls.ConDecl has changed quite a bit - TyCons don't record the field labels and type any more (doesn't make sense for existential fields) - GlobalIdDetails records which selectors are 'naughty', and hence don't have real code.
-
- 19 Jul, 2005 1 commit
-
-
simonpj authored
WARNING: this is a big commit. You might want to wait a few days before updating, in case I've broken something. However, if any of the changes are what you wanted, please check it out and test! This commit does three main things: 1. A re-organisation of the way that GHC handles bindings in HsSyn. This has been a bit of a mess for quite a while. The key new types are -- Bindings for a let or where clause data HsLocalBinds id = HsValBinds (HsValBinds id) | HsIPBinds (HsIPBinds id) | EmptyLocalBinds -- Value bindings (not implicit parameters) data HsValBinds id = ValBindsIn -- Before typechecking (LHsBinds id) [LSig id] -- Not dependency analysed -- Recursive by default | ValBindsOut -- After typechecking [(RecFlag, LHsBinds id)]-- Dependency analysed 2. Implement Mark Jones's idea of increasing polymoprhism by using type signatures to cut the strongly-connected components of a recursive group. As a consequence, GHC no longer insists on the contexts of the type signatures of a recursive group being identical. This drove a significant change: the renamer no longer does dependency analysis. Instead, it attaches a free-variable set to each binding, so that the type checker can do the dep anal. Reason: the typechecker needs to do *two* analyses: one to find the true mutually-recursive groups (which we need so we can build the right CoreSyn) one to find the groups in which to typecheck, taking account of type signatures 3. Implement non-ground SPECIALISE pragmas, as promised, and as requested by Remi and Ross. Certainly, this should fix the current problem with GHC, namely that if you have g :: Eq a => a -> b -> b then you can now specialise thus SPECIALISE g :: Int -> b -> b (This didn't use to work.) However, it goes further than that. For example: f :: (Eq a, Ix b) => a -> b -> b then you can make a partial specialisation SPECIALISE f :: (Eq a) => a -> Int -> Int In principle, you can specialise f to *any* type that is "less polymorphic" (in the sense of subsumption) than f's actual type. Such as SPECIALISE f :: Eq a => [a] -> Int -> Int But I haven't tested that. I implemented this by doing the specialisation in the typechecker and desugarer, rather than leaving around the strange SpecPragmaIds, for the specialiser to find. Indeed, SpecPragmaIds have vanished altogether (hooray). Pragmas in general are handled more tidily. There's a new data type HsBinds.Prag, which lives in an AbsBinds, and carries pragma info from the typechecker to the desugarer. Smaller things - The loop in the renamer goes via RnExpr, instead of RnSource. (That makes it more like the type checker.) - I fixed the thing that was causing 'check_tc' warnings to be emitted.
-
- 04 Apr, 2005 1 commit
-
-
simonpj authored
This commit combines three overlapping things: 1. Make rebindable syntax work for do-notation. The idea here is that, in particular, (>>=) can have a type that has class constraints on its argument types, e.g. (>>=) :: (Foo m, Baz a) => m a -> (a -> m b) -> m b The consequence is that a BindStmt and ExprStmt must have individual evidence attached -- previously it was one batch of evidence for the entire Do Sadly, we can't do this for MDo, because we use bind at a polymorphic type (to tie the knot), so we still use one blob of evidence (now in the HsStmtContext) for MDo. For arrow syntax, the evidence is in the HsCmd. For list comprehensions, it's all built-in anyway. So the evidence on a BindStmt is only used for ordinary do-notation. 2. Tidy up HsSyn. In particular: - Eliminate a few "Out" forms, which we can manage without (e.g. - It ought to be the case that the type checker only decorates the syntax tree, but doesn't change one construct into another. That wasn't true for NPat, LitPat, NPlusKPat, so I've fixed that. - Eliminate ResultStmts from Stmt. They always had to be the last Stmt, which led to awkward pattern matching in some places; and the benefits didn't seem to outweigh the costs. Now each construct that uses [Stmt] has a result expression too (e.g. GRHS). 3. Make 'deriving( Ix )' generate a binding for unsafeIndex, rather than for index. This is loads more efficient. (This item only affects TcGenDeriv, but some of point (2) also affects TcGenDeriv, so it has to be in one commit.)
-
- 02 Mar, 2005 1 commit
-
-
simonpj authored
Wibble to new desugaring story Merge to STABLE Fix an error in my commit to the desugarer. This makes gadt/type-rep work.
-
- 01 Mar, 2005 1 commit
-
-
simonpj authored
Make desugaring of pattern-matching much more civilised. Before this change we wrapped new bindings around the right hand side; but that meant they ended up wrapped in reverse order. Now we accumulate the bindings separately, in the eqn_wrap field of an EqnInfo. This cures a desugaring bug encountered by Akos Korosmezey immortalised as ds055
-
- 15 Oct, 2004 1 commit
-
-
simonmar authored
Add a SrcSpan to the DataCon in a ConPatOut.
-
- 30 Sep, 2004 1 commit
-
-
simonpj authored
------------------------------------ Add Generalised Algebraic Data Types ------------------------------------ This rather big commit adds support for GADTs. For example, data Term a where Lit :: Int -> Term Int App :: Term (a->b) -> Term a -> Term b If :: Term Bool -> Term a -> Term a ..etc.. eval :: Term a -> a eval (Lit i) = i eval (App a b) = eval a (eval b) eval (If p q r) | eval p = eval q | otherwise = eval r Lots and lots of of related changes throughout the compiler to make this fit nicely. One important change, only loosely related to GADTs, is that skolem constants in the typechecker are genuinely immutable and constant, so we often get better error messages from the type checker. See TcType.TcTyVarDetails. There's a new module types/Unify.lhs, which has purely-functional unification and matching for Type. This is used both in the typechecker (for type refinement of GADTs) and in Core Lint (also for type refinement).
-
- 10 Dec, 2003 1 commit
-
-
simonmar authored
Add accurate source location annotations to HsSyn ------------------------------------------------- Every syntactic entity in HsSyn is now annotated with a SrcSpan, which details the exact beginning and end points of that entity in the original source file. All honest compilers should do this, and it was about time GHC did the right thing. The most obvious benefit is that we now have much more accurate error messages; when running GHC inside emacs for example, the cursor will jump to the exact location of an error, not just a line somewhere nearby. We haven't put a huge amount of effort into making sure all the error messages are accurate yet, so there could be some tweaking still needed, although the majority of messages I've seen have been spot-on. Error messages now contain a column number in addition to the line number, eg. read001.hs:25:10: Variable not in scope: `+#' To get the full text span info, use the new option -ferror-spans. eg. read001.hs:25:10-11: Variable not in scope: `+#' I'm not sure whether we should do this by default. Emacs won't understand the new error format, for one thing. In a more elaborate editor setting (eg. Visual Studio), we can arrange to actually highlight the subexpression containing an error. Eventually this information will be used so we can find elements in the abstract syntax corresponding to text locations, for performing high-level editor functions (eg. "tell me the type of this expression I just highlighted"). Performance of the compiler doesn't seem to be adversely affected. Parsing is still quicker than in 6.0.1, for example. Implementation: This was an excrutiatingly painful change to make: both Simon P.J. and myself have been working on it for the last three weeks or so. The basic changes are: - a new datatype SrcSpan, which represents a beginning and end position in a source file. - To reduce the pain as much as possible, we also defined: data Located e = L SrcSpan e - Every datatype in HsSyn has an equivalent Located version. eg. type LHsExpr id = Located (HsExpr id) and pretty much everywhere we used to use HsExpr we now use LHsExpr. Believe me, we thought about this long and hard, and all the other options were worse :-) Additional changes/cleanups we made at the same time: - The abstract syntax for bindings is now less arcane. MonoBinds and HsBinds with their built-in list constructors have gone away, replaced by HsBindGroup and HsBind (see HsSyn/HsBinds.lhs). - The various HsSyn type synonyms have now gone away (eg. RdrNameHsExpr, RenamedHsExpr, and TypecheckedHsExpr are now HsExpr RdrName, HsExpr Name, and HsExpr Id respectively). - Utilities over HsSyn are now collected in a new module HsUtils. More stuff still needs to be moved in here. - MachChar now has a real Char instead of an Int. All GHC versions that can compile GHC now support 32-bit Chars, so this was a simplification.
-
- 09 Oct, 2003 1 commit
-
-
simonpj authored
------------------------- GHC heart/lung transplant ------------------------- This major commit changes the way that GHC deals with importing types and functions defined in other modules, during renaming and typechecking. On the way I've changed or cleaned up numerous other things, including many that I probably fail to mention here. Major benefit: GHC should suck in many fewer interface files when compiling (esp with -O). (You can see this with -ddump-rn-stats.) It's also some 1500 lines of code shorter than before. ** So expect bugs! I can do a 3-stage bootstrap, and run ** the test suite, but you may be doing stuff I havn't tested. ** Don't update if you are relying on a working HEAD. In particular, (a) External Core and (b) GHCi are very little tested. But please, please DO test this version! ------------------------ Big things ------------------------ Interface files, version control, and importing declarations ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * There is a totally new data type for stuff that lives in interface files: Original names IfaceType.IfaceExtName Types IfaceType.IfaceType Declarations (type,class,id) IfaceSyn.IfaceDecl Unfoldings IfaceSyn.IfaceExpr (Previously we used HsSyn for type/class decls, and UfExpr for unfoldings.) The new data types are in iface/IfaceType and iface/IfaceSyn. They are all instances of Binary, so they can be written into interface files. Previous engronkulation concering the binary instance of RdrName has gone away -- RdrName is not an instance of Binary any more. Nor does Binary.lhs need to know about the ``current module'' which it used to, which made it specialised to GHC. A good feature of this is that the type checker for source code doesn't need to worry about the possibility that we might be typechecking interface file stuff. Nor does it need to do renaming; we can typecheck direct from IfaceSyn, saving a whole pass (module TcIface) * Stuff from interface files is sucked in *lazily*, rather than being eagerly sucked in by the renamer. Instead, we use unsafeInterleaveIO to capture a thunk for the unfolding of an imported function (say). If that unfolding is every pulled on, TcIface will scramble over the unfolding, which may in turn pull in the interface files of things mentioned in the unfolding. The External Package State is held in a mutable variable so that it can be side-effected by this lazy-sucking-in process (which may happen way later, e.g. when the simplifier runs). In effect, the EPS is a kind of lazy memo table, filled in as we suck things in. Or you could think of it as a global symbol table, populated on demand. * This lazy sucking is very cool, but it can lead to truly awful bugs. The intent is that updates to the symbol table happen atomically, but very bad things happen if you read the variable for the table, and then force a thunk which updates the table. Updates can get lost that way. I regret this subtlety. One example of the way it showed up is that the top level of TidyPgm (which updates the global name cache) to be much more disciplined about those updates, since TidyPgm may itself force thunks which allocate new names. * Version numbering in interface files has changed completely, fixing one major bug with ghc --make. Previously, the version of A.f changed only if A.f's type and unfolding was textually different. That missed changes to things that A.f's unfolding mentions; which was fixed by eagerly sucking in all of those things, and listing them in the module's usage list. But that didn't work with --make, because they might have been already sucked in. Now, A.f's version changes if anything reachable from A.f (via interface files) changes. A module with unchanged source code needs recompiling only if the versions of any of its free variables changes. [This isn't quite right for dictionary functions and rules, which aren't mentioned explicitly in the source. There are extensive comments in module MkIface, where all version-handling stuff is done.] * We don't need equality on HsDecls any more (because they aren't used in interface files). Instead we have a specialised equality for IfaceSyn (eqIfDecl etc), which uses IfaceEq instead of Bool as its result type. See notes in IfaceSyn. * The horrid bit of the renamer that tried to predict what instance decls would be needed has gone entirely. Instead, the type checker simply sucks in whatever instance decls it needs, when it needs them. Easy! Similarly, no need for 'implicitModuleFVs' and 'implicitTemplateHaskellFVs' etc. Hooray! Types and type checking ~~~~~~~~~~~~~~~~~~~~~~~ * Kind-checking of types is far far tidier (new module TcHsTypes replaces the badly-named TcMonoType). Strangely, this was one of my original goals, because the kind check for types is the Right Place to do type splicing, but it just didn't fit there before. * There's a new representation for newtypes in TypeRep.lhs. Previously they were represented using "SourceTypes" which was a funny compromise. Now they have their own constructor in the Type datatype. SourceType has turned back into PredType, which is what it used to be. * Instance decl overlap checking done lazily. Consider instance C Int b instance C a Int These were rejected before as overlapping, because when seeking (C Int Int) one couldn't tell which to use. But there's no problem when seeking (C Bool Int); it can only be the second. So instead of checking for overlap when adding a new instance declaration, we check for overlap when looking up an Inst. If we find more than one matching instance, we see if any of the candidates dominates the others (in the sense of being a substitution instance of all the others); and only if not do we report an error. ------------------------ Medium things ------------------------ * The TcRn monad is generalised a bit further. It's now based on utils/IOEnv.lhs, the IO monad with an environment. The desugarer uses the monad too, so that anything it needs can get faulted in nicely. * Reduce the number of wired-in things; in particular Word and Integer are no longer wired in. The latter required HsLit.HsInteger to get a Type argument. The 'derivable type classes' data types (:+:, :*: etc) are not wired in any more either (see stuff about derivable type classes below). * The PersistentComilerState is now held in a mutable variable in the HscEnv. Previously (a) it was passed to and then returned by many top-level functions, which was painful; (b) it was invariably accompanied by the HscEnv. This change tidies up top-level plumbing without changing anything important. * Derivable type classes are treated much more like 'deriving' clauses. Previously, the Ids for the to/from functions lived inside the TyCon, but now the TyCon simply records their existence (with a simple boolean). Anyone who wants to use them must look them up in the environment. This in turn makes it easy to generate the to/from functions (done in types/Generics) using HsSyn (like TcGenDeriv for ordinary derivings) instead of CoreSyn, which in turn means that (a) we don't have to figure out all the type arguments etc; and (b) it'll be type-checked for us. Generally, the task of generating the code has become easier, which is good for Manuel, who wants to make it more sophisticated. * A Name now says what its "parent" is. For example, the parent of a data constructor is its type constructor; the parent of a class op is its class. This relationship corresponds exactly to the Avail data type; there may be other places we can exploit it. (I made the change so that version comparison in interface files would be a bit easier; but in fact it tided up other things here and there (see calls to Name.nameParent). For example, the declaration pool, of declararations read from interface files, but not yet used, is now keyed only by the 'main' name of the declaration, not the subordinate names. * New types OccEnv and OccSet, with the usual operations. OccNames can be efficiently compared, because they have uniques, thanks to the hashing implementation of FastStrings. * The GlobalRdrEnv is now keyed by OccName rather than RdrName. Not only does this halve the size of the env (because we don't need both qualified and unqualified versions in the env), but it's also more efficient because we can use a UniqFM instead of a FiniteMap. Consequential changes to Provenance, which has moved to RdrName. * External Core remains a bit of a hack, as it was before, done with a mixture of HsDecls (so that recursiveness and argument variance is still inferred), and IfaceExprs (for value declarations). It's not thoroughly tested. ------------------------ Minor things ------------------------ * DataCon fields dcWorkId, dcWrapId combined into a single field dcIds, that is explicit about whether the data con is a newtype or not. MkId.mkDataConWorkId and mkDataConWrapId are similarly combined into MkId.mkDataConIds * Choosing the boxing strategy is done for *source* type decls only, and hence is now in TcTyDecls, not DataCon. * WiredIn names are distinguished by their n_sort field, not by their location, which was rather strange * Define Maybes.mapCatMaybes :: (a -> Maybe b) -> [a] -> [b] and use it here and there * Much better pretty-printing of interface files (--show-iface) Many, many other small things. ------------------------ File changes ------------------------ * New iface/ subdirectory * Much of RnEnv has moved to iface/IfaceEnv * MkIface and BinIface have moved from main/ to iface/ * types/Variance has been absorbed into typecheck/TcTyDecls * RnHiFiles and RnIfaces have vanished entirely. Their work is done by iface/LoadIface * hsSyn/HsCore has gone, replaced by iface/IfaceSyn * typecheck/TcIfaceSig has gone, replaced by iface/TcIface * typecheck/TcMonoType has been renamed to typecheck/TcHsType * basicTypes/Var.hi-boot and basicTypes/Generics.hi-boot have gone altogether
-
- 13 Sep, 2002 1 commit
-
-
simonpj authored
-------------------------------------- Make Template Haskell into the HEAD -------------------------------------- This massive commit transfers to the HEAD all the stuff that Simon and Tim have been doing on Template Haskell. The meta-haskell-branch is no more! WARNING: make sure that you * Update your links if you are using link trees. Some modules have been added, some have gone away. * Do 'make clean' in all library trees. The interface file format has changed, and you can get strange panics (sadly) if GHC tries to read old interface files: e.g. ghc-5.05: panic! (the `impossible' happened, GHC version 5.05): Binary.get(TyClDecl): ForeignType * You need to recompile the rts too; Linker.c has changed However the libraries are almost unaltered; just a tiny change in Base, and to the exports in Prelude. NOTE: so far as TH itself is concerned, expression splices work fine, but declaration splices are not complete. --------------- The main change --------------- The main structural change: renaming and typechecking have to be interleaved, because we can't rename stuff after a declaration splice until after we've typechecked the stuff before (and the splice itself). * Combine the renamer and typecheker monads into one (TcRnMonad, TcRnTypes) These two replace TcMonad and RnMonad * Give them a single 'driver' (TcRnDriver). This driver replaces TcModule.lhs and Rename.lhs * The haskell-src library package has a module Language/Haskell/THSyntax which defines the Haskell data type seen by the TH programmer. * New modules: hsSyn/Convert.hs converts THSyntax -> HsSyn deSugar/DsMeta.hs converts HsSyn -> THSyntax * New module typecheck/TcSplice type-checks Template Haskell splices. ------------- Linking stuff ------------- * ByteCodeLink has been split into ByteCodeLink (which links) ByteCodeAsm (which assembles) * New module ghci/ObjLink is the object-code linker. * compMan/CmLink is removed entirely (was out of place) Ditto CmTypes (which was tiny) * Linker.c initialises the linker when it is first used (no need to call initLinker any more). Template Haskell makes it harder to know when and whether to initialise the linker. ------------------------------------- Gathering the LIE in the type checker ------------------------------------- * Instead of explicitly gathering constraints in the LIE tcExpr :: RenamedExpr -> TcM (TypecheckedExpr, LIE) we now dump the constraints into a mutable varabiable carried by the monad, so we get tcExpr :: RenamedExpr -> TcM TypecheckedExpr Much less clutter in the code, and more efficient too. (Originally suggested by Mark Shields.) ----------------- Remove "SysNames" ----------------- Because the renamer and the type checker were entirely separate, we had to carry some rather tiresome implicit binders (or "SysNames") along inside some of the HsDecl data structures. They were both tiresome and fragile. Now that the typechecker and renamer are more intimately coupled, we can eliminate SysNames (well, mostly... default methods still carry something similar). ------------- Clean up HsPat ------------- One big clean up is this: instead of having two HsPat types (InPat and OutPat), they are now combined into one. This is more consistent with the way that HsExpr etc is handled; there are some 'Out' constructors for the type checker output. So: HsPat.InPat --> HsPat.Pat HsPat.OutPat --> HsPat.Pat No 'pat' type parameter in HsExpr, HsBinds, etc Constructor patterns are nicer now: they use HsPat.HsConDetails for the three cases of constructor patterns: prefix, infix, and record-bindings The *same* data type HsConDetails is used in the type declaration of the data type (HsDecls.TyData) Lots of associated clean-up operations here and there. Less code. Everything is wonderful.
-
- 14 Feb, 2002 1 commit
-
-
simonpj authored
------------------------------------ Desugar existential matches correctly ------------------------------------ Consider data T = forall a. Ord a => T a (a->Int) f (T x f) True = ...expr1... f (T y g) False = ...expr2.. When we put in the tyvars etc we get f (T a (d::Ord a) (x::a) (f::a->Int)) True = ...expr1... f (T b (e::Ord a) (y::a) (g::a->Int)) True = ...expr2... After desugaring etc we'll get a single case: f = \t::T b::Bool -> case t of T a (d::Ord a) (x::a) (f::a->Int)) -> case b of True -> ...expr1... False -> ...expr2... *** We have to substitute [a/b, d/e] in expr2! ** Originally I tried to use (\b -> let e = d in expr2) a to do this substitution. While this is "correct" in a way, it fails Lint, because e::Ord b but d::Ord a. So now I simply do the substitution properly using substExpr.
-
- 12 Jul, 2001 1 commit
-
-
simonpj authored
-------------------------------------------- Fix another bug in the squash-newtypes story. -------------------------------------------- [This one was spotted by Marcin, and is now enshrined in test tc130.] The desugarer straddles the boundary between the type checker and Core, so it sometimes needs to look through newtypes/implicit parameters and sometimes not. This is really a bit painful, but I can't think of a better way to do it. The only simple way to fix things was to pass a bit more type information in the HsExpr type, from the type checker to the desugarer. That led to the non-local changes you can see. On the way I fixed one other thing. In various HsSyn constructors there is a Type that is bogus (bottom) before the type checker, and filled in with a real type by the type checker. In one place it was a (Maybe Type) which was Nothing before, and (Just ty) afterwards. I've defined a type synonym HsTypes.PostTcType for this, and a named bottom value HsTypes.placeHolderType to use when you want the bottom value.
-
- 25 Jun, 2001 1 commit
-
-
simonpj authored
---------------- Squash newtypes ---------------- This commit squashes newtypes and their coerces, from the typechecker onwards. The original idea was that the coerces would not get in the way of optimising transformations, but despite much effort they continue to do so. There's no very good reason to retain newtype information beyond the typechecker, so now we don't. Main points: * The post-typechecker suite of Type-manipulating functions is in types/Type.lhs, as before. But now there's a new suite in types/TcType.lhs. The difference is that in the former, newtype are transparent, while in the latter they are opaque. The typechecker should only import TcType, not Type. * The operations in TcType are all non-monadic, and most of them start with "tc" (e.g. tcSplitTyConApp). All the monadic operations (used exclusively by the typechecker) are in a new module, typecheck/TcMType.lhs * I've grouped newtypes with predicate types, thus: data Type = TyVarTy Tyvar | .... | SourceTy SourceType data SourceType = NType TyCon [Type] | ClassP Class [Type] | IParam Type [SourceType was called PredType.] This is a little wierd in some ways, because NTypes can't occur in qualified types. However, the idea is that a SourceType is a type that is opaque to the type checker, but transparent to the rest of the compiler, and newtypes fit that as do implicit parameters and dictionaries. * Recursive newtypes still retain their coreces, exactly as before. If they were transparent we'd get a recursive type, and that would make various bits of the compiler diverge (e.g. things which do type comparison). * I've removed types/Unify.lhs (non-monadic type unifier and matcher), merging it into TcType. Ditto typecheck/TcUnify.lhs (monadic unifier), merging it into TcMType.
-
- 03 Oct, 2000 1 commit
-
-
simonpj authored
-------------------------------------- Adding generics SLPJ Oct 2000 -------------------------------------- This big commit adds Hinze/PJ-style generic class definitions, based on work by Andrei Serjantov. For example: class Bin a where toBin :: a -> [Int] fromBin :: [Int] -> (a, [Int]) toBin {| Unit |} Unit = [] toBin {| a :+: b |} (Inl x) = 0 : toBin x toBin {| a :+: b |} (Inr y) = 1 : toBin y toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y fromBin {| Unit |} bs = (Unit, bs) fromBin {| a :+: b |} (0:bs) = (Inl x, bs') where (x,bs') = fromBin bs fromBin {| a :+: b |} (1:bs) = (Inr y, bs') where (y,bs') = fromBin bs fromBin {| a :*: b |} bs = (x :*: y, bs'') where (x,bs' ) = fromBin bs (y,bs'') = fromBin bs' Now we can say simply instance Bin a => Bin [a] and the compiler will derive the appropriate code automatically. (About 9k lines of diffs. Ha!) Generic related things ~~~~~~~~~~~~~~~~~~~~~~ * basicTypes/BasicTypes: The EP type (embedding-projection pairs) * types/TyCon: An extra field in an algebraic tycon (genInfo) * types/Class, and hsSyn/HsBinds: Each class op (or ClassOpSig) carries information about whether it a) has no default method b) has a polymorphic default method c) has a generic default method There's a new data type for this: Class.DefMeth * types/Generics: A new module containing good chunk of the generic-related code It has a .hi-boot file (alas). * typecheck/TcInstDcls, typecheck/TcClassDcl: Most of the rest of the generics-related code * hsSyn/HsTypes: New infix type form to allow types of the form data a :+: b = Inl a | Inr b * parser/Parser.y, Lex.lhs, rename/ParseIface.y: Deal with the new syntax * prelude/TysPrim, TysWiredIn: Need to generate generic stuff for the wired-in TyCons * rename/RnSource RnBinds: A rather gruesome hack to deal with scoping of type variables from a generic patterns. Details commented in the ClassDecl case of RnSource.rnDecl. Of course, there are many minor renamer consequences of the other changes above. * lib/std/PrelBase.lhs Data type declarations for Unit, :+:, :*: Slightly unrelated housekeeping ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * hsSyn/HsDecls: ClassDecls now carry the Names for their implied declarations (superclass selectors, tycon, etc) in a list, rather than laid out one by one. This simplifies code between the parser and the type checker. * prelude/PrelNames, TysWiredIn: All the RdrNames are now together in PrelNames. * utils/ListSetOps: Add finite mappings based on equality and association lists (Assoc a b) Move stuff from List.lhs that is related
-
- 11 Jul, 2000 1 commit
-
-
simonmar authored
remove unused imports
-
- 18 Dec, 1998 1 commit
-
-
simonpj authored
Another big commit from Simon. Actually, the last one didn't all go into the main trunk; because of a CVS glitch it ended up in the wrong branch. So this commit includes: * Scoped type variables * Warnings for unused variables should work now (they didn't before) * Simplifier improvements: - Much better treatment of strict arguments - Better treatment of bottoming Ids - No need for w/w split for fns that are merely strict - Fewer iterations needed, I hope * Less gratuitous renaming in interface files and abs C * OccName is a separate module, and is an abstract data type I think the whole Prelude and Exts libraries compile correctly. Something isn't quite right about typechecking existentials though.
-
- 02 Dec, 1998 1 commit
-
-
simonm authored
Move 4.01 onto the main trunk.
-
- 08 Jan, 1998 1 commit
-
-
simonm authored
The Great Multi-Parameter Type Classes Merge. Notes from Simon (abridged): * Multi-parameter type classes are fully implemented. * Error messages from the type checker should be noticeably improved * Warnings for unused bindings (-fwarn-unused-names) * many other minor bug fixes. Internally there are the following changes * Removal of Haskell 1.2 compatibility. * Dramatic clean-up of the PprStyle stuff. * The type Type has been substantially changed. * The dictionary for each class is represented by a new data type for that purpose, rather than by a tuple.
-
- 02 Dec, 1997 1 commit
-
-
quintela authored
Deleted old Shadow stuff
-
- 05 Jun, 1997 1 commit
-
-
sof authored
import updates
-
- 26 May, 1997 1 commit
-
-
sof authored
Updated imports
-
- 19 May, 1997 1 commit
-
-
sof authored
2.04 changes
-
- 05 Jun, 1996 1 commit
-
-
partain authored
SLPJ changes through 960604
-
- 19 Mar, 1996 1 commit
-
-
partain authored
simonpj/sansom/partain/dnt 1.3 compiler stuff through 96/03/18
-
- 08 Jan, 1996 1 commit
-
-
partain authored
Initial revision
-