1. 28 Jan, 2013 2 commits
    • Simon Peyton Jones's avatar
      Pure refactoring · f1fa6eb2
      Simon Peyton Jones authored
      * Move tidyType and friends from TcType to TypeRep
        (It was always wrong to have it in TcType.)
      
      * Move mkCoAxBranch and friends from FamInst to Coercion
      
      * Move pprCoAxBranch and friends from FamInstEnv to Coercion
      
      No change in functionality, though there might be a little
      wibble in error message output, because I combined two different
      functions both called pprCoAxBranch!
      f1fa6eb2
    • Simon Peyton Jones's avatar
      More refactoring of FamInst/FamInstEnv; finally fixes Trac #7524 · a98e51ec
      Simon Peyton Jones authored
      Quite a bit of tidying up here; the fix to #7524 is actually
      only a small part.
      
      * Be fully clear that the cab_tvs in a CoAxBranch are not
        fresh.  See Note [CoAxBranch type variables] in CoAxiom.
      
      * Use CoAxBranch to replace the ATDfeault type in Class.
        CoAxBranch is perfect here.  This change allowed me to
        delete quite a bit of boilerplate code, including the
        corresponding IfaceSynType.
      
      * Tidy up the construction of CoAxBranches, and when FamIntBranch is
        freshened.  The latter onw happens only in FamInst.newFamInst.
      
      * Tidy the tyvars of a CoAxBranch when we build them, done in
        FamInst.mkCoAxBranch.  See Note [Tidy axioms when we build them]
        in that module.  This is what fixes #7524.
      
      Much niceer now.
      a98e51ec
  2. 22 Jan, 2013 1 commit
  3. 09 Jan, 2013 1 commit
  4. 05 Jan, 2013 1 commit
    • eir@cis.upenn.edu's avatar
      Refactor invariants for FamInsts. · 5765248b
      eir@cis.upenn.edu authored
      This commit mirrors work done in the commit for ClsInsts, 5efe9b...
      
      Specifically:
      - All FamInsts have *fresh* type variables. So, no more freshness work
      in addLocalFamInst
      
      Also:
      - Some pretty-printing code around FamInsts was cleaned up a bit
      This caused location information to be added to CoAxioms and index
      information to be added to FamInstBranches.
      5765248b
  5. 22 Dec, 2012 1 commit
    • eir@cis.upenn.edu's avatar
      Implement overlapping type family instances. · 8366792e
      eir@cis.upenn.edu authored
      An ordered, overlapping type family instance is introduced by 'type
      instance
      where', followed by equations. See the new section in the user manual
      (7.7.2.2) for details. The canonical example is Boolean equality at the
      type
      level:
      
      type family Equals (a :: k) (b :: k) :: Bool
      type instance where
        Equals a a = True
        Equals a b = False
      
      A branched family instance, such as this one, checks its equations in
      order
      and applies only the first the matches. As explained in the note
      [Instance
      checking within groups] in FamInstEnv.lhs, we must be careful not to
      simplify,
      say, (Equals Int b) to False, because b might later unify with Int.
      
      This commit includes all of the commits on the overlapping-tyfams
      branch. SPJ
      requested that I combine all my commits over the past several months
      into one
      monolithic commit. The following GHC repos are affected: ghc, testsuite,
      utils/haddock, libraries/template-haskell, and libraries/dph.
      
      Here are some details for the interested:
      
      - The definition of CoAxiom has been moved from TyCon.lhs to a
        new file CoAxiom.lhs. I made this decision because of the
        number of definitions necessary to support BranchList.
      
      - BranchList is a GADT whose type tracks whether it is a
        singleton list or not-necessarily-a-singleton-list. The reason
        I introduced this type is to increase static checking of places
        where GHC code assumes that a FamInst or CoAxiom is indeed a
        singleton. This assumption takes place roughly 10 times
        throughout the code. I was worried that a future change to GHC
        would invalidate the assumption, and GHC might subtly fail to
        do the right thing. By explicitly labeling CoAxioms and
        FamInsts as being Unbranched (singleton) or
        Branched (not-necessarily-singleton), we make this assumption
        explicit and checkable. Furthermore, to enforce the accuracy of
        this label, the list of branches of a CoAxiom or FamInst is
        stored using a BranchList, whose constructors constrain its
        type index appropriately.
      
      I think that the decision to use BranchList is probably the most
      controversial decision I made from a code design point of view.
      Although I provide conversions to/from ordinary lists, it is more
      efficient to use the brList... functions provided in CoAxiom than
      always to convert. The use of these functions does not wander far
      from the core CoAxiom/FamInst logic.
      
      BranchLists are motivated and explained in the note [Branched axioms] in
      CoAxiom.lhs.
      
      - The CoAxiom type has changed significantly. You can see the new
        type in CoAxiom.lhs. It uses a CoAxBranch type to track
        branches of the CoAxiom. Correspondingly various functions
        producing and consuming CoAxioms had to change, including the
        binary layout of interface files.
      
      - To get branched axioms to work correctly, it is important to have a
        notion
        of type "apartness": two types are apart if they cannot unify, and no
        substitution of variables can ever get them to unify, even after type
      family
        simplification. (This is different than the normal failure to unify
      because
        of the type family bit.) This notion in encoded in tcApartTys, in
      Unify.lhs.
        Because apartness is finer-grained than unification, the tcUnifyTys
      now
        calls tcApartTys.
      
      - CoreLinting axioms has been updated, both to reflect the new
        form of CoAxiom and to enforce the apartness rules of branch
        application. The formalization of the new rules is in
        docs/core-spec/core-spec.pdf.
      
      - The FamInst type (in types/FamInstEnv.lhs) has changed
        significantly, paralleling the changes to CoAxiom. Of course,
        this forced minor changes in many files.
      
      - There are several new Notes in FamInstEnv.lhs, including one
        discussing confluent overlap and why we're not doing it.
      
      - lookupFamInstEnv, lookupFamInstEnvConflicts, and
        lookup_fam_inst_env' (the function that actually does the work)
        have all been more-or-less completely rewritten. There is a
        Note [lookup_fam_inst_env' implementation] describing the
        implementation. One of the changes that affects other files is
        to change the type of matches from a pair of (FamInst, [Type])
        to a new datatype (which now includes the index of the matching
        branch). This seemed a better design.
      
      - The TySynInstD constructor in Template Haskell was updated to
        use the new datatype TySynEqn. I also bumped the TH version
        number, requiring changes to DPH cabal files. (That's why the
        DPH repo has an overlapping-tyfams branch.)
      
      - As SPJ requested, I refactored some of the code in HsDecls:
      
       * splitting up TyDecl into SynDecl and DataDecl, correspondingly
         changing HsTyDefn to HsDataDefn (with only one constructor)
      
       * splitting FamInstD into TyFamInstD and DataFamInstD and
         splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl
      
       * making the ClsInstD take a ClsInstDecl, for parallelism with
         InstDecl's other constructors
      
       * changing constructor TyFamily into FamDecl
      
       * creating a FamilyDecl type that stores the details for a family
         declaration; this is useful because FamilyDecls can appear in classes
      but
         other decls cannot
      
       * restricting the associated types and associated type defaults for a
       * class
         to be the new, more restrictive types
      
       * splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts,
         according to the new types
      
       * perhaps one or two more that I'm overlooking
      
      None of these changes has far-reaching implications.
      
      - The user manual, section 7.7.2.2, is updated to describe the new type
        family
        instances.
      8366792e
  6. 01 Dec, 2012 1 commit
    • eir@cis.upenn.edu's avatar
      Added GHC formalism to the GHC source tree. · 81b7e587
      eir@cis.upenn.edu authored
      As per a request from Simon PJ, I wrote up a formalism of the core
      language in GHC, System FC. The writeup lives in docs/core-spec.
      I also added comments to a number of files dealing with the core
      language reminding authors to update the formalism when updating the
      code. In the next commit will be a README file in docs/core-spec
      with more details of how to do this.
      81b7e587
  7. 01 Oct, 2012 1 commit
  8. 28 Sep, 2012 1 commit
  9. 17 Sep, 2012 1 commit
    • Simon Peyton Jones's avatar
      Implement 'left' and 'right' coercions · af7cc995
      Simon Peyton Jones authored
      This patch finally adds 'left' and 'right' coercions back into
      GHC.  Trac #7205 gives the details.
      
      The main change is to add a new constructor to Coercion:
      
        data Coercion
          = ...
          | NthCo  Int         Coercion     -- OLD, still there
          | LRCo   LeftOrRight Coercion     -- NEW
      
        data LeftOrRight = CLeft | CRight
      
      Plus:
        * Similar change to TcCoercion
        * Use LRCo when decomposing AppTys
        * Coercion optimisation needs to handle left/right
      
      The rest is just knock-on effects.
      af7cc995
  10. 07 May, 2012 1 commit
    • Simon Peyton Jones's avatar
      Yet another major refactoring of the constraint solver · dd7522c3
      Simon Peyton Jones authored
      This is the result of Simon and Dimitrios doing a code walk through.
      There is no change in behaviour, but the structure is much better.
      Main changes:
      
      * Given constraints contain an EvTerm not an EvVar
      
      * Correspondingly, TcEvidence is a recursive types that uses
        EvTerms rather than EvVars
      
      * Rename CtFlavor to CtEvidence
      
      * Every CtEvidence has a ctev_pred field.  And use record fields
        consistently for CtEvidence
      
      * The solved-constraint fields of InertSet (namely inert_solved and
        inert_solved_funeqs) contain CtEvidence, not Ct
      
      There is a long cascade of follow-on changes.
      dd7522c3
  11. 25 Apr, 2012 1 commit
  12. 02 Mar, 2012 1 commit
    • Simon Peyton Jones's avatar
      Hurrah! This major commit adds support for scoped kind variables, · 3bf54e78
      Simon Peyton Jones authored
      which (finally) fills out the functionality of polymorphic kinds.
      It also fixes numerous bugs.
      
      Main changes are:
      
      Renaming stuff
      ~~~~~~~~~~~~~~
      * New type in HsTypes:
           data HsBndrSig sig = HsBSig sig [Name]
        which is used for type signatures in patterns, and kind signatures
        in types.  So when you say
             f (x :: [a]) = x ++ x
        or
             data T (f :: k -> *) (x :: *) = MkT (f x)
        the signatures in both cases are a HsBndrSig.
      
      * The [Name] in HsBndrSig records the variables bound by the
        pattern, that is 'a' in the first example, 'k' in the second,
        and nothing in the third.  The renamer initialises the field.
      
      * As a result I was able to get rid of
           RnHsSyn.extractHsTyNames :: LHsType Name -> NameSet
        and its friends altogether.  Deleted the entire module!
        This led to some knock-on refactoring; in particular the
        type renamer now returns the free variables just like the
        term renamer.
      
      Kind-checking types: mainly TcHsType
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      A major change is that instead of kind-checking types in two
      passes, we now do one. Under the old scheme, the first pass did
      kind-checking and (hackily) annotated the HsType with the
      inferred kinds; and the second pass desugared the HsType to a
      Type.  But now that we have kind variables inside types, the
      first pass (TcHsType.tc_hs_type) can go straight to Type, and
      zonking will squeeze out any kind unification variables later.
      
      This is much nicer, but it was much more fiddly than I had expected.
      
      The nastiest corner is this: it's very important that tc_hs_type
      uses lazy constructors to build the returned type. See
      Note [Zonking inside the knot] in TcHsType.
      
      Type-checking type and class declarations: mainly TcTyClsDecls
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      I did tons of refactoring in TcTyClsDecls.  Simpler and nicer now.
      
      Typechecking bindings: mainly TcBinds
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      I rejigged (yet again) the handling of type signatures in TcBinds.
      It's a bit simpler now.  The main change is that tcTySigs goes
      right through to a TcSigInfo in one step; previously it was split
      into two, part here and part later.
      
      Unsafe coercions
      ~~~~~~~~~~~~~~~~
      Usually equality coercions have exactly the same kind on both
      sides.  But we do allow an *unsafe* coercion between Int# and Bool,
      say, used in
          case error Bool "flah" of { True -> 3#; False -> 0# }
      -->
          (error Bool "flah") |> unsafeCoerce Bool Int#
      
      So what is the instantiation of (~#) here?
         unsafeCoerce Bool Int# :: (~#) ??? Bool Int#
      I'm using OpenKind here for now, but it's un-satisfying that
      the lhs and rhs of the ~ don't have precisely the same kind.
      
      More minor
      ~~~~~~~~~~
      * HsDecl.TySynonym has its free variables attached, which makes
        the cycle computation in TcTyDecls.mkSynEdges easier.
      
      * Fixed a nasty reversed-comparison bug in FamInstEnv:
        @@ -490,7 +490,7 @@ lookup_fam_inst_env' match_fun one_sided ie fam tys
           n_tys = length tys
           extra_tys = drop arity tys
           (match_tys, add_extra_tys)
      -       | arity > n_tys = (take arity tys, \res_tys -> res_tys ++ extra_tys)
      +       | arity < n_tys = (take arity tys, \res_tys -> res_tys ++ extra_tys)
              | otherwise     = (tys,            \res_tys -> res_tys)
      3bf54e78
  13. 13 Jan, 2012 1 commit
  14. 12 Jan, 2012 1 commit
  15. 09 Jan, 2012 1 commit
  16. 03 Jan, 2012 1 commit
    • Simon Peyton Jones's avatar
      Major refactoring of CoAxioms · 98a642cf
      Simon Peyton Jones authored
      This patch should have no user-visible effect.  It implements a
      significant internal refactoring of the way that FC axioms are
      handled.  The ultimate goal is to put us in a position to implement
      "pattern-matching axioms".  But the changes here are only does
      refactoring; there is no change in functionality.
      
      Specifically:
      
       * We now treat data/type family instance declarations very,
         very similarly to types class instance declarations:
      
         - Renamed InstEnv.Instance as InstEnv.ClsInst, for symmetry with
           FamInstEnv.FamInst.  This change does affect the GHC API, but
           for the better I think.
      
         - Previously, each family type/data instance declaration gave rise
           to a *TyCon*; typechecking a type/data instance decl produced
           that TyCon.  Now, each type/data instance gives rise to
           a *FamInst*, by direct analogy with each class instance
           declaration giving rise to a ClsInst.
      
         - Just as each ClsInst contains its evidence, a DFunId, so each FamInst
           contains its evidence, a CoAxiom.  See Note [FamInsts and CoAxioms]
           in FamInstEnv.  The CoAxiom is a System-FC thing, and can relate any
           two types, whereas the FamInst relates directly to the Haskell source
           language construct, and always has a function (F tys) on the LHS.
      
         - Just as a DFunId has its own declaration in an interface file, so now
           do CoAxioms (see IfaceSyn.IfaceAxiom).
      
         These changes give rise to almost all the refactoring.
      
       * We used to have a hack whereby a type family instance produced a dummy
         type synonym, thus
            type instance F Int = Bool -> Bool
         translated to
            axiom FInt :: F Int ~ R:FInt
            type R:FInt = Bool -> Bool
         This was always a hack, and now it's gone.  Instead the type instance
         declaration produces a FamInst, whose axiom has kind
            axiom FInt :: F Int ~ Bool -> Bool
         just as you'd expect.
      
       * Newtypes are done just as before; they generate a CoAxiom. These
         CoAxioms are "implicit" (do not generate an IfaceAxiom declaration),
         unlike the ones coming from family instance declarations.  See
         Note [Implicit axioms] in TyCon
      
      On the whole the code gets significantly nicer.  There were consequential
      tidy-ups in the vectoriser, but I think I got them right.
      98a642cf
  17. 19 Dec, 2011 1 commit
  18. 05 Dec, 2011 1 commit
    • Simon Peyton Jones's avatar
      Allow full constraint solving under a for-all (Trac #5595) · 2e6dcdf7
      Simon Peyton Jones authored
      The main idea is that when we unify
          forall a. t1  ~  forall a. t2
      we get constraints from unifying t1~t2 that mention a.
      We are producing a coercion witnessing the equivalence of
      the for-alls, and inside *that* coercion we need bindings
      for the solved constraints arising from t1~t2.
      
      We didn't have way to do this before.  The big change is
      that here's a new type TcEvidence.TcCoercion, which is
      much like Coercion.Coercion except that there's a slot
      for TcEvBinds in it.
      
      This has a wave of follow-on changes. Not deep but broad.
      
      * New module TcEvidence, which now contains the HsWrapper
        TcEvBinds, EvTerm etc types that used to be in HsBinds
      
      * The typechecker works exclusively in terms of TcCoercion.
      
      * The desugarer converts TcCoercion to Coercion
      
      * The main payload is in TcUnify.unifySigmaTy. This is the
        function that had a gross hack before, but is now beautiful.
      
      * LCoercion is gone!  Hooray.
      
      Many many fiddly changes in conssequence.  But it's nice.
      2e6dcdf7
  19. 28 Nov, 2011 1 commit
    • dimitris's avatar
      Solved goal caching and zonking optimisations. · 4bc84da3
      dimitris authored
      1) Stopped rewriting and caching solveds in the inerts because
      profiling showed that a lot of time was spent on rewriting
      already solved goals.
      
      2) Optimisations in zonkEvBinds for common-case
      evidence bindings generated from the constraint solver.
      
      3) Now solved goals cache their evidence terms, so that we can more
      aggressively optimize Refl coercions during constraint solving.
      This patch also includes a rewrite of rewriteInertEqsFromInertEq
      which greatly improves its efficiency.
      4bc84da3
  20. 17 Nov, 2011 1 commit
  21. 16 Nov, 2011 1 commit
  22. 11 Nov, 2011 1 commit
    • dreixel's avatar
      New kind-polymorphic core · 09015be8
      dreixel authored
      This big patch implements a kind-polymorphic core for GHC. The current
      implementation focuses on making sure that all kind-monomorphic programs still
      work in the new core; it is not yet guaranteed that kind-polymorphic programs
      (using the new -XPolyKinds flag) will work.
      
      For more information, see http://haskell.org/haskellwiki/GHC/Kinds
      09015be8
  23. 04 Nov, 2011 1 commit
  24. 07 Sep, 2011 2 commits
  25. 06 Sep, 2011 2 commits
    • batterseapower's avatar
      Implement -XConstraintKind · 9729fe7c
      batterseapower authored
      Basically as documented in http://hackage.haskell.org/trac/ghc/wiki/KindFact,
      this patch adds a new kind Constraint such that:
      
        Show :: * -> Constraint
        (?x::Int) :: Constraint
        (Int ~ a) :: Constraint
      
      And you can write *any* type with kind Constraint to the left of (=>):
      even if that type is a type synonym, type variable, indexed type or so on.
      
      The following (somewhat related) changes are also made:
       1. We now box equality evidence. This is required because we want
          to give (Int ~ a) the *lifted* kind Constraint
       2. For similar reasons, implicit parameters can now only be of
          a lifted kind. (?x::Int#) => ty is now ruled out
       3. Implicit parameter constraints are now allowed in superclasses
          and instance contexts (this just falls out as OK with the new
          constraint solver)
      
      Internally the following major changes were made:
       1. There is now no PredTy in the Type data type. Instead
          GHC checks the kind of a type to figure out if it is a predicate
       2. There is now no AClass TyThing: we represent classes as TyThings
          just as a ATyCon (classes had TyCons anyway)
       3. What used to be (~) is now pretty-printed as (~#). The box
          constructor EqBox :: (a ~# b) -> (a ~ b)
       4. The type LCoercion is used internally in the constraint solver
          and type checker to represent coercions with free variables
          of type (a ~ b) rather than (a ~# b)
      9729fe7c
    • batterseapower's avatar
      6bad38a4
  26. 08 Aug, 2011 1 commit
  27. 03 Aug, 2011 3 commits
  28. 23 Jul, 2011 1 commit
    • Simon Peyton Jones's avatar
      A nice tidy-up for CvSubst and liftCoSubst · 525aca2c
      Simon Peyton Jones authored
      A "lifting substitition" takes a *type* to a *coercion*, using a
      substitution that takes a *type variable* to a *coercion*.  We were
      using a CvSubst for this purpose, which was an awkward exception: in
      every other use of CvSubst, type variables map only to types.
      
      Turned out that Coercion.liftCoSubst is quite a small function, so I
      rewrote it with a special substitution type Coercion.LiftCoSubst, just
      for that purpose.  In doing so I found that the function itself was
      bizarrely over-complicated ... a direct result of mis-using CvSubst.
      
      So this patch makes it all simpler, faster, and easier to understand.
      No bugs fixed though!
      525aca2c
  29. 15 Jul, 2011 1 commit
  30. 12 May, 2011 1 commit
    • Simon Peyton Jones's avatar
      The final batch of changes for the new coercion representation · c8c2f6bb
      Simon Peyton Jones authored
      * Fix bugs in the packing and unpacking of data
        constructors with equality predicates in their types
      
      * Remove PredCo altogether; instead, coercions between predicated
        types (like  (Eq a, [a]~b) => blah) are treated as if they
        were precisely their underlying representation type
             Eq a -> ((~) [a] b) -> blah
        in this case
      
      * Similarly, Type.coreView no longer treats equality
        predciates specially.
      
      * Implement the cast-of-coercion optimisation in
        Simplify.simplCoercionF
      
      Numerous other small bug-fixes and refactorings.
      
      Annoyingly, OptCoercion had Windows line endings, and this
      patch switches to Unix, so it looks as if every line has changed.
      c8c2f6bb
  31. 19 Apr, 2011 1 commit
    • Simon Peyton Jones's avatar
      This BIG PATCH contains most of the work for the New Coercion Representation · fdf86568
      Simon Peyton Jones authored
      See the paper "Practical aspects of evidence based compilation in System FC"
      
      * Coercion becomes a data type, distinct from Type
      
      * Coercions become value-level things, rather than type-level things,
        (although the value is zero bits wide, like the State token)
        A consequence is that a coerion abstraction increases the arity by 1
        (just like a dictionary abstraction)
      
      * There is a new constructor in CoreExpr, namely Coercion, to inject
        coercions into terms
      fdf86568
  32. 16 Jan, 2011 2 commits
    • Iavor S. Diatchki's avatar
      Add basic support for number type literals. · 9cbc204d
      Iavor S. Diatchki authored
      We add a new kind, Nat, inhabited by a family of types,
      one for each natural number:
      
      0, 1, 2 .. :: Nat
      
      In terms of GHC's sub-kind relation, Nat is only a sub-kind of itself.
      
      The numeric types are empty because there are no primitives of these
      types, and the kind "Nat" is not related to *, the kind of types which
      can be defined in Haskell programs.
      9cbc204d
    • Iavor S. Diatchki's avatar
      Fix example comment. · 2abe72b4
      Iavor S. Diatchki authored
      2abe72b4
  33. 12 Nov, 2010 1 commit
    • simonpj@microsoft.com's avatar
      A (final) re-engineering of the new typechecker · c80364f8
      simonpj@microsoft.com authored
      Regression testing and user feedback for GHC 7.0 taught
      us a lot.  This patch fixes numerous small bugs, and some
      major ones (eg Trac #4484, #4492), and improves type
      error messages.
      
      The main changes are:
      
      * Entirely remove the "skolem equivalance class" stuff;
        a very useful simplification
      
      * Instead, when flattening "wanted" constraints we generate
        unification variables (not flatten-skolems) for the
        flattened type function application
      
      * We then need a fixup pass at the end, TcSimplify.solveCTyFunEqs,
        which resolves any residual equalities of form
            F xi ~ alpha
      
      * When we come across a definite failure (e.g. Int ~ [a]),
        we now defer reporting the error until the end, in case we
        learn more about 'a'.  That is particularly important for
        occurs-check errors.  These are called "frozen" type errors.
      
      * Other improvements in error message generation.
      
      * Better tracing messages
      c80364f8
  34. 06 Oct, 2010 1 commit