1. 11 Jul, 2000 1 commit
  2. 23 May, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-05-23 11:35:36 by simonpj] · bb91427f
      simonpj authored
      *** MERGE WITH 4.07 (once I've checked it works) ***
      
      * Fix result type signatures.  Note that a consequential change is that
        an ordinary binding with a variable on the left
      	f = e
        is now treated as a FunMonoBind, not a PatMonoBind.  This makes
        a few things a bit simpler (eg rnMethodBinds)
      
      * Fix warnings for unused imports.  This meant moving where provenances
        are improved in RnNames.  Move mkExportAvails from RnEnv to RnNames.
      
      * Print module names right (small change in Module.lhs and Rename.lhs)
      
      * Remove a few unused bindings
        
      * Add a little hack to let us print info about join points that turn
        out not to be let-no-escaped.  The idea is to call them "$j" and report
        any such variables that are not let-no-escaped.
      
      * Some small things aiming towards -ddump-types (harmless but incomplete)
      bb91427f
  3. 19 Apr, 2000 1 commit
  4. 23 Mar, 2000 1 commit
    • simonpj's avatar
      [project @ 2000-03-23 17:45:17 by simonpj] · 111cee3f
      simonpj authored
      This utterly gigantic commit is what I've been up to in background
      mode in the last couple of months.  Originally the main goal
      was to get rid of Con (staturated constant applications)
      in the CoreExpr type, but one thing led to another, and I kept
      postponing actually committing.   Sorry.
      
      	Simon, 23 March 2000
      
      
      I've tested it pretty thoroughly, but doubtless things will break.
      
      Here are the highlights
      
      * Con is gone; the CoreExpr type is simpler
      * NoRepLits have gone
      * Better usage info in interface files => less recompilation
      * Result type signatures work
      * CCall primop is tidied up
      * Constant folding now done by Rules
      * Lots of hackery in the simplifier
      * Improvements in CPR and strictness analysis
      
      Many bug fixes including
      
      * Sergey's DoCon compiles OK; no loop in the strictness analyser
      * Volker Wysk's programs don't crash the CPR analyser
      
      I have not done much on measuring compilation times and binary sizes;
      they could have got worse.  I think performance has got significantly
      better, though, in most cases.
      
      
      Removing the Con form of Core expressions
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      The big thing is that
      
        For every constructor C there are now *two* Ids:
      
      	C is the constructor's *wrapper*. It evaluates and unboxes arguments
      	before calling $wC.  It has a perfectly ordinary top-level defn
      	in the module defining the data type.
      
      	$wC is the constructor's *worker*.  It is like a primop that simply
      	allocates and builds the constructor value.  Its arguments are the
      	actual representation arguments of the constructor.
      	Its type may be different to C, because:
      		- useless dict args are dropped
      		- strict args may be flattened
      
        For every primop P there is *one* Id, its (curried) Id
      
        Neither contructor worker Id nor the primop Id have a defminition anywhere.
        Instead they are saturated during the core-to-STG pass, and the code generator
        generates code for them directly. The STG language still has saturated
        primops and constructor applications.
      
      * The Const type disappears, along with Const.lhs.  The literal part
        of Const.lhs reappears as Literal.lhs.  Much tidying up in here,
        to bring all the range checking into this one module.
      
      * I got rid of NoRep literals entirely.  They just seem to be too much trouble.
      
      * Because Con's don't exist any more, the funny C { args } syntax
        disappears from inteface files.
      
      
      Parsing
      ~~~~~~~
      * Result type signatures now work
      	f :: Int -> Int = \x -> x
      	-- The Int->Int is the type of f
      
      	g x y :: Int = x+y
      	-- The Int is the type of the result of (g x y)
      
      
      Recompilation checking and make
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * The .hi file for a modules is not touched if it doesn't change.  (It used to
        be touched regardless, forcing a chain of recompilations.)  The penalty for this
        is that we record exported things just as if they were mentioned in the body of
        the module.  And the penalty for that is that we may recompile a module when
        the only things that have changed are the things it is passing on without using.
        But it seems like a good trade.
      
      * -recomp is on by default
      
      Foreign declarations
      ~~~~~~~~~~~~~~~~~~~~
      * If you say
      	foreign export zoo :: Int -> IO Int
        then you get a C produre called 'zoo', not 'zzoo' as before.
        I've also added a check that complains if you export (or import) a C
        procedure whose name isn't legal C.
      
      
      Code generation and labels
      ~~~~~~~~~~~~~~~~~~~~~~~~~~
      * Now that constructor workers and wrappers have distinct names, there's
        no need to have a Foo_static_closure and a Foo_closure for constructor Foo.
        I nuked the entire StaticClosure story.  This has effects in some of
        the RTS headers (i.e. s/static_closure/closure/g)
      
      
      Rules, constant folding
      ~~~~~~~~~~~~~~~~~~~~~~~
      * Constant folding becomes just another rewrite rule, attached to the Id for the
        PrimOp.   To achieve this, there's a new form of Rule, a BuiltinRule (see CoreSyn.lhs).
        The prelude rules are in prelude/PrelRules.lhs, while simplCore/ConFold.lhs has gone.
      
      * Appending of constant strings now works, using fold/build fusion, plus
        the rewrite rule
      	unpack "foo" c (unpack "baz" c n)  =  unpack "foobaz" c n
        Implemented in PrelRules.lhs
      
      * The CCall primop is tidied up quite a bit.  There is now a data type CCall,
        defined in PrimOp, that packages up the info needed for a particular CCall.
        There is a new Id for each new ccall, with an big "occurrence name"
      	{__ccall "foo" gc Int# -> Int#}
        In interface files, this is parsed as a single Id, which is what it is, really.
      
      Miscellaneous
      ~~~~~~~~~~~~~
      * There were numerous places where the host compiler's
        minInt/maxInt was being used as the target machine's minInt/maxInt.
        I nuked all of these; everything is localised to inIntRange and inWordRange,
        in Literal.lhs
      
      * Desugaring record updates was broken: it didn't generate correct matches when
        used withe records with fancy unboxing etc.  It now uses matchWrapper.
      
      * Significant tidying up in codeGen/SMRep.lhs
      
      * Add __word, __word64, __int64 terminals to signal the obvious types
        in interface files.  Add the ability to print word values in hex into
        C code.
      
      * PrimOp.lhs is no longer part of a loop.  Remove PrimOp.hi-boot*
      
      
      Types
      ~~~~~
      * isProductTyCon no longer returns False for recursive products, nor
        for unboxed products; you have to test for these separately.
        There's no reason not to do CPR for recursive product types, for example.
        Ditto splitProductType_maybe.
      
      Simplification
      ~~~~~~~~~~~~~~~
      * New -fno-case-of-case flag for the simplifier.  We use this in the first run
        of the simplifier, where it helps to stop messing up expressions that
        the (subsequent) full laziness pass would otherwise find float out.
        It's much more effective than previous half-baked hacks in inlining.
      
        Actually, it turned out that there were three places in Simplify.lhs that
        needed to know use this flag.
      
      * Make the float-in pass push duplicatable bindings into the branches of
        a case expression, in the hope that we never have to allocate them.
        (see FloatIn.sepBindsByDropPoint)
      
      * Arrange that top-level bottoming Ids get a NOINLINE pragma
        This reduced gratuitous inlining of error messages.
        But arrange that such things still get w/w'd.
      
      * Arrange that a strict argument position is regarded as an 'interesting'
        context, so that if we see
      	foldr k z (g x)
        then we'll be inclined to inline g; this can expose a build.
      
      * There was a missing case in CoreUtils.exprEtaExpandArity that meant
        we were missing some obvious cases for eta expansion
        Also improve the code when handling applications.
      
      * Make record selectors (identifiable by their IdFlavour) into "cheap" operations.
      	  [The change is a 2-liner in CoreUtils.exprIsCheap]
        This means that record selection may be inlined into function bodies, which
        greatly improves the arities of overloaded functions.
      
      * Make a cleaner job of inlining "lone variables".  There was some distributed
        cunning, but I've centralised it all now in SimplUtils.analyseCont, which
        analyses the context of a call to decide whether it is "interesting".
      
      * Don't specialise very small functions in Specialise.specDefn
        It's better to inline it.  Rather like the worker/wrapper case.
      
      * Be just a little more aggressive when floating out of let rhss.
        See comments with Simplify.wantToExpose
        A small change with an occasional big effect.
      
      * Make the inline-size computation think that
      	case x of I# x -> ...
        is *free*.
      
      
      CPR analysis
      ~~~~~~~~~~~~
      * Fix what was essentially a bug in CPR analysis.  Consider
      
      	letrec f x = let g y = let ... in f e1
      		     in
      		     if ... then (a,b) else g x
      
        g has the CPR property if f does; so when generating the final annotated
        RHS for f, we must use an envt in which f is bound to its final abstract
        value.  This wasn't happening.  Instead, f was given the CPR tag but g
        wasn't; but of course the w/w pass gives rotten results in that case!!
        (Because f's CPR-ness relied on g's.)
      
        On they way I tidied up the code in CprAnalyse.  It's quite a bit shorter.
      
        The fact that some data constructors return a constructed product shows
        up in their CPR info (MkId.mkDataConId) not in CprAnalyse.lhs
      
      
      
      Strictness analysis and worker/wrapper
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * BIG THING: pass in the demand to StrictAnal.saExpr.  This affects situations
        like
      	f (let x = e1 in (x,x))
        where f turns out to have strictness u(SS), say.  In this case we can
        mark x as demanded, and use a case expression for it.
      
        The situation before is that we didn't "know" that there is the u(SS)
        demand on the argument, so we simply computed that the body of the let
        expression is lazy in x, and marked x as lazily-demanded.  Then even after
        f was w/w'd we got
      
      	let x = e1 in case (x,x) of (a,b) -> $wf a b
      
        and hence
      
      	let x = e1 in $wf a b
      
        I found a much more complicated situation in spectral/sphere/Main.shade,
        which improved quite a bit with this change.
      
      * Moved the StrictnessInfo type from IdInfo to Demand.  It's the logical
        place for it, and helps avoid module loops
      
      * Do worker/wrapper for coerces even if the arity is zero.  Thus:
      	stdout = coerce Handle (..blurg..)
        ==>
      	wibble = (...blurg...)
      	stdout = coerce Handle wibble
        This is good because I found places where we were saying
      	case coerce t stdout of { MVar a ->
      	...
      	case coerce t stdout of { MVar b ->
      	...
        and the redundant case wasn't getting eliminated because of the coerce.
      111cee3f
  5. 06 Jan, 2000 1 commit
  6. 01 Nov, 1999 1 commit
    • simonpj's avatar
      [project @ 1999-11-01 17:09:54 by simonpj] · 30b5ebe4
      simonpj authored
      A regrettably-gigantic commit that puts in place what Simon PJ
      has been up to for the last month or so, on and off.
      
      The basic idea was to restore unfoldings to *occurrences* of
      variables without introducing a space leak.  I wanted to make
      sure things improved relative to 4.04, and that proved depressingly
      hard.  On the way I discovered several quite serious bugs in the
      simplifier.
      
      Here's a summary of what's gone on.
      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      * No commas between for-alls in RULES.  This makes the for-alls have
        the same syntax as in types.
      
      * Arrange that simplConArgs works in one less pass than before.
        This exposed a bug: a bogus call to completeBeta.
      
      * Add a top-level flag in CoreUnfolding, used in callSiteInline
      
      * Extend w/w to use etaExpandArity, so it does eta/coerce expansion
      
      * Implement inline phases.   The meaning of the inline pragmas is
        described in CoreUnfold.lhs.  You can say things like
      	{#- INLINE 2 build #-}
        to mean "inline build in phase 2"
      
      * Don't float anything out of an INLINE.
        Don't float things to top level unless they also escape a value lambda.
      	[see comments with SetLevels.lvlMFE
        Without at least one of these changes, I found that
      	{-# INLINE concat #-}
      	concat = __inline (/\a -> foldr (++) [])
        was getting floated to
      	concat = __inline( /\a -> lvl a )
      	lvl = ...inlined version of foldr...
      
        Subsequently I found that not floating constants out of an INLINE
        gave really bad code like
      	__inline (let x = e in \y -> ...)
        so I now let things float out of INLINE
      
      * Implement the "reverse-mapping" idea for CSE; actually it turned out to be easier
        to implement it in SetLevels, and may benefit full laziness too.
      
      * It's a good idea to inline inRange. Consider
      
      	index (l,h) i = case inRange (l,h) i of
      		  	  True ->  l+i
      			  False -> error
        inRange itself isn't strict in h, but if it't inlined then 'index'
        *does* become strict in h.  Interesting!
      
      * Big change to the way unfoldings and occurrence info is propagated in the simplifier
        The plan is described in Subst.lhs with the Subst type
        Occurrence info is now in a separate IdInfo field than user pragmas
      
      * I found that
      	(coerce T (coerce S (\x.e))) y
        didn't simplify in one round. First we get to
      	(\x.e) y
        and only then do the beta. Solution: cancel the coerces in the continuation
      
      * Amazingly, CoreUnfold wasn't counting the cost of a function an application.
      
      * Disable rules in initial simplifier run.  Otherwise full laziness
        doesn't get a chance to lift out a MFE before a rule (e.g. fusion)
        zaps it.  queens is a case in point
      
      * Improve float-out stuff significantly.  The big change is that if we have
      
      	\x -> ... /\a -> ...let p = ..a.. in let q = ...p...
      
        where p's rhs doesn't x, we abstract a from p, so that we can get p past x.
        (We did that before.)  But we also substitute (p a) for p in q, and then
        we can do the same thing for q.  (We didn't do that, so q got stuck.)
        This is much better.  It involves doing a substitution "as we go" in SetLevels,
        though.
      30b5ebe4
  7. 17 Sep, 1999 1 commit
    • simonpj's avatar
      [project @ 1999-09-17 09:15:22 by simonpj] · 731f53de
      simonpj authored
      This bunch of commits represents work in progress on inlining and
      worker/wrapper stuff.
      
      Currently, I think it makes the compiler slightly worse than 4.04, for
      reasons I don't yet understand.  But it means that Simon and I can
      both peer at what is going on.
      
      * Substantially improve handling of coerces in worker/wrapper
      
      * exprIsDupable for an application (f e1 .. en) wasn't calling exprIsDupable
        on the arguments!!  So applications with few, but large, args were being dupliated.
      
      * sizeExpr on an application wasn't doing a nukeScrutDiscount on the arg of
        an application!!  So bogus discounts could accumulate from arguments!
      
      * Improve handling of INLINE pragmas in calcUnfoldingGuidance.  It was really
        wrong before
      731f53de
  8. 14 Jul, 1999 1 commit
    • simonpj's avatar
      [project @ 1999-07-14 14:40:20 by simonpj] · 4e7d56fd
      simonpj authored
      Main things:
      
      * Add splitProductType_maybe to DataCon.lhs, with type
        splitProductType_maybe
      	:: Type 			-- A product type, perhaps
      	-> Maybe (TyCon, 		-- The type constructor
      		  [Type],		-- Type args of the tycon
      		  DataCon,		-- The data constructor
      		  [Type])		-- Its *representation* arg types
      
        Then use it in many places (e.g. worker-wrapper places) instead
        of a pile of junk
      
      * Clean up various uses of dataConArgTys, which were plain wrong because
        they weren't passed the existential type arguments.  Most of these calls
        are eliminated by using splitProductType_maybe above.  I hope I correctly
        squashed the others. This fixes a bug that Meurig's programs showed up.
      
          module FailGHC (killSustainer) where
          import Weak
          import IOExts
      
          data Sustainer = forall a . Sustainer (IORef (Maybe a)) (IO ())
      
          killSustainer :: Sustainer -> IO ()
          killSustainer (Sustainer _ act) = act
      
        The above program used to kill the compiler.
      
      * A fairly concerted attack on the Dreaded Space Leak.
      	- Add Type.seqType, CoreSyn.seqExpr, CoreSyn.seqRules
      
      	- Add some seq'ing when building Ids and IdInfos
      		These reduce the space usage a lot
      
      	- Add CoreSyn.coreBindsSize, which is pretty strict in the program,
      		and call it when we have -dshow-passes.
      
      	- Do not put the inlining in an Id that is being plugged into
      		the result-expression of the simplifier.  This cures
      		a the 'wedge' in the space profile for reasons I don't understand fully
      
        Together, these things reduce the max space usage when compiling PrelNum from
        17M to about 7Mbytes.
      
        I think there are now *too many* seqs, and they waste work, but I don't have
        time to find which ones.
      
        Furthermore, we aren't done. For some reason, some of the stuff allocated by
        the simplifier makes it through all during code generation and I don't see why.
        There's a should-be-unnecessary call to coreBindsSize in Main.main which
        zaps some, but not all of this space.
      
        -dshow-passes reduces space usage a bit, but I don't think it should really.
      
        All the measurements were made on a compiler compiled with profiling by
        GHC 3.03.    I hope they carry over to other builds!
      
      * One trivial thing: changed all variables 'label' to 'lbl', becuase the
        former is a keyword with -fglagow-exts in GHC 3.03 (which I was compiling with).
        Something similar in StringBuffer.
      4e7d56fd
  9. 22 Jun, 1999 2 commits
  10. 21 May, 1999 1 commit
  11. 18 May, 1999 1 commit
  12. 18 Dec, 1998 1 commit
    • simonpj's avatar
      [project @ 1998-12-18 17:40:31 by simonpj] · 7e602b0a
      simonpj authored
      Another big commit from Simon.  Actually, the last one
      didn't all go into the main trunk; because of a CVS glitch it
      ended up in the wrong branch.
      
      So this commit includes:
      
      * Scoped type variables
      * Warnings for unused variables should work now (they didn't before)
      * Simplifier improvements:
      	- Much better treatment of strict arguments
      	- Better treatment of bottoming Ids
      	- No need for w/w split for fns that are merely strict
      	- Fewer iterations needed, I hope
      * Less gratuitous renaming in interface files and abs C
      * OccName is a separate module, and is an abstract data type
      
      I think the whole Prelude and Exts libraries compile correctly.
      Something isn't quite right about typechecking existentials though.
      7e602b0a
  13. 02 Dec, 1998 1 commit
  14. 19 Mar, 1998 1 commit
  15. 12 Mar, 1998 1 commit
  16. 08 Mar, 1998 1 commit
  17. 08 Jan, 1998 1 commit
    • simonm's avatar
      [project @ 1998-01-08 18:03:08 by simonm] · 9dd6e1c2
      simonm authored
      The Great Multi-Parameter Type Classes Merge.
      
      Notes from Simon (abridged):
      
      * Multi-parameter type classes are fully implemented.
      * Error messages from the type checker should be noticeably improved
      * Warnings for unused bindings (-fwarn-unused-names)
      * many other minor bug fixes.
      
      Internally there are the following changes
      
      * Removal of Haskell 1.2 compatibility.
      * Dramatic clean-up of the PprStyle stuff.
      * The type Type has been substantially changed.
      * The dictionary for each class is represented by a new
        data type for that purpose, rather than by a tuple.
      9dd6e1c2
  18. 25 Jul, 1997 1 commit
  19. 05 Jun, 1997 1 commit
  20. 26 May, 1997 1 commit
  21. 18 May, 1997 1 commit
  22. 14 Mar, 1997 1 commit
  23. 19 Dec, 1996 1 commit
  24. 15 Jul, 1996 1 commit
  25. 26 Jun, 1996 1 commit
  26. 05 Jun, 1996 1 commit
  27. 16 May, 1996 1 commit
  28. 05 Apr, 1996 1 commit
  29. 19 Mar, 1996 1 commit
  30. 22 Jan, 1996 1 commit
  31. 08 Jan, 1996 1 commit