Core optimizations for memset on a small range
I've been doing some API bindings lately that require zeroing out memory before poking values into the appropriate places. Sometimes, these are small data structures. For instance, on linux, the internet socket struct sockaddr_in
is 16 bytes. Here's an example (not involving sockaddr_in
) of the kind of situation that arises:
{-# language MagicHash #-}
{-# language UnboxedTuples #-}
module FillArray
( fill
) where
import GHC.Exts
import GHC.IO
data ByteArray = ByteArray ByteArray#
fill :: IO ByteArray
fill = IO $ \s0 -> case newByteArray# 24# s0 of
(# s1, m #) -> case setByteArray# m 0# 24# 0# s1 of
s2 -> case writeWord8Array# m 4# 14## s2 of
s3 -> case writeWord8Array# m 5# 15## s3 of
s4 -> case unsafeFreezeByteArray# m s4 of
(# s5, r #) -> (# s5, ByteArray r #)
This fill
function allocates a 24-byte array, sets everything to zero, and then writes the numbers 14 and 15 to elements 4 and 5 respectively. With -O2
, here's the relevant part of the core we get:
fill1
fill1
= \ s0_a140 ->
case newByteArray# 24# s0_a140 of { (# ipv_s16i, ipv1_s16j #) ->
case setByteArray# ipv1_s16j 0# 24# 0# ipv_s16i of s2_a143
{ __DEFAULT ->
case writeWord8Array# ipv1_s16j 4# 14## s2_a143 of s3_a144
{ __DEFAULT ->
case writeWord8Array# ipv1_s16j 5# 15## s3_a144 of s4_a145
{ __DEFAULT ->
case unsafeFreezeByteArray# ipv1_s16j s4_a145 of
{ (# ipv2_s16p, ipv3_s16q #) ->
(# ipv2_s16p, ByteArray ipv3_s16q #)
}
}
}
}
}
And, here's the relevant assembly:
fill1_info:
_c1kL:
addq $56,%r12
cmpq 856(%r13),%r12
ja _c1kP
_c1kO:
movq $stg_ARR_WORDS_info,-48(%r12)
movq $24,-40(%r12)
leaq -48(%r12),%rax
subq $8,%rsp
leaq 16(%rax),%rdi
xorl %esi,%esi
movl $24,%edx
movq %rax,%rbx
xorl %eax,%eax
call memset
addq $8,%rsp
movb $14,20(%rbx)
movb $15,21(%rbx)
movq $ByteArray_con_info,-8(%r12)
movq %rbx,(%r12)
leaq -7(%r12),%rbx
jmp *(%rbp)
_c1kP:
movq $56,904(%r13)
movl $fill1_closure,%ebx
jmp *-8(%r13)
.size fill1_info, .-fill1_info
What a bummer that using memset
for something as small setting three machine words (on a 64 bit platform) results in a call
instruction getting generated. Why not simply generate three movb
instructions for the zero initialization instead?
Currently, users can work around this by translating their setByteArray#
call to several writeWordArray#
calls. This optimization obscures the meaning of written code and is not portable across architectures (so you have to use CPP
to make it work on 32 bit and 64 bit). I'd like to add a cmm-to-assembly optimization to GHC that does unrolling instead so that the user can write more natural code.
Specifically, here's what I'm thinking:
- This only happens when the offset into the
ByteArray#
and the length of the range are constant that are multiples of the machine word size. So,setByteArray# arr 8# 16# x
is eligible on 32-bit and 64-bit platforms. AndsetByteArray# arr 4# 8# x
is eligible only on a 32-bit platform. AndsetByteArray# arr 16# y x
is not eligible on any platform. - This only happens when the
call memset
instruction has a range of 32 bytes or less.
Trac metadata
Trac field | Value |
---|---|
Version | 8.6.3 |
Type | Task |
TypeOfFailure | OtherFailure |
Priority | normal |
Resolution | Unresolved |
Component | Compiler |
Test case | |
Differential revisions | |
BlockedBy | |
Related | |
Blocking | |
CC | |
Operating system | |
Architecture |