% % (c) The GRASP/AQUA Project, Glasgow University, 1998 % \section[Type]{Type - public interface} \begin{code} module Type ( -- re-exports from TypeRep TyThing(..), Type, PredType(..), ThetaType, funTyCon, -- Re-exports from Kind module Kind, -- Re-exports from TyCon PrimRep(..), mkTyVarTy, mkTyVarTys, getTyVar, getTyVar_maybe, isTyVarTy, mkAppTy, mkAppTys, splitAppTy, splitAppTys, splitAppTy_maybe, mkFunTy, mkFunTys, splitFunTy, splitFunTy_maybe, splitFunTys, splitFunTysN, funResultTy, funArgTy, zipFunTys, isFunTy, mkTyConApp, mkTyConTy, tyConAppTyCon, tyConAppArgs, splitTyConApp_maybe, splitTyConApp, repType, typePrimRep, coreView, tcView, mkForAllTy, mkForAllTys, splitForAllTy_maybe, splitForAllTys, applyTy, applyTys, isForAllTy, dropForAlls, -- Source types predTypeRep, mkPredTy, mkPredTys, -- Newtypes splitRecNewType_maybe, -- Lifting and boxity isUnLiftedType, isUnboxedTupleType, isAlgType, isPrimitiveType, isStrictType, isStrictPred, -- Free variables tyVarsOfType, tyVarsOfTypes, tyVarsOfPred, tyVarsOfTheta, typeKind, addFreeTyVars, -- Tidying up for printing tidyType, tidyTypes, tidyOpenType, tidyOpenTypes, tidyTyVarBndr, tidyFreeTyVars, tidyOpenTyVar, tidyOpenTyVars, tidyTopType, tidyPred, tidyKind, -- Comparison coreEqType, tcEqType, tcEqTypes, tcCmpType, tcCmpTypes, tcEqPred, tcCmpPred, tcEqTypeX, -- Seq seqType, seqTypes, -- Type substitutions TvSubstEnv, emptyTvSubstEnv, -- Representation widely visible TvSubst(..), emptyTvSubst, -- Representation visible to a few friends mkTvSubst, mkOpenTvSubst, zipOpenTvSubst, zipTopTvSubst, mkTopTvSubst, notElemTvSubst, getTvSubstEnv, setTvSubstEnv, getTvInScope, extendTvInScope, extendTvSubst, extendTvSubstList, isInScope, composeTvSubst, zipTyEnv, -- Performing substitution on types substTy, substTys, substTyWith, substTheta, substPred, substTyVar, substTyVarBndr, deShadowTy, lookupTyVar, -- Pretty-printing pprType, pprParendType, pprTyThingCategory, pprPred, pprTheta, pprThetaArrow, pprClassPred ) where #include "HsVersions.h" -- We import the representation and primitive functions from TypeRep. -- Many things are reexported, but not the representation! import TypeRep -- friends: import Kind import Var ( Var, TyVar, tyVarKind, tyVarName, setTyVarName, mkTyVar ) import VarEnv import VarSet import OccName ( tidyOccName ) import Name ( NamedThing(..), mkInternalName, tidyNameOcc ) import Class ( Class, classTyCon ) import TyCon ( TyCon, isRecursiveTyCon, isPrimTyCon, isUnboxedTupleTyCon, isUnLiftedTyCon, isFunTyCon, isNewTyCon, newTyConRep, newTyConRhs, isAlgTyCon, tyConArity, tcExpandTyCon_maybe, coreExpandTyCon_maybe, tyConKind, PrimRep(..), tyConPrimRep, ) -- others import StaticFlags ( opt_DictsStrict ) import SrcLoc ( noSrcLoc ) import Util ( mapAccumL, seqList, lengthIs, snocView, thenCmp, isEqual, all2 ) import Outputable import UniqSet ( sizeUniqSet ) -- Should come via VarSet import Maybe ( isJust ) \end{code} %************************************************************************ %* * Type representation %* * %************************************************************************ In Core, we "look through" non-recursive newtypes and PredTypes. \begin{code} {-# INLINE coreView #-} coreView :: Type -> Maybe Type -- Srips off the *top layer only* of a type to give -- its underlying representation type. -- Returns Nothing if there is nothing to look through. -- -- In the case of newtypes, it returns -- *either* a vanilla TyConApp (recursive newtype, or non-saturated) -- *or* the newtype representation (otherwise), meaning the -- type written in the RHS of the newtype decl, -- which may itself be a newtype -- -- Example: newtype R = MkR S -- newtype S = MkS T -- newtype T = MkT (T -> T) -- expandNewTcApp on R gives Just S -- on S gives Just T -- on T gives Nothing (no expansion) -- By being non-recursive and inlined, this case analysis gets efficiently -- joined onto the case analysis that the caller is already doing coreView (NoteTy _ ty) = Just ty coreView (PredTy p) = Just (predTypeRep p) coreView (TyConApp tc tys) | Just (tenv, rhs, tys') <- coreExpandTyCon_maybe tc tys = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') -- Its important to use mkAppTys, rather than (foldl AppTy), -- because the function part might well return a -- partially-applied type constructor; indeed, usually will! coreView ty = Nothing ----------------------------------------------- {-# INLINE tcView #-} tcView :: Type -> Maybe Type -- Same, but for the type checker, which just looks through synonyms tcView (NoteTy _ ty) = Just ty tcView (TyConApp tc tys) | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys = Just (mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys') tcView ty = Nothing \end{code} %************************************************************************ %* * \subsection{Constructor-specific functions} %* * %************************************************************************ --------------------------------------------------------------------- TyVarTy ~~~~~~~ \begin{code} mkTyVarTy :: TyVar -> Type mkTyVarTy = TyVarTy mkTyVarTys :: [TyVar] -> [Type] mkTyVarTys = map mkTyVarTy -- a common use of mkTyVarTy getTyVar :: String -> Type -> TyVar getTyVar msg ty = case getTyVar_maybe ty of Just tv -> tv Nothing -> panic ("getTyVar: " ++ msg) isTyVarTy :: Type -> Bool isTyVarTy ty = isJust (getTyVar_maybe ty) getTyVar_maybe :: Type -> Maybe TyVar getTyVar_maybe ty | Just ty' <- coreView ty = getTyVar_maybe ty' getTyVar_maybe (TyVarTy tv) = Just tv getTyVar_maybe other = Nothing \end{code} --------------------------------------------------------------------- AppTy ~~~~~ We need to be pretty careful with AppTy to make sure we obey the invariant that a TyConApp is always visibly so. mkAppTy maintains the invariant: use it. \begin{code} mkAppTy orig_ty1 orig_ty2 = mk_app orig_ty1 where mk_app (NoteTy _ ty1) = mk_app ty1 mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ [orig_ty2]) mk_app ty1 = AppTy orig_ty1 orig_ty2 -- Note that the TyConApp could be an -- under-saturated type synonym. GHC allows that; e.g. -- type Foo k = k a -> k a -- type Id x = x -- foo :: Foo Id -> Foo Id -- -- Here Id is partially applied in the type sig for Foo, -- but once the type synonyms are expanded all is well mkAppTys :: Type -> [Type] -> Type mkAppTys orig_ty1 [] = orig_ty1 -- This check for an empty list of type arguments -- avoids the needless loss of a type synonym constructor. -- For example: mkAppTys Rational [] -- returns to (Ratio Integer), which has needlessly lost -- the Rational part. mkAppTys orig_ty1 orig_tys2 = mk_app orig_ty1 where mk_app (NoteTy _ ty1) = mk_app ty1 mk_app (TyConApp tc tys) = mkTyConApp tc (tys ++ orig_tys2) -- mkTyConApp: see notes with mkAppTy mk_app ty1 = foldl AppTy orig_ty1 orig_tys2 splitAppTy_maybe :: Type -> Maybe (Type, Type) splitAppTy_maybe ty | Just ty' <- coreView ty = splitAppTy_maybe ty' splitAppTy_maybe (FunTy ty1 ty2) = Just (TyConApp funTyCon [ty1], ty2) splitAppTy_maybe (AppTy ty1 ty2) = Just (ty1, ty2) splitAppTy_maybe (TyConApp tc tys) = case snocView tys of Nothing -> Nothing Just (tys',ty') -> Just (TyConApp tc tys', ty') splitAppTy_maybe other = Nothing splitAppTy :: Type -> (Type, Type) splitAppTy ty = case splitAppTy_maybe ty of Just pr -> pr Nothing -> panic "splitAppTy" splitAppTys :: Type -> (Type, [Type]) splitAppTys ty = split ty ty [] where split orig_ty ty args | Just ty' <- coreView ty = split orig_ty ty' args split orig_ty (AppTy ty arg) args = split ty ty (arg:args) split orig_ty (TyConApp tc tc_args) args = (TyConApp tc [], tc_args ++ args) split orig_ty (FunTy ty1 ty2) args = ASSERT( null args ) (TyConApp funTyCon [], [ty1,ty2]) split orig_ty ty args = (orig_ty, args) \end{code} --------------------------------------------------------------------- FunTy ~~~~~ \begin{code} mkFunTy :: Type -> Type -> Type mkFunTy arg res = FunTy arg res mkFunTys :: [Type] -> Type -> Type mkFunTys tys ty = foldr FunTy ty tys isFunTy :: Type -> Bool isFunTy ty = isJust (splitFunTy_maybe ty) splitFunTy :: Type -> (Type, Type) splitFunTy ty | Just ty' <- coreView ty = splitFunTy ty' splitFunTy (FunTy arg res) = (arg, res) splitFunTy other = pprPanic "splitFunTy" (ppr other) splitFunTy_maybe :: Type -> Maybe (Type, Type) splitFunTy_maybe ty | Just ty' <- coreView ty = splitFunTy_maybe ty' splitFunTy_maybe (FunTy arg res) = Just (arg, res) splitFunTy_maybe other = Nothing splitFunTys :: Type -> ([Type], Type) splitFunTys ty = split [] ty ty where split args orig_ty ty | Just ty' <- coreView ty = split args orig_ty ty' split args orig_ty (FunTy arg res) = split (arg:args) res res split args orig_ty ty = (reverse args, orig_ty) splitFunTysN :: Int -> Type -> ([Type], Type) -- Split off exactly n arg tys splitFunTysN 0 ty = ([], ty) splitFunTysN n ty = case splitFunTy ty of { (arg, res) -> case splitFunTysN (n-1) res of { (args, res) -> (arg:args, res) }} zipFunTys :: Outputable a => [a] -> Type -> ([(a,Type)], Type) zipFunTys orig_xs orig_ty = split [] orig_xs orig_ty orig_ty where split acc [] nty ty = (reverse acc, nty) split acc xs nty ty | Just ty' <- coreView ty = split acc xs nty ty' split acc (x:xs) nty (FunTy arg res) = split ((x,arg):acc) xs res res split acc (x:xs) nty ty = pprPanic "zipFunTys" (ppr orig_xs <+> ppr orig_ty) funResultTy :: Type -> Type funResultTy ty | Just ty' <- coreView ty = funResultTy ty' funResultTy (FunTy arg res) = res funResultTy ty = pprPanic "funResultTy" (ppr ty) funArgTy :: Type -> Type funArgTy ty | Just ty' <- coreView ty = funArgTy ty' funArgTy (FunTy arg res) = arg funArgTy ty = pprPanic "funArgTy" (ppr ty) \end{code} --------------------------------------------------------------------- TyConApp ~~~~~~~~ @mkTyConApp@ is a key function, because it builds a TyConApp, FunTy or PredTy, as apppropriate. \begin{code} mkTyConApp :: TyCon -> [Type] -> Type mkTyConApp tycon tys | isFunTyCon tycon, [ty1,ty2] <- tys = FunTy ty1 ty2 | otherwise = TyConApp tycon tys mkTyConTy :: TyCon -> Type mkTyConTy tycon = mkTyConApp tycon [] -- splitTyConApp "looks through" synonyms, because they don't -- mean a distinct type, but all other type-constructor applications -- including functions are returned as Just .. tyConAppTyCon :: Type -> TyCon tyConAppTyCon ty = fst (splitTyConApp ty) tyConAppArgs :: Type -> [Type] tyConAppArgs ty = snd (splitTyConApp ty) splitTyConApp :: Type -> (TyCon, [Type]) splitTyConApp ty = case splitTyConApp_maybe ty of Just stuff -> stuff Nothing -> pprPanic "splitTyConApp" (ppr ty) splitTyConApp_maybe :: Type -> Maybe (TyCon, [Type]) splitTyConApp_maybe ty | Just ty' <- coreView ty = splitTyConApp_maybe ty' splitTyConApp_maybe (TyConApp tc tys) = Just (tc, tys) splitTyConApp_maybe (FunTy arg res) = Just (funTyCon, [arg,res]) splitTyConApp_maybe other = Nothing \end{code} --------------------------------------------------------------------- SynTy ~~~~~ Notes on type synonyms ~~~~~~~~~~~~~~~~~~~~~~ The various "split" functions (splitFunTy, splitRhoTy, splitForAllTy) try to return type synonyms whereever possible. Thus type Foo a = a -> a we want splitFunTys (a -> Foo a) = ([a], Foo a) not ([a], a -> a) The reason is that we then get better (shorter) type signatures in interfaces. Notably this plays a role in tcTySigs in TcBinds.lhs. Representation types ~~~~~~~~~~~~~~~~~~~~ repType looks through (a) for-alls, and (b) synonyms (c) predicates (d) usage annotations (e) all newtypes, including recursive ones It's useful in the back end. \begin{code} repType :: Type -> Type -- Only applied to types of kind *; hence tycons are saturated repType ty | Just ty' <- coreView ty = repType ty' repType (ForAllTy _ ty) = repType ty repType (TyConApp tc tys) | isNewTyCon tc = -- Recursive newtypes are opaque to coreView -- but we must expand them here. Sure to -- be saturated because repType is only applied -- to types of kind * ASSERT( isRecursiveTyCon tc && tys `lengthIs` tyConArity tc ) repType (new_type_rep tc tys) repType ty = ty -- new_type_rep doesn't ask any questions: -- it just expands newtype, whether recursive or not new_type_rep new_tycon tys = ASSERT( tys `lengthIs` tyConArity new_tycon ) case newTyConRep new_tycon of (tvs, rep_ty) -> substTyWith tvs tys rep_ty -- ToDo: this could be moved to the code generator, using splitTyConApp instead -- of inspecting the type directly. typePrimRep :: Type -> PrimRep typePrimRep ty = case repType ty of TyConApp tc _ -> tyConPrimRep tc FunTy _ _ -> PtrRep AppTy _ _ -> PtrRep -- See note below TyVarTy _ -> PtrRep other -> pprPanic "typePrimRep" (ppr ty) -- Types of the form 'f a' must be of kind *, not *#, so -- we are guaranteed that they are represented by pointers. -- The reason is that f must have kind *->*, not *->*#, because -- (we claim) there is no way to constrain f's kind any other -- way. \end{code} --------------------------------------------------------------------- ForAllTy ~~~~~~~~ \begin{code} mkForAllTy :: TyVar -> Type -> Type mkForAllTy tyvar ty = mkForAllTys [tyvar] ty mkForAllTys :: [TyVar] -> Type -> Type mkForAllTys tyvars ty = foldr ForAllTy ty tyvars isForAllTy :: Type -> Bool isForAllTy (NoteTy _ ty) = isForAllTy ty isForAllTy (ForAllTy _ _) = True isForAllTy other_ty = False splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) splitForAllTy_maybe ty = splitFAT_m ty where splitFAT_m ty | Just ty' <- coreView ty = splitFAT_m ty' splitFAT_m (ForAllTy tyvar ty) = Just(tyvar, ty) splitFAT_m _ = Nothing splitForAllTys :: Type -> ([TyVar], Type) splitForAllTys ty = split ty ty [] where split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs) split orig_ty t tvs = (reverse tvs, orig_ty) dropForAlls :: Type -> Type dropForAlls ty = snd (splitForAllTys ty) \end{code} -- (mkPiType now in CoreUtils) applyTy, applyTys ~~~~~~~~~~~~~~~~~ Instantiate a for-all type with one or more type arguments. Used when we have a polymorphic function applied to type args: f t1 t2 Then we use (applyTys type-of-f [t1,t2]) to compute the type of the expression. \begin{code} applyTy :: Type -> Type -> Type applyTy ty arg | Just ty' <- coreView ty = applyTy ty' arg applyTy (ForAllTy tv ty) arg = substTyWith [tv] [arg] ty applyTy other arg = panic "applyTy" applyTys :: Type -> [Type] -> Type -- This function is interesting because -- a) the function may have more for-alls than there are args -- b) less obviously, it may have fewer for-alls -- For case (b) think of -- applyTys (forall a.a) [forall b.b, Int] -- This really can happen, via dressing up polymorphic types with newtype -- clothing. Here's an example: -- newtype R = R (forall a. a->a) -- foo = case undefined :: R of -- R f -> f () applyTys orig_fun_ty [] = orig_fun_ty applyTys orig_fun_ty arg_tys | n_tvs == n_args -- The vastly common case = substTyWith tvs arg_tys rho_ty | n_tvs > n_args -- Too many for-alls = substTyWith (take n_args tvs) arg_tys (mkForAllTys (drop n_args tvs) rho_ty) | otherwise -- Too many type args = ASSERT2( n_tvs > 0, ppr orig_fun_ty ) -- Zero case gives infnite loop! applyTys (substTyWith tvs (take n_tvs arg_tys) rho_ty) (drop n_tvs arg_tys) where (tvs, rho_ty) = splitForAllTys orig_fun_ty n_tvs = length tvs n_args = length arg_tys \end{code} %************************************************************************ %* * \subsection{Source types} %* * %************************************************************************ A "source type" is a type that is a separate type as far as the type checker is concerned, but which has low-level representation as far as the back end is concerned. Source types are always lifted. The key function is predTypeRep which gives the representation of a source type: \begin{code} mkPredTy :: PredType -> Type mkPredTy pred = PredTy pred mkPredTys :: ThetaType -> [Type] mkPredTys preds = map PredTy preds predTypeRep :: PredType -> Type -- Convert a PredType to its "representation type"; -- the post-type-checking type used by all the Core passes of GHC. -- Unwraps only the outermost level; for example, the result might -- be a newtype application predTypeRep (IParam _ ty) = ty predTypeRep (ClassP clas tys) = mkTyConApp (classTyCon clas) tys -- Result might be a newtype application, but the consumer will -- look through that too if necessary \end{code} %************************************************************************ %* * NewTypes %* * %************************************************************************ \begin{code} splitRecNewType_maybe :: Type -> Maybe Type -- Sometimes we want to look through a recursive newtype, and that's what happens here -- It only strips *one layer* off, so the caller will usually call itself recursively -- Only applied to types of kind *, hence the newtype is always saturated splitRecNewType_maybe ty | Just ty' <- coreView ty = splitRecNewType_maybe ty' splitRecNewType_maybe (TyConApp tc tys) | isNewTyCon tc = ASSERT( tys `lengthIs` tyConArity tc ) -- splitRecNewType_maybe only be applied -- to *types* (of kind *) ASSERT( isRecursiveTyCon tc ) -- Guaranteed by coreView case newTyConRhs tc of (tvs, rep_ty) -> ASSERT( length tvs == length tys ) Just (substTyWith tvs tys rep_ty) splitRecNewType_maybe other = Nothing \end{code} %************************************************************************ %* * \subsection{Kinds and free variables} %* * %************************************************************************ --------------------------------------------------------------------- Finding the kind of a type ~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} typeKind :: Type -> Kind typeKind (TyVarTy tyvar) = tyVarKind tyvar typeKind (TyConApp tycon tys) = foldr (\_ k -> kindFunResult k) (tyConKind tycon) tys typeKind (NoteTy _ ty) = typeKind ty typeKind (PredTy _) = liftedTypeKind -- Predicates are always -- represented by lifted types typeKind (AppTy fun arg) = kindFunResult (typeKind fun) typeKind (FunTy arg res) = liftedTypeKind typeKind (ForAllTy tv ty) = typeKind ty \end{code} --------------------------------------------------------------------- Free variables of a type ~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} tyVarsOfType :: Type -> TyVarSet -- NB: for type synonyms tyVarsOfType does *not* expand the synonym tyVarsOfType (TyVarTy tv) = unitVarSet tv tyVarsOfType (TyConApp tycon tys) = tyVarsOfTypes tys tyVarsOfType (NoteTy (FTVNote tvs) ty2) = tvs tyVarsOfType (PredTy sty) = tyVarsOfPred sty tyVarsOfType (FunTy arg res) = tyVarsOfType arg `unionVarSet` tyVarsOfType res tyVarsOfType (AppTy fun arg) = tyVarsOfType fun `unionVarSet` tyVarsOfType arg tyVarsOfType (ForAllTy tyvar ty) = delVarSet (tyVarsOfType ty) tyvar tyVarsOfTypes :: [Type] -> TyVarSet tyVarsOfTypes tys = foldr (unionVarSet.tyVarsOfType) emptyVarSet tys tyVarsOfPred :: PredType -> TyVarSet tyVarsOfPred (IParam _ ty) = tyVarsOfType ty tyVarsOfPred (ClassP _ tys) = tyVarsOfTypes tys tyVarsOfTheta :: ThetaType -> TyVarSet tyVarsOfTheta = foldr (unionVarSet . tyVarsOfPred) emptyVarSet -- Add a Note with the free tyvars to the top of the type addFreeTyVars :: Type -> Type addFreeTyVars ty@(NoteTy (FTVNote _) _) = ty addFreeTyVars ty = NoteTy (FTVNote (tyVarsOfType ty)) ty \end{code} %************************************************************************ %* * \subsection{TidyType} %* * %************************************************************************ tidyTy tidies up a type for printing in an error message, or in an interface file. It doesn't change the uniques at all, just the print names. \begin{code} tidyTyVarBndr :: TidyEnv -> TyVar -> (TidyEnv, TyVar) tidyTyVarBndr (tidy_env, subst) tyvar = case tidyOccName tidy_env (getOccName name) of (tidy', occ') -> ((tidy', subst'), tyvar') where subst' = extendVarEnv subst tyvar tyvar' tyvar' = setTyVarName tyvar name' name' = tidyNameOcc name occ' where name = tyVarName tyvar tidyFreeTyVars :: TidyEnv -> TyVarSet -> TidyEnv -- Add the free tyvars to the env in tidy form, -- so that we can tidy the type they are free in tidyFreeTyVars env tyvars = fst (tidyOpenTyVars env (varSetElems tyvars)) tidyOpenTyVars :: TidyEnv -> [TyVar] -> (TidyEnv, [TyVar]) tidyOpenTyVars env tyvars = mapAccumL tidyOpenTyVar env tyvars tidyOpenTyVar :: TidyEnv -> TyVar -> (TidyEnv, TyVar) -- Treat a new tyvar as a binder, and give it a fresh tidy name tidyOpenTyVar env@(tidy_env, subst) tyvar = case lookupVarEnv subst tyvar of Just tyvar' -> (env, tyvar') -- Already substituted Nothing -> tidyTyVarBndr env tyvar -- Treat it as a binder tidyType :: TidyEnv -> Type -> Type tidyType env@(tidy_env, subst) ty = go ty where go (TyVarTy tv) = case lookupVarEnv subst tv of Nothing -> TyVarTy tv Just tv' -> TyVarTy tv' go (TyConApp tycon tys) = let args = map go tys in args `seqList` TyConApp tycon args go (NoteTy note ty) = (NoteTy $! (go_note note)) $! (go ty) go (PredTy sty) = PredTy (tidyPred env sty) go (AppTy fun arg) = (AppTy $! (go fun)) $! (go arg) go (FunTy fun arg) = (FunTy $! (go fun)) $! (go arg) go (ForAllTy tv ty) = ForAllTy tvp $! (tidyType envp ty) where (envp, tvp) = tidyTyVarBndr env tv go_note note@(FTVNote ftvs) = note -- No need to tidy the free tyvars tidyTypes env tys = map (tidyType env) tys tidyPred :: TidyEnv -> PredType -> PredType tidyPred env (IParam n ty) = IParam n (tidyType env ty) tidyPred env (ClassP clas tys) = ClassP clas (tidyTypes env tys) \end{code} @tidyOpenType@ grabs the free type variables, tidies them and then uses @tidyType@ to work over the type itself \begin{code} tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type) tidyOpenType env ty = (env', tidyType env' ty) where env' = tidyFreeTyVars env (tyVarsOfType ty) tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) tidyOpenTypes env tys = mapAccumL tidyOpenType env tys tidyTopType :: Type -> Type tidyTopType ty = tidyType emptyTidyEnv ty \end{code} %************************************************************************ %* * Tidying Kinds %* * %************************************************************************ We use a grevious hack for tidying KindVars. A TidyEnv contains a (VarEnv Var) substitution, to express the renaming; but KindVars are not Vars. The Right Thing ultimately is to make them into Vars (and perhaps make Kinds into Types), but I just do a hack here: I make up a TyVar just to remember the new OccName for the renamed KindVar \begin{code} tidyKind :: TidyEnv -> Kind -> (TidyEnv, Kind) tidyKind env@(tidy_env, subst) (KindVar kvar) | Just tv <- lookupVarEnv_Directly subst uniq = (env, KindVar (setKindVarOcc kvar (getOccName tv))) | otherwise = ((tidy', subst'), KindVar kvar') where uniq = kindVarUniq kvar (tidy', occ') = tidyOccName tidy_env (kindVarOcc kvar) kvar' = setKindVarOcc kvar occ' fake_tv = mkTyVar tv_name (panic "tidyKind:fake tv kind") tv_name = mkInternalName uniq occ' noSrcLoc subst' = extendVarEnv subst fake_tv fake_tv tidyKind env (FunKind k1 k2) = (env2, FunKind k1' k2') where (env1, k1') = tidyKind env k1 (env2, k2') = tidyKind env1 k2 tidyKind env k = (env, k) -- Atomic kinds \end{code} %************************************************************************ %* * \subsection{Liftedness} %* * %************************************************************************ \begin{code} isUnLiftedType :: Type -> Bool -- isUnLiftedType returns True for forall'd unlifted types: -- x :: forall a. Int# -- I found bindings like these were getting floated to the top level. -- They are pretty bogus types, mind you. It would be better never to -- construct them isUnLiftedType ty | Just ty' <- coreView ty = isUnLiftedType ty' isUnLiftedType (ForAllTy tv ty) = isUnLiftedType ty isUnLiftedType (TyConApp tc _) = isUnLiftedTyCon tc isUnLiftedType other = False isUnboxedTupleType :: Type -> Bool isUnboxedTupleType ty = case splitTyConApp_maybe ty of Just (tc, ty_args) -> isUnboxedTupleTyCon tc other -> False -- Should only be applied to *types*; hence the assert isAlgType :: Type -> Bool isAlgType ty = case splitTyConApp_maybe ty of Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) isAlgTyCon tc other -> False \end{code} @isStrictType@ computes whether an argument (or let RHS) should be computed strictly or lazily, based only on its type. Works just like isUnLiftedType, except that it has a special case for dictionaries. Since it takes account of ClassP, you might think this function should be in TcType, but isStrictType is used by DataCon, which is below TcType in the hierarchy, so it's convenient to put it here. \begin{code} isStrictType (PredTy pred) = isStrictPred pred isStrictType ty | Just ty' <- coreView ty = isStrictType ty' isStrictType (ForAllTy tv ty) = isStrictType ty isStrictType (TyConApp tc _) = isUnLiftedTyCon tc isStrictType other = False isStrictPred (ClassP clas _) = opt_DictsStrict && not (isNewTyCon (classTyCon clas)) isStrictPred other = False -- We may be strict in dictionary types, but only if it -- has more than one component. -- [Being strict in a single-component dictionary risks -- poking the dictionary component, which is wrong.] \end{code} \begin{code} isPrimitiveType :: Type -> Bool -- Returns types that are opaque to Haskell. -- Most of these are unlifted, but now that we interact with .NET, we -- may have primtive (foreign-imported) types that are lifted isPrimitiveType ty = case splitTyConApp_maybe ty of Just (tc, ty_args) -> ASSERT( ty_args `lengthIs` tyConArity tc ) isPrimTyCon tc other -> False \end{code} %************************************************************************ %* * \subsection{Sequencing on types %* * %************************************************************************ \begin{code} seqType :: Type -> () seqType (TyVarTy tv) = tv `seq` () seqType (AppTy t1 t2) = seqType t1 `seq` seqType t2 seqType (FunTy t1 t2) = seqType t1 `seq` seqType t2 seqType (NoteTy note t2) = seqNote note `seq` seqType t2 seqType (PredTy p) = seqPred p seqType (TyConApp tc tys) = tc `seq` seqTypes tys seqType (ForAllTy tv ty) = tv `seq` seqType ty seqTypes :: [Type] -> () seqTypes [] = () seqTypes (ty:tys) = seqType ty `seq` seqTypes tys seqNote :: TyNote -> () seqNote (FTVNote set) = sizeUniqSet set `seq` () seqPred :: PredType -> () seqPred (ClassP c tys) = c `seq` seqTypes tys seqPred (IParam n ty) = n `seq` seqType ty \end{code} %************************************************************************ %* * Equality for Core types (We don't use instances so that we know where it happens) %* * %************************************************************************ Note that eqType works right even for partial applications of newtypes. See Note [Newtype eta] in TyCon.lhs \begin{code} coreEqType :: Type -> Type -> Bool coreEqType t1 t2 = eq rn_env t1 t2 where rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2)) eq env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 == rnOccR env tv2 eq env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = eq (rnBndr2 env tv1 tv2) t1 t2 eq env (AppTy s1 t1) (AppTy s2 t2) = eq env s1 s2 && eq env t1 t2 eq env (FunTy s1 t1) (FunTy s2 t2) = eq env s1 s2 && eq env t1 t2 eq env (TyConApp tc1 tys1) (TyConApp tc2 tys2) | tc1 == tc2, all2 (eq env) tys1 tys2 = True -- The lengths should be equal because -- the two types have the same kind -- NB: if the type constructors differ that does not -- necessarily mean that the types aren't equal -- (synonyms, newtypes) -- Even if the type constructors are the same, but the arguments -- differ, the two types could be the same (e.g. if the arg is just -- ignored in the RHS). In both these cases we fall through to an -- attempt to expand one side or the other. -- Now deal with newtypes, synonyms, pred-tys eq env t1 t2 | Just t1' <- coreView t1 = eq env t1' t2 | Just t2' <- coreView t2 = eq env t1 t2' -- Fall through case; not equal! eq env t1 t2 = False \end{code} %************************************************************************ %* * Comparision for source types (We don't use instances so that we know where it happens) %* * %************************************************************************ Note that tcEqType, tcCmpType do *not* look through newtypes, PredTypes \begin{code} tcEqType :: Type -> Type -> Bool tcEqType t1 t2 = isEqual $ cmpType t1 t2 tcEqTypes :: [Type] -> [Type] -> Bool tcEqTypes tys1 tys2 = isEqual $ cmpTypes tys1 tys2 tcCmpType :: Type -> Type -> Ordering tcCmpType t1 t2 = cmpType t1 t2 tcCmpTypes :: [Type] -> [Type] -> Ordering tcCmpTypes tys1 tys2 = cmpTypes tys1 tys2 tcEqPred :: PredType -> PredType -> Bool tcEqPred p1 p2 = isEqual $ cmpPred p1 p2 tcCmpPred :: PredType -> PredType -> Ordering tcCmpPred p1 p2 = cmpPred p1 p2 tcEqTypeX :: RnEnv2 -> Type -> Type -> Bool tcEqTypeX env t1 t2 = isEqual $ cmpTypeX env t1 t2 \end{code} Now here comes the real worker \begin{code} cmpType :: Type -> Type -> Ordering cmpType t1 t2 = cmpTypeX rn_env t1 t2 where rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfType t1 `unionVarSet` tyVarsOfType t2)) cmpTypes :: [Type] -> [Type] -> Ordering cmpTypes ts1 ts2 = cmpTypesX rn_env ts1 ts2 where rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfTypes ts1 `unionVarSet` tyVarsOfTypes ts2)) cmpPred :: PredType -> PredType -> Ordering cmpPred p1 p2 = cmpPredX rn_env p1 p2 where rn_env = mkRnEnv2 (mkInScopeSet (tyVarsOfPred p1 `unionVarSet` tyVarsOfPred p2)) cmpTypeX :: RnEnv2 -> Type -> Type -> Ordering -- Main workhorse cmpTypeX env t1 t2 | Just t1' <- tcView t1 = cmpTypeX env t1' t2 | Just t2' <- tcView t2 = cmpTypeX env t1 t2' cmpTypeX env (TyVarTy tv1) (TyVarTy tv2) = rnOccL env tv1 `compare` rnOccR env tv2 cmpTypeX env (ForAllTy tv1 t1) (ForAllTy tv2 t2) = cmpTypeX (rnBndr2 env tv1 tv2) t1 t2 cmpTypeX env (AppTy s1 t1) (AppTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2 cmpTypeX env (FunTy s1 t1) (FunTy s2 t2) = cmpTypeX env s1 s2 `thenCmp` cmpTypeX env t1 t2 cmpTypeX env (PredTy p1) (PredTy p2) = cmpPredX env p1 p2 cmpTypeX env (TyConApp tc1 tys1) (TyConApp tc2 tys2) = (tc1 `compare` tc2) `thenCmp` cmpTypesX env tys1 tys2 cmpTypeX env t1 (NoteTy _ t2) = cmpTypeX env t1 t2 -- Deal with the rest: TyVarTy < AppTy < FunTy < TyConApp < ForAllTy < PredTy cmpTypeX env (AppTy _ _) (TyVarTy _) = GT cmpTypeX env (FunTy _ _) (TyVarTy _) = GT cmpTypeX env (FunTy _ _) (AppTy _ _) = GT cmpTypeX env (TyConApp _ _) (TyVarTy _) = GT cmpTypeX env (TyConApp _ _) (AppTy _ _) = GT cmpTypeX env (TyConApp _ _) (FunTy _ _) = GT cmpTypeX env (ForAllTy _ _) (TyVarTy _) = GT cmpTypeX env (ForAllTy _ _) (AppTy _ _) = GT cmpTypeX env (ForAllTy _ _) (FunTy _ _) = GT cmpTypeX env (ForAllTy _ _) (TyConApp _ _) = GT cmpTypeX env (PredTy _) t2 = GT cmpTypeX env _ _ = LT ------------- cmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering cmpTypesX env [] [] = EQ cmpTypesX env (t1:tys1) (t2:tys2) = cmpTypeX env t1 t2 `thenCmp` cmpTypesX env tys1 tys2 cmpTypesX env [] tys = LT cmpTypesX env ty [] = GT ------------- cmpPredX :: RnEnv2 -> PredType -> PredType -> Ordering cmpPredX env (IParam n1 ty1) (IParam n2 ty2) = (n1 `compare` n2) `thenCmp` cmpTypeX env ty1 ty2 -- Compare types as well as names for implicit parameters -- This comparison is used exclusively (I think) for the -- finite map built in TcSimplify cmpPredX env (ClassP c1 tys1) (ClassP c2 tys2) = (c1 `compare` c2) `thenCmp` cmpTypesX env tys1 tys2 cmpPredX env (IParam _ _) (ClassP _ _) = LT cmpPredX env (ClassP _ _) (IParam _ _) = GT \end{code} PredTypes are used as a FM key in TcSimplify, so we take the easy path and make them an instance of Ord \begin{code} instance Eq PredType where { (==) = tcEqPred } instance Ord PredType where { compare = tcCmpPred } \end{code} %************************************************************************ %* * Type substitutions %* * %************************************************************************ \begin{code} data TvSubst = TvSubst InScopeSet -- The in-scope type variables TvSubstEnv -- The substitution itself -- See Note [Apply Once] {- ---------------------------------------------------------- Note [Apply Once] We use TvSubsts to instantiate things, and we might instantiate forall a b. ty \with the types [a, b], or [b, a]. So the substition might go [a->b, b->a]. A similar situation arises in Core when we find a beta redex like (/\ a /\ b -> e) b a Then we also end up with a substition that permutes type variables. Other variations happen to; for example [a -> (a, b)]. *************************************************** *** So a TvSubst must be applied precisely once *** *************************************************** A TvSubst is not idempotent, but, unlike the non-idempotent substitution we use during unifications, it must not be repeatedly applied. -------------------------------------------------------------- -} type TvSubstEnv = TyVarEnv Type -- A TvSubstEnv is used both inside a TvSubst (with the apply-once -- invariant discussed in Note [Apply Once]), and also independently -- in the middle of matching, and unification (see Types.Unify) -- So you have to look at the context to know if it's idempotent or -- apply-once or whatever emptyTvSubstEnv :: TvSubstEnv emptyTvSubstEnv = emptyVarEnv composeTvSubst :: InScopeSet -> TvSubstEnv -> TvSubstEnv -> TvSubstEnv -- (compose env1 env2)(x) is env1(env2(x)); i.e. apply env2 then env1 -- It assumes that both are idempotent -- Typically, env1 is the refinement to a base substitution env2 composeTvSubst in_scope env1 env2 = env1 `plusVarEnv` mapVarEnv (substTy subst1) env2 -- First apply env1 to the range of env2 -- Then combine the two, making sure that env1 loses if -- both bind the same variable; that's why env1 is the -- *left* argument to plusVarEnv, because the right arg wins where subst1 = TvSubst in_scope env1 emptyTvSubst = TvSubst emptyInScopeSet emptyVarEnv isEmptyTvSubst :: TvSubst -> Bool isEmptyTvSubst (TvSubst _ env) = isEmptyVarEnv env mkTvSubst :: InScopeSet -> TvSubstEnv -> TvSubst mkTvSubst = TvSubst getTvSubstEnv :: TvSubst -> TvSubstEnv getTvSubstEnv (TvSubst _ env) = env getTvInScope :: TvSubst -> InScopeSet getTvInScope (TvSubst in_scope _) = in_scope isInScope :: Var -> TvSubst -> Bool isInScope v (TvSubst in_scope _) = v `elemInScopeSet` in_scope notElemTvSubst :: TyVar -> TvSubst -> Bool notElemTvSubst tv (TvSubst _ env) = not (tv `elemVarEnv` env) setTvSubstEnv :: TvSubst -> TvSubstEnv -> TvSubst setTvSubstEnv (TvSubst in_scope _) env = TvSubst in_scope env extendTvInScope :: TvSubst -> [Var] -> TvSubst extendTvInScope (TvSubst in_scope env) vars = TvSubst (extendInScopeSetList in_scope vars) env extendTvSubst :: TvSubst -> TyVar -> Type -> TvSubst extendTvSubst (TvSubst in_scope env) tv ty = TvSubst in_scope (extendVarEnv env tv ty) extendTvSubstList :: TvSubst -> [TyVar] -> [Type] -> TvSubst extendTvSubstList (TvSubst in_scope env) tvs tys = TvSubst in_scope (extendVarEnvList env (tvs `zip` tys)) -- mkOpenTvSubst and zipOpenTvSubst generate the in-scope set from -- the types given; but it's just a thunk so with a bit of luck -- it'll never be evaluated mkOpenTvSubst :: TvSubstEnv -> TvSubst mkOpenTvSubst env = TvSubst (mkInScopeSet (tyVarsOfTypes (varEnvElts env))) env zipOpenTvSubst :: [TyVar] -> [Type] -> TvSubst zipOpenTvSubst tyvars tys #ifdef DEBUG | length tyvars /= length tys = pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst | otherwise #endif = TvSubst (mkInScopeSet (tyVarsOfTypes tys)) (zipTyEnv tyvars tys) -- mkTopTvSubst is called when doing top-level substitutions. -- Here we expect that the free vars of the range of the -- substitution will be empty. mkTopTvSubst :: [(TyVar, Type)] -> TvSubst mkTopTvSubst prs = TvSubst emptyInScopeSet (mkVarEnv prs) zipTopTvSubst :: [TyVar] -> [Type] -> TvSubst zipTopTvSubst tyvars tys #ifdef DEBUG | length tyvars /= length tys = pprTrace "zipOpenTvSubst" (ppr tyvars $$ ppr tys) emptyTvSubst | otherwise #endif = TvSubst emptyInScopeSet (zipTyEnv tyvars tys) zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv zipTyEnv tyvars tys #ifdef DEBUG | length tyvars /= length tys = pprTrace "mkTopTvSubst" (ppr tyvars $$ ppr tys) emptyVarEnv | otherwise #endif = zip_ty_env tyvars tys emptyVarEnv -- Later substitutions in the list over-ride earlier ones, -- but there should be no loops zip_ty_env [] [] env = env zip_ty_env (tv:tvs) (ty:tys) env = zip_ty_env tvs tys (extendVarEnv env tv ty) -- There used to be a special case for when -- ty == TyVarTy tv -- (a not-uncommon case) in which case the substitution was dropped. -- But the type-tidier changes the print-name of a type variable without -- changing the unique, and that led to a bug. Why? Pre-tidying, we had -- a type {Foo t}, where Foo is a one-method class. So Foo is really a newtype. -- And it happened that t was the type variable of the class. Post-tiding, -- it got turned into {Foo t2}. The ext-core printer expanded this using -- sourceTypeRep, but that said "Oh, t == t2" because they have the same unique, -- and so generated a rep type mentioning t not t2. -- -- Simplest fix is to nuke the "optimisation" zip_ty_env tvs tys env = pprTrace "Var/Type length mismatch: " (ppr tvs $$ ppr tys) env -- zip_ty_env _ _ env = env instance Outputable TvSubst where ppr (TvSubst ins env) = sep[ ptext SLIT(" ppr ins), nest 2 (ptext SLIT("Env:") <+> ppr env) ] \end{code} %************************************************************************ %* * Performing type substitutions %* * %************************************************************************ \begin{code} substTyWith :: [TyVar] -> [Type] -> Type -> Type substTyWith tvs tys = ASSERT( length tvs == length tys ) substTy (zipOpenTvSubst tvs tys) substTy :: TvSubst -> Type -> Type substTy subst ty | isEmptyTvSubst subst = ty | otherwise = subst_ty subst ty substTys :: TvSubst -> [Type] -> [Type] substTys subst tys | isEmptyTvSubst subst = tys | otherwise = map (subst_ty subst) tys substTheta :: TvSubst -> ThetaType -> ThetaType substTheta subst theta | isEmptyTvSubst subst = theta | otherwise = map (substPred subst) theta substPred :: TvSubst -> PredType -> PredType substPred subst (IParam n ty) = IParam n (subst_ty subst ty) substPred subst (ClassP clas tys) = ClassP clas (map (subst_ty subst) tys) deShadowTy :: TyVarSet -> Type -> Type -- Remove any nested binders mentioning tvs deShadowTy tvs ty = subst_ty (mkTvSubst in_scope emptyTvSubstEnv) ty where in_scope = mkInScopeSet tvs -- Note that the in_scope set is poked only if we hit a forall -- so it may often never be fully computed subst_ty subst ty = go ty where go (TyVarTy tv) = substTyVar subst tv go (TyConApp tc tys) = let args = map go tys in args `seqList` TyConApp tc args go (PredTy p) = PredTy $! (substPred subst p) go (NoteTy (FTVNote _) ty2) = go ty2 -- Discard the free tyvar note go (FunTy arg res) = (FunTy $! (go arg)) $! (go res) go (AppTy fun arg) = mkAppTy (go fun) $! (go arg) -- The mkAppTy smart constructor is important -- we might be replacing (a Int), represented with App -- by [Int], represented with TyConApp go (ForAllTy tv ty) = case substTyVarBndr subst tv of (subst', tv') -> ForAllTy tv' $! (subst_ty subst' ty) substTyVar :: TvSubst -> TyVar -> Type substTyVar subst tv = case lookupTyVar subst tv of Nothing -> TyVarTy tv Just ty' -> ty' -- See Note [Apply Once] lookupTyVar :: TvSubst -> TyVar -> Maybe Type lookupTyVar (TvSubst in_scope env) tv = lookupVarEnv env tv substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar) substTyVarBndr subst@(TvSubst in_scope env) old_var | old_var == new_var -- No need to clone -- But we *must* zap any current substitution for the variable. -- For example: -- (\x.e) with id_subst = [x |-> e'] -- Here we must simply zap the substitution for x -- -- The new_id isn't cloned, but it may have a different type -- etc, so we must return it, not the old id = (TvSubst (in_scope `extendInScopeSet` new_var) (delVarEnv env old_var), new_var) | otherwise -- The new binder is in scope so -- we'd better rename it away from the in-scope variables -- Extending the substitution to do this renaming also -- has the (correct) effect of discarding any existing -- substitution for that variable = (TvSubst (in_scope `extendInScopeSet` new_var) (extendVarEnv env old_var (TyVarTy new_var)), new_var) where new_var = uniqAway in_scope old_var -- The uniqAway part makes sure the new variable is not already in scope \end{code}