% % (c) The University of Glasgow 2006 % \begin{code} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details -- | Module for type coercions, as used in System FC. See 'CoreSyn.Expr' for -- more on System FC and how coercions fit into it. -- -- Coercions are represented as types, and their kinds tell what types the -- coercion works on. The coercion kind constructor is a special TyCon that must always be saturated, like so: -- -- > typeKind (symCoercion type) :: TyConApp CoercionTyCon{...} [type, type] module Coercion ( -- * Main data type Coercion, mkCoKind, mkCoPredTy, coVarKind, coVarKind_maybe, coercionKind, coercionKinds, isIdentityCoercion, -- ** Equality predicates isEqPred, mkEqPred, getEqPredTys, isEqPredTy, -- ** Coercion transformations mkCoercion, mkSymCoercion, mkTransCoercion, mkLeftCoercion, mkRightCoercion, mkInstCoercion, mkAppCoercion, mkTyConCoercion, mkFunCoercion, mkForAllCoercion, mkInstsCoercion, mkUnsafeCoercion, mkNewTypeCoercion, mkFamInstCoercion, mkAppsCoercion, mkCsel1Coercion, mkCsel2Coercion, mkCselRCoercion, splitNewTypeRepCo_maybe, instNewTyCon_maybe, decomposeCo, unsafeCoercionTyCon, symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, rightCoercionTyCon, instCoercionTyCon, -- needed by TysWiredIn csel1CoercionTyCon, csel2CoercionTyCon, cselRCoercionTyCon, -- ** Decomposition decompLR_maybe, decompCsel_maybe, decompInst_maybe, -- ** Optimisation optCoercion, -- ** Comparison coreEqCoercion, coreEqCoercion2, -- * CoercionI CoercionI(..), isIdentityCoI, mkSymCoI, mkTransCoI, mkTyConAppCoI, mkAppTyCoI, mkFunTyCoI, mkForAllTyCoI, fromCoI, fromACo, mkClassPPredCoI, mkIParamPredCoI, mkEqPredCoI ) where #include "HsVersions.h" import TypeRep import Type import TyCon import Class import Var import VarEnv import Name import PrelNames import Util import Control.Monad import BasicTypes import MonadUtils import Outputable import FastString -- | A 'Coercion' represents a 'Type' something should be coerced to. type Coercion = Type -- | A 'CoercionKind' is always of form @ty1 ~ ty2@ and indicates the -- types that a 'Coercion' will work on. type CoercionKind = Kind ------------------------------ -- | This breaks a 'Coercion' with 'CoercionKind' @T A B C ~ T D E F@ into -- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence: -- -- > decomposeCo 3 c = [right (left (left c)), right (left c), right c] decomposeCo :: Arity -> Coercion -> [Coercion] decomposeCo n co = go n co [] where go 0 _ cos = cos go n co cos = go (n-1) (mkLeftCoercion co) (mkRightCoercion co : cos) ------------------------------ ------------------------------------------------------- -- and some coercion kind stuff coVarKind :: CoVar -> (Type,Type) -- c :: t1 ~ t2 coVarKind cv = case coVarKind_maybe cv of Just ts -> ts Nothing -> pprPanic "coVarKind" (ppr cv $$ ppr (tyVarKind cv)) coVarKind_maybe :: CoVar -> Maybe (Type,Type) coVarKind_maybe cv = splitCoKind_maybe (tyVarKind cv) -- | Take a 'CoercionKind' apart into the two types it relates: see also 'mkCoKind'. -- Panics if the argument is not a valid 'CoercionKind' splitCoKind_maybe :: Kind -> Maybe (Type, Type) splitCoKind_maybe co | Just co' <- kindView co = splitCoKind_maybe co' splitCoKind_maybe (PredTy (EqPred ty1 ty2)) = Just (ty1, ty2) splitCoKind_maybe _ = Nothing -- | Makes a 'CoercionKind' from two types: the types whose equality -- is proven by the relevant 'Coercion' mkCoKind :: Type -> Type -> CoercionKind mkCoKind ty1 ty2 = PredTy (EqPred ty1 ty2) -- | (mkCoPredTy s t r) produces the type: (s~t) => r mkCoPredTy :: Type -> Type -> Type -> Type mkCoPredTy s t r = ForAllTy (mkWildCoVar (mkCoKind s t)) r splitCoPredTy_maybe :: Type -> Maybe (Type, Type, Type) splitCoPredTy_maybe ty | Just (cv,r) <- splitForAllTy_maybe ty , isCoVar cv , Just (s,t) <- coVarKind_maybe cv = Just (s,t,r) | otherwise = Nothing -- | Tests whether a type is just a type equality predicate isEqPredTy :: Type -> Bool isEqPredTy (PredTy pred) = isEqPred pred isEqPredTy _ = False -- | Creates a type equality predicate mkEqPred :: (Type, Type) -> PredType mkEqPred (ty1, ty2) = EqPred ty1 ty2 -- | Splits apart a type equality predicate, if the supplied 'PredType' is one. -- Panics otherwise getEqPredTys :: PredType -> (Type,Type) getEqPredTys (EqPred ty1 ty2) = (ty1, ty2) getEqPredTys other = pprPanic "getEqPredTys" (ppr other) -- | If it is the case that -- -- > c :: (t1 ~ t2) -- -- i.e. the kind of @c@ is a 'CoercionKind' relating @t1@ and @t2@, then @coercionKind c = (t1, t2)@. coercionKind :: Coercion -> (Type, Type) coercionKind ty@(TyVarTy a) | isCoVar a = coVarKind a | otherwise = (ty, ty) coercionKind (AppTy ty1 ty2) = let (s1, t1) = coercionKind ty1 (s2, t2) = coercionKind ty2 in (mkAppTy s1 s2, mkAppTy t1 t2) coercionKind co@(TyConApp tc args) | Just (ar, rule) <- isCoercionTyCon_maybe tc -- CoercionTyCons carry their kinding rule, so we use it here = WARN( not (length args >= ar), ppr co ) -- Always saturated (let (ty1,ty2) = runID (rule (return . typeKind) (return . coercionKind) False (take ar args)) -- Apply the rule to the right number of args -- Always succeeds (if term is well-kinded!) (tys1, tys2) = coercionKinds (drop ar args) in (mkAppTys ty1 tys1, mkAppTys ty2 tys2)) | otherwise = let (lArgs, rArgs) = coercionKinds args in (TyConApp tc lArgs, TyConApp tc rArgs) coercionKind (FunTy ty1 ty2) = let (t1, t2) = coercionKind ty1 (s1, s2) = coercionKind ty2 in (mkFunTy t1 s1, mkFunTy t2 s2) coercionKind (ForAllTy tv ty) | isCoVar tv -- c1 :: s1~s2 c2 :: t1~t2 c3 :: r1~r2 -- ---------------------------------------------- -- c1~c2 => c3 :: (s1~t1) => r1 ~ (s2~t2) => r2 -- or -- forall (_:c1~c2) = let (c1,c2) = coVarKind tv (s1,s2) = coercionKind c1 (t1,t2) = coercionKind c2 (r1,r2) = coercionKind ty in (mkCoPredTy s1 t1 r1, mkCoPredTy s2 t2 r2) | otherwise -- c1 :: s1~s2 c2 :: t1~t2 c3 :: r1~r2 -- ---------------------------------------------- -- forall a:k. c :: forall a:k. t1 ~ forall a:k. t2 = let (ty1, ty2) = coercionKind ty in (ForAllTy tv ty1, ForAllTy tv ty2) coercionKind (PredTy (EqPred c1 c2)) = pprTrace "coercionKind" (pprEqPred (c1,c2)) $ let k1 = coercionKindPredTy c1 k2 = coercionKindPredTy c2 in (k1,k2) -- These should not show up in coercions at all -- becuase they are in the form of for-alls where coercionKindPredTy c = let (t1, t2) = coercionKind c in mkCoKind t1 t2 coercionKind (PredTy (ClassP cl args)) = let (lArgs, rArgs) = coercionKinds args in (PredTy (ClassP cl lArgs), PredTy (ClassP cl rArgs)) coercionKind (PredTy (IParam name ty)) = let (ty1, ty2) = coercionKind ty in (PredTy (IParam name ty1), PredTy (IParam name ty2)) -- | Apply 'coercionKind' to multiple 'Coercion's coercionKinds :: [Coercion] -> ([Type], [Type]) coercionKinds tys = unzip $ map coercionKind tys ------------------------------------- isIdentityCoercion :: Coercion -> Bool isIdentityCoercion co = case coercionKind co of (t1,t2) -> t1 `coreEqType` t2 \end{code} %************************************************************************ %* * Building coercions %* * %************************************************************************ Coercion kind and type mk's (make saturated TyConApp CoercionTyCon{...} args) \begin{code} -- | Make a coercion from the specified coercion 'TyCon' and the 'Type' arguments to -- that coercion. Try to use the @mk*Coercion@ family of functions instead of using this function -- if possible mkCoercion :: TyCon -> [Type] -> Coercion mkCoercion coCon args = ASSERT( tyConArity coCon == length args ) TyConApp coCon args -- | Apply a 'Coercion' to another 'Coercion', which is presumably a -- 'Coercion' constructor of some kind mkAppCoercion :: Coercion -> Coercion -> Coercion mkAppCoercion co1 co2 = mkAppTy co1 co2 -- | Applies multiple 'Coercion's to another 'Coercion', from left to right. -- See also 'mkAppCoercion' mkAppsCoercion :: Coercion -> [Coercion] -> Coercion mkAppsCoercion co1 tys = foldl mkAppTy co1 tys -- | Apply a type constructor to a list of coercions. mkTyConCoercion :: TyCon -> [Coercion] -> Coercion mkTyConCoercion con cos = mkTyConApp con cos -- | Make a function 'Coercion' between two other 'Coercion's mkFunCoercion :: Coercion -> Coercion -> Coercion mkFunCoercion co1 co2 = mkFunTy co1 co2 -- | Make a 'Coercion' which binds a variable within an inner 'Coercion' mkForAllCoercion :: Var -> Coercion -> Coercion -- note that a TyVar should be used here, not a CoVar (nor a TcTyVar) mkForAllCoercion tv co = ASSERT ( isTyVar tv ) mkForAllTy tv co ------------------------------- mkSymCoercion :: Coercion -> Coercion -- ^ Create a symmetric version of the given 'Coercion' that asserts equality -- between the same types but in the other "direction", so a kind of @t1 ~ t2@ -- becomes the kind @t2 ~ t1@. mkSymCoercion g = mkCoercion symCoercionTyCon [g] mkTransCoercion :: Coercion -> Coercion -> Coercion -- ^ Create a new 'Coercion' by exploiting transitivity on the two given 'Coercion's. mkTransCoercion g1 g2 = mkCoercion transCoercionTyCon [g1, g2] mkLeftCoercion :: Coercion -> Coercion -- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of -- the "functions" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: -- -- > mkLeftCoercion c :: f ~ g mkLeftCoercion co = mkCoercion leftCoercionTyCon [co] mkRightCoercion :: Coercion -> Coercion -- ^ From an application 'Coercion' build a 'Coercion' that asserts the equality of -- the "arguments" on either side of the type equality. So if @c@ has kind @f x ~ g y@ then: -- -- > mkLeftCoercion c :: x ~ y mkRightCoercion co = mkCoercion rightCoercionTyCon [co] mkCsel1Coercion, mkCsel2Coercion, mkCselRCoercion :: Coercion -> Coercion mkCsel1Coercion co = mkCoercion csel1CoercionTyCon [co] mkCsel2Coercion co = mkCoercion csel2CoercionTyCon [co] mkCselRCoercion co = mkCoercion cselRCoercionTyCon [co] ------------------------------- mkInstCoercion :: Coercion -> Type -> Coercion -- ^ Instantiates a 'Coercion' with a 'Type' argument. If possible, it immediately performs -- the resulting beta-reduction, otherwise it creates a suspended instantiation. mkInstCoercion co ty = mkCoercion instCoercionTyCon [co, ty] mkInstsCoercion :: Coercion -> [Type] -> Coercion -- ^ As 'mkInstCoercion', but instantiates the coercion with a number of type arguments, left-to-right mkInstsCoercion co tys = foldl mkInstCoercion co tys -- | Manufacture a coercion from this air. Needless to say, this is not usually safe, -- but it is used when we know we are dealing with bottom, which is one case in which -- it is safe. This is also used implement the @unsafeCoerce#@ primitive. mkUnsafeCoercion :: Type -> Type -> Coercion mkUnsafeCoercion ty1 ty2 = mkCoercion unsafeCoercionTyCon [ty1, ty2] -- See note [Newtype coercions] in TyCon -- | Create a coercion suitable for the given 'TyCon'. The 'Name' should be that of a -- new coercion 'TyCon', the 'TyVar's the arguments expected by the @newtype@ and the -- type the appropriate right hand side of the @newtype@, with the free variables -- a subset of those 'TyVar's. mkNewTypeCoercion :: Name -> TyCon -> [TyVar] -> Type -> TyCon mkNewTypeCoercion name tycon tvs rhs_ty = mkCoercionTyCon name co_con_arity rule where co_con_arity = length tvs rule :: CoTyConKindChecker rule kc_ty _kc_co checking args = do { ks <- mapM kc_ty args ; unless (not checking || kindAppOk (tyConKind tycon) ks) (fail "Argument kind mis-match") ; return (TyConApp tycon args, substTyWith tvs args rhs_ty) } -- | Create a coercion identifying a @data@, @newtype@ or @type@ representation type -- and its family instance. It has the form @Co tvs :: F ts ~ R tvs@, where @Co@ is -- the coercion tycon built here, @F@ the family tycon and @R@ the (derived) -- representation tycon. mkFamInstCoercion :: Name -- ^ Unique name for the coercion tycon -> [TyVar] -- ^ Type parameters of the coercion (@tvs@) -> TyCon -- ^ Family tycon (@F@) -> [Type] -- ^ Type instance (@ts@) -> TyCon -- ^ Representation tycon (@R@) -> TyCon -- ^ Coercion tycon (@Co@) mkFamInstCoercion name tvs family instTys rep_tycon = mkCoercionTyCon name coArity rule where coArity = length tvs rule :: CoTyConKindChecker rule kc_ty _kc_co checking args = do { ks <- mapM kc_ty args ; unless (not checking || kindAppOk (tyConKind rep_tycon) ks) (fail "Argument kind mis-match") ; return (substTyWith tvs args $ -- with sigma = [tys/tvs], TyConApp family instTys -- sigma (F ts) , TyConApp rep_tycon args) } -- ~ R tys kindAppOk :: Kind -> [Kind] -> Bool kindAppOk _ [] = True kindAppOk kfn (k:ks) = case splitKindFunTy_maybe kfn of Just (kfa, kfb) | k `isSubKind` kfa -> kindAppOk kfb ks _other -> False \end{code} %************************************************************************ %* * Coercion Type Constructors %* * %************************************************************************ Example. The coercion ((sym c) (sym d) (sym e)) will be represented by (TyConApp sym [c, sym d, sym e]) If sym c :: p1=q1 sym d :: p2=q2 sym e :: p3=q3 then ((sym c) (sym d) (sym e)) :: (p1 p2 p3)=(q1 q2 q3) \begin{code} -- | Coercion type constructors: avoid using these directly and instead use -- the @mk*Coercion@ and @split*Coercion@ family of functions if possible. -- -- Each coercion TyCon is built with the special CoercionTyCon record and -- carries its own kinding rule. Such CoercionTyCons must be fully applied -- by any TyConApp in which they are applied, however they may also be over -- applied (see example above) and the kinding function must deal with this. symCoercionTyCon, transCoercionTyCon, leftCoercionTyCon, rightCoercionTyCon, instCoercionTyCon, unsafeCoercionTyCon, csel1CoercionTyCon, csel2CoercionTyCon, cselRCoercionTyCon :: TyCon symCoercionTyCon = mkCoercionTyCon symCoercionTyConName 1 kc_sym where kc_sym :: CoTyConKindChecker kc_sym _kc_ty kc_co _ (co:_) = do { (ty1,ty2) <- kc_co co ; return (ty2,ty1) } kc_sym _ _ _ _ = panic "kc_sym" transCoercionTyCon = mkCoercionTyCon transCoercionTyConName 2 kc_trans where kc_trans :: CoTyConKindChecker kc_trans _kc_ty kc_co checking (co1:co2:_) = do { (a1, r1) <- kc_co co1 ; (a2, r2) <- kc_co co2 ; unless (not checking || (r1 `coreEqType` a2)) (fail "Trans coercion mis-match") ; return (a1, r2) } kc_trans _ _ _ _ = panic "kc_sym" --------------------------------------------------- leftCoercionTyCon = mkCoercionTyCon leftCoercionTyConName 1 (kcLR_help fst) rightCoercionTyCon = mkCoercionTyCon rightCoercionTyConName 1 (kcLR_help snd) kcLR_help :: (forall a. (a,a)->a) -> CoTyConKindChecker kcLR_help select _kc_ty kc_co _checking (co : _) = do { (ty1, ty2) <- kc_co co ; case decompLR_maybe ty1 ty2 of Nothing -> fail "decompLR" Just res -> return (select res) } kcLR_help _ _ _ _ _ = panic "kcLR_help" decompLR_maybe :: Type -> Type -> Maybe ((Type,Type), (Type,Type)) -- Helper for left and right. Finds coercion kind of its input and -- returns the left and right projections of the coercion... -- -- if c :: t1 s1 ~ t2 s2 then splitCoercionKindOf c = ((t1, t2), (s1, s2)) decompLR_maybe ty1 ty2 | Just (ty_fun1, ty_arg1) <- splitAppTy_maybe ty1 , Just (ty_fun2, ty_arg2) <- splitAppTy_maybe ty2 = Just ((ty_fun1, ty_fun2),(ty_arg1, ty_arg2)) decompLR_maybe _ _ = Nothing --------------------------------------------------- instCoercionTyCon = mkCoercionTyCon instCoercionTyConName 2 kcInst_help where kcInst_help :: CoTyConKindChecker kcInst_help kc_ty kc_co checking (co : ty : _) = do { (t1,t2) <- kc_co co ; k <- kc_ty ty ; case decompInst_maybe t1 t2 of Nothing -> fail "decompInst" Just ((tv1,tv2), (ty1,ty2)) -> do { unless (not checking || (k `isSubKind` tyVarKind tv1)) (fail "Coercion instantation kind mis-match") ; return (substTyWith [tv1] [ty] ty1, substTyWith [tv2] [ty] ty2) } } kcInst_help _ _ _ _ = panic "kcInst_help" decompInst_maybe :: Type -> Type -> Maybe ((TyVar,TyVar), (Type,Type)) decompInst_maybe ty1 ty2 | Just (tv1,r1) <- splitForAllTy_maybe ty1 , Just (tv2,r2) <- splitForAllTy_maybe ty2 = Just ((tv1,tv2), (r1,r2)) decompInst_maybe _ _ = Nothing --------------------------------------------------- unsafeCoercionTyCon = mkCoercionTyCon unsafeCoercionTyConName 2 kc_unsafe where kc_unsafe kc_ty _kc_co _checking (ty1:ty2:_) = do { _ <- kc_ty ty1 ; _ <- kc_ty ty2 ; return (ty1,ty2) } kc_unsafe _ _ _ _ = panic "kc_unsafe" --------------------------------------------------- -- The csel* family csel1CoercionTyCon = mkCoercionTyCon csel1CoercionTyConName 1 (kcCsel_help fstOf3) csel2CoercionTyCon = mkCoercionTyCon csel2CoercionTyConName 1 (kcCsel_help sndOf3) cselRCoercionTyCon = mkCoercionTyCon cselRCoercionTyConName 1 (kcCsel_help thirdOf3) kcCsel_help :: (forall a. (a,a,a) -> a) -> CoTyConKindChecker kcCsel_help select _kc_ty kc_co _checking (co : _) = do { (ty1,ty2) <- kc_co co ; case decompCsel_maybe ty1 ty2 of Nothing -> fail "decompCsel" Just res -> return (select res) } kcCsel_help _ _ _ _ _ = panic "kcCsel_help" decompCsel_maybe :: Type -> Type -> Maybe ((Type,Type), (Type,Type), (Type,Type)) -- If co :: (s1~t1 => r1) ~ (s2~t2 => r2) -- Then csel1 co :: s1 ~ s2 -- csel2 co :: t1 ~ t2 -- cselR co :: r1 ~ r2 decompCsel_maybe ty1 ty2 | Just (s1, t1, r1) <- splitCoPredTy_maybe ty1 , Just (s2, t2, r2) <- splitCoPredTy_maybe ty2 = Just ((s1,s2), (t1,t2), (r1,r2)) decompCsel_maybe _ _ = Nothing fstOf3 :: (a,b,c) -> a sndOf3 :: (a,b,c) -> b thirdOf3 :: (a,b,c) -> c fstOf3 (a,_,_) = a sndOf3 (_,b,_) = b thirdOf3 (_,_,c) = c -------------------------------------- -- Their Names transCoercionTyConName, symCoercionTyConName, leftCoercionTyConName, rightCoercionTyConName, instCoercionTyConName, unsafeCoercionTyConName, csel1CoercionTyConName, csel2CoercionTyConName, cselRCoercionTyConName :: Name transCoercionTyConName = mkCoConName (fsLit "trans") transCoercionTyConKey transCoercionTyCon symCoercionTyConName = mkCoConName (fsLit "sym") symCoercionTyConKey symCoercionTyCon leftCoercionTyConName = mkCoConName (fsLit "left") leftCoercionTyConKey leftCoercionTyCon rightCoercionTyConName = mkCoConName (fsLit "right") rightCoercionTyConKey rightCoercionTyCon instCoercionTyConName = mkCoConName (fsLit "inst") instCoercionTyConKey instCoercionTyCon csel1CoercionTyConName = mkCoConName (fsLit "csel1") csel1CoercionTyConKey csel1CoercionTyCon csel2CoercionTyConName = mkCoConName (fsLit "csel2") csel2CoercionTyConKey csel2CoercionTyCon cselRCoercionTyConName = mkCoConName (fsLit "cselR") cselRCoercionTyConKey cselRCoercionTyCon unsafeCoercionTyConName = mkCoConName (fsLit "CoUnsafe") unsafeCoercionTyConKey unsafeCoercionTyCon mkCoConName :: FastString -> Unique -> TyCon -> Name mkCoConName occ key coCon = mkWiredInName gHC_PRIM (mkTcOccFS occ) key (ATyCon coCon) BuiltInSyntax \end{code} %************************************************************************ %* * Newtypes %* * %************************************************************************ \begin{code} instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, CoercionI) -- ^ If @co :: T ts ~ rep_ty@ then: -- -- > instNewTyCon_maybe T ts = Just (rep_ty, co) instNewTyCon_maybe tc tys | Just (tvs, ty, mb_co_tc) <- unwrapNewTyCon_maybe tc = ASSERT( tys `lengthIs` tyConArity tc ) Just (substTyWith tvs tys ty, case mb_co_tc of Nothing -> IdCo Just co_tc -> ACo (mkTyConApp co_tc tys)) | otherwise = Nothing -- this is here to avoid module loops splitNewTypeRepCo_maybe :: Type -> Maybe (Type, Coercion) -- ^ Sometimes we want to look through a @newtype@ and get its associated coercion. -- This function only strips *one layer* of @newtype@ off, so the caller will usually call -- itself recursively. Furthermore, this function should only be applied to types of kind @*@, -- hence the newtype is always saturated. If @co : ty ~ ty'@ then: -- -- > splitNewTypeRepCo_maybe ty = Just (ty', co) -- -- The function returns @Nothing@ for non-@newtypes@ or fully-transparent @newtype@s. splitNewTypeRepCo_maybe ty | Just ty' <- coreView ty = splitNewTypeRepCo_maybe ty' splitNewTypeRepCo_maybe (TyConApp tc tys) | Just (ty', coi) <- instNewTyCon_maybe tc tys = case coi of ACo co -> Just (ty', co) IdCo -> panic "splitNewTypeRepCo_maybe" -- This case handled by coreView splitNewTypeRepCo_maybe _ = Nothing -- | Determines syntactic equality of coercions coreEqCoercion :: Coercion -> Coercion -> Bool coreEqCoercion = coreEqType coreEqCoercion2 :: RnEnv2 -> Coercion -> Coercion -> Bool coreEqCoercion2 = coreEqType2 \end{code} %************************************************************************ %* * CoercionI and its constructors %* * %************************************************************************ -------------------------------------- -- CoercionI smart constructors -- lifted smart constructors of ordinary coercions \begin{code} -- | 'CoercionI' represents a /lifted/ ordinary 'Coercion', in that it -- can represent either one of: -- -- 1. A proper 'Coercion' -- -- 2. The identity coercion data CoercionI = IdCo | ACo Coercion instance Outputable CoercionI where ppr IdCo = ptext (sLit "IdCo") ppr (ACo co) = ppr co isIdentityCoI :: CoercionI -> Bool isIdentityCoI IdCo = True isIdentityCoI _ = False -- | Tests whether all the given 'CoercionI's represent the identity coercion allIdCoIs :: [CoercionI] -> Bool allIdCoIs = all isIdentityCoI -- | For each 'CoercionI' in the input list, return either the 'Coercion' it -- contains or the corresponding 'Type' from the other list zipCoArgs :: [CoercionI] -> [Type] -> [Coercion] zipCoArgs cois tys = zipWith fromCoI cois tys -- | Return either the 'Coercion' contained within the 'CoercionI' or the given -- 'Type' if the 'CoercionI' is the identity 'Coercion' fromCoI :: CoercionI -> Type -> Type fromCoI IdCo ty = ty -- Identity coercion represented fromCoI (ACo co) _ = co -- by the type itself -- | Smart constructor for @sym@ on 'CoercionI', see also 'mkSymCoercion' mkSymCoI :: CoercionI -> CoercionI mkSymCoI IdCo = IdCo mkSymCoI (ACo co) = ACo $ mkCoercion symCoercionTyCon [co] -- the smart constructor -- is too smart with tyvars -- | Smart constructor for @trans@ on 'CoercionI', see also 'mkTransCoercion' mkTransCoI :: CoercionI -> CoercionI -> CoercionI mkTransCoI IdCo aco = aco mkTransCoI aco IdCo = aco mkTransCoI (ACo co1) (ACo co2) = ACo $ mkTransCoercion co1 co2 -- | Smart constructor for type constructor application on 'CoercionI', see also 'mkAppCoercion' mkTyConAppCoI :: TyCon -> [Type] -> [CoercionI] -> CoercionI mkTyConAppCoI tyCon tys cois | allIdCoIs cois = IdCo | otherwise = ACo (TyConApp tyCon (zipCoArgs cois tys)) -- | Smart constructor for honest-to-god 'Coercion' application on 'CoercionI', see also 'mkAppCoercion' mkAppTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkAppTyCoI _ IdCo _ IdCo = IdCo mkAppTyCoI ty1 coi1 ty2 coi2 = ACo $ AppTy (fromCoI coi1 ty1) (fromCoI coi2 ty2) mkFunTyCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkFunTyCoI _ IdCo _ IdCo = IdCo mkFunTyCoI ty1 coi1 ty2 coi2 = ACo $ FunTy (fromCoI coi1 ty1) (fromCoI coi2 ty2) -- | Smart constructor for quantified 'Coercion's on 'CoercionI', see also 'mkForAllCoercion' mkForAllTyCoI :: TyVar -> CoercionI -> CoercionI mkForAllTyCoI _ IdCo = IdCo mkForAllTyCoI tv (ACo co) = ACo $ ForAllTy tv co -- | Extract a 'Coercion' from a 'CoercionI' if it represents one. If it is the identity coercion, -- panic fromACo :: CoercionI -> Coercion fromACo (ACo co) = co fromACo (IdCo {}) = panic "fromACo" -- | Smart constructor for class 'Coercion's on 'CoercionI'. Satisfies: -- -- > mkClassPPredCoI cls tys cois :: PredTy (cls tys) ~ PredTy (cls (tys `cast` cois)) mkClassPPredCoI :: Class -> [Type] -> [CoercionI] -> CoercionI mkClassPPredCoI cls tys cois | allIdCoIs cois = IdCo | otherwise = ACo $ PredTy $ ClassP cls (zipCoArgs cois tys) -- | Smart constructor for implicit parameter 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' mkIParamPredCoI :: (IPName Name) -> CoercionI -> CoercionI mkIParamPredCoI _ IdCo = IdCo mkIParamPredCoI ipn (ACo co) = ACo $ PredTy $ IParam ipn co -- | Smart constructor for type equality 'Coercion's on 'CoercionI'. Similar to 'mkClassPPredCoI' mkEqPredCoI :: Type -> CoercionI -> Type -> CoercionI -> CoercionI mkEqPredCoI _ IdCo _ IdCo = IdCo mkEqPredCoI ty1 IdCo _ (ACo co2) = ACo $ PredTy $ EqPred ty1 co2 mkEqPredCoI _ (ACo co1) ty2 coi2 = ACo $ PredTy $ EqPred co1 (fromCoI coi2 ty2) \end{code} %************************************************************************ %* * Optimising coercions %* * %************************************************************************ \begin{code} optCoercion :: TvSubst -> Coercion -> NormalCo -- ^ optCoercion applies a substitution to a coercion, -- *and* optimises it to reduce its size optCoercion env co = opt_co env False co type NormalCo = Coercion -- Invariants: -- * The substitution has been fully applied -- * For trans coercions (co1 `trans` co2) -- co1 is not a trans, and neither co1 nor co2 is identity -- * If the coercion is the identity, it has no CoVars of CoTyCons in it (just types) type NormalNonIdCo = NormalCo -- Extra invariant: not the identity opt_co, opt_co' :: TvSubst -> Bool -- True <=> return (sym co) -> Coercion -> NormalCo opt_co = opt_co' -- opt_co sym co = pprTrace "opt_co {" (ppr sym <+> ppr co) $ -- co1 `seq` -- pprTrace "opt_co done }" (ppr co1) -- WARN( not same_co_kind, ppr co <+> dcolon <+> pprEqPred (s1,t1) -- $$ ppr co1 <+> dcolon <+> pprEqPred (s2,t2) ) -- co1 -- where -- co1 = opt_co' sym co -- same_co_kind = s1 `coreEqType` s2 && t1 `coreEqType` t2 -- (s,t) = coercionKind co -- (s1,t1) | sym = (t,s) -- | otherwise = (s,t) -- (s2,t2) = coercionKind co1 opt_co' env sym (AppTy ty1 ty2) = mkAppTy (opt_co env sym ty1) (opt_co env sym ty2) opt_co' env sym (FunTy ty1 ty2) = FunTy (opt_co env sym ty1) (opt_co env sym ty2) opt_co' env sym (PredTy (ClassP cls tys)) = PredTy (ClassP cls (map (opt_co env sym) tys)) opt_co' env sym (PredTy (IParam n ty)) = PredTy (IParam n (opt_co env sym ty)) opt_co' _ _ co@(PredTy (EqPred {})) = pprPanic "optCoercion" (ppr co) opt_co' env sym co@(TyVarTy tv) | Just ty <- lookupTyVar env tv = opt_co' (zapTvSubstEnv env) sym ty | not (isCoVar tv) = co -- Identity; does not mention a CoVar | ty1 `coreEqType` ty2 = ty1 -- Identity; ..ditto.. | not sym = co | otherwise = mkSymCoercion co where (ty1,ty2) = coVarKind tv opt_co' env sym (ForAllTy tv cor) | isCoVar tv = mkCoPredTy (opt_co env sym co1) (opt_co env sym co2) (opt_co env sym cor) | otherwise = case substTyVarBndr env tv of (env', tv') -> ForAllTy tv' (opt_co env' sym cor) where (co1,co2) = coVarKind tv opt_co' env sym (TyConApp tc cos) | isCoercionTyCon tc = foldl mkAppTy (opt_co_tc_app env sym tc (take arity cos)) (map (opt_co env sym) (drop arity cos)) | otherwise = TyConApp tc (map (opt_co env sym) cos) where arity = tyConArity tc -------- opt_co_tc_app :: TvSubst -> Bool -> TyCon -> [Coercion] -> NormalCo -- Used for CoercionTyCons only -- Arguments are *not* already simplified/substituted opt_co_tc_app env sym tc cos | tc `hasKey` symCoercionTyConKey = opt_co env (not sym) co1 | tc `hasKey` transCoercionTyConKey = if sym then opt_trans opt_co2 opt_co1 -- sym (g `o` h) = sym h `o` sym g else opt_trans opt_co1 opt_co2 | tc `hasKey` leftCoercionTyConKey , Just (opt_co1_left, _) <- splitAppTy_maybe opt_co1 = opt_co1_left -- sym (left g) = left (sym g) -- The opt_co has the sym pushed into it | tc `hasKey` rightCoercionTyConKey , Just (_, opt_co1_right) <- splitAppTy_maybe opt_co1 = opt_co1_right | tc `hasKey` csel1CoercionTyConKey , Just (s1,_,_) <- splitCoPredTy_maybe opt_co1 = s1 | tc `hasKey` csel2CoercionTyConKey , Just (_,s2,_) <- splitCoPredTy_maybe opt_co1 = s2 | tc `hasKey` cselRCoercionTyConKey , Just (_,_,r) <- splitCoPredTy_maybe opt_co1 = r | tc `hasKey` instCoercionTyConKey -- See if the first arg -- is already a forall , Just (tv, co1_body) <- splitForAllTy_maybe co1 , let ty = substTy env co2 = opt_co (extendTvSubst env tv ty) sym co1_body | tc `hasKey` instCoercionTyConKey -- See if is *now* a forall , Just (tv, opt_co1_body) <- splitForAllTy_maybe opt_co1 , let ty = substTy env co2 = substTyWith [tv] [ty] opt_co1_body -- An inefficient one-variable substitution | otherwise -- Do *not* push sym inside top-level axioms -- e.g. if g is a top-level axiom -- g a : F a ~ a -- Then (sym (g ty)) /= g (sym ty) !! = if sym then mkSymCoercion the_co else the_co where (co1 : cos1) = cos (co2 : _) = cos1 -- These opt_cos have the sym pushed into them opt_co1 = opt_co env sym co1 opt_co2 = opt_co env sym co2 -- However the_co does *not* have sym pushed into it the_co = TyConApp tc (map (opt_co env False) cos) ------------- opt_trans :: NormalCo -> NormalCo -> NormalCo opt_trans co1 co2 | isIdNormCo co1 = co2 | otherwise = opt_trans1 co1 co2 opt_trans1 :: NormalNonIdCo -> NormalCo -> NormalCo -- First arg is not the identity opt_trans1 co1 co2 | isIdNormCo co2 = co1 | otherwise = opt_trans2 co1 co2 opt_trans2 :: NormalNonIdCo -> NormalNonIdCo -> NormalCo -- Neither arg is the identity opt_trans2 (TyConApp tc [co1a,co1b]) co2 | tc `hasKey` transCoercionTyConKey = opt_trans1 co1a (opt_trans2 co1b co2) opt_trans2 co1 co2 | Just co <- opt_trans_rule co1 co2 = co opt_trans2 co1 (TyConApp tc [co2a,co2b]) | tc `hasKey` transCoercionTyConKey , Just co1_2a <- opt_trans_rule co1 co2a = if isIdNormCo co1_2a then co2b else opt_trans2 co1_2a co2b opt_trans2 co1 co2 = mkTransCoercion co1 co2 ------ opt_trans_rule :: NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo opt_trans_rule (TyConApp tc [co1]) co2 | tc `hasKey` symCoercionTyConKey , co1 `coreEqType` co2 , (_,ty2) <- coercionKind co2 = Just ty2 opt_trans_rule co1 (TyConApp tc [co2]) | tc `hasKey` symCoercionTyConKey , co1 `coreEqType` co2 , (ty1,_) <- coercionKind co1 = Just ty1 opt_trans_rule (TyConApp tc1 [co1,ty1]) (TyConApp tc2 [co2,ty2]) | tc1 `hasKey` instCoercionTyConKey , tc1 == tc2 , ty1 `coreEqType` ty2 = Just (mkInstCoercion (opt_trans2 co1 co2) ty1) opt_trans_rule (TyConApp tc1 cos1) (TyConApp tc2 cos2) | not (isCoercionTyCon tc1) || getUnique tc1 `elem` [ leftCoercionTyConKey, rightCoercionTyConKey , csel1CoercionTyConKey, csel2CoercionTyConKey , cselRCoercionTyConKey ] --Yuk! , tc1 == tc2 -- Works for left,right, and csel* family -- BUT NOT equality axioms -- E.g. (g Int) `trans` (g Bool) -- /= g (Int . Bool) = Just (TyConApp tc1 (zipWith opt_trans cos1 cos2)) opt_trans_rule co1 co2 | Just (co1a, co1b) <- splitAppTy_maybe co1 , Just (co2a, co2b) <- splitAppTy_maybe co2 = Just (mkAppTy (opt_trans co1a co2a) (opt_trans co1b co2b)) | Just (s1,t1,r1) <- splitCoPredTy_maybe co1 , Just (s2,t2,r2) <- splitCoPredTy_maybe co1 = Just (mkCoPredTy (opt_trans s1 s2) (opt_trans t1 t2) (opt_trans r1 r2)) | Just (tv1,r1) <- splitForAllTy_maybe co1 , Just (tv2,r2) <- splitForAllTy_maybe co2 , not (isCoVar tv1) -- Both have same kind , let r2' = substTyWith [tv2] [TyVarTy tv1] r2 = Just (ForAllTy tv1 (opt_trans2 r1 r2')) opt_trans_rule _ _ = Nothing ------------- isIdNormCo :: NormalCo -> Bool -- Cheap identity test: look for coercions with no coercion variables at all -- So it'll return False for (sym g `trans` g) isIdNormCo ty = go ty where go (TyVarTy tv) = not (isCoVar tv) go (AppTy t1 t2) = go t1 && go t2 go (FunTy t1 t2) = go t1 && go t2 go (ForAllTy tv ty) = go (tyVarKind tv) && go ty go (TyConApp tc tys) = not (isCoercionTyCon tc) && all go tys go (PredTy (IParam _ ty)) = go ty go (PredTy (ClassP _ tys)) = all go tys go (PredTy (EqPred t1 t2)) = go t1 && go t2 \end{code}