\section{Main} ======================================================================= Test function: Runs the Linear System Solver (Bi-CGSTAB). Provides a variety of data sets and evaluation modes to excercise the Bi-CGSTAB iterative algorithm employing the Full Factorization preconditioning strategy. Written by Brian D. Moe (Summer 1990) Modified by Kamini Shenoi (Summer 1991) Converted to Haskell by Ian R McLelland and Cordelia V Hall (Nov 1992) ======================================================================== Test may be executed by typing in a value of the form: test where is one of: none, bilu none : no preconditioning. bilu : use preconditioner. is one of: test_data, gcomp_data test_data : Artificial and contrived test data. gcomp_data : Linear system generated from actual reservoir simulations. an integer. If test_data is used, it indicates the size of the linear system. If gcomp_data is used, it indicates which data set to use. is one of: conv1, conv2 conv1 : (r,r) < 0.000001 conv2 : sqrt(r,r) < 0.0000004 Evaluation Strategy none : no preconditioning. bilu : use the preconditioner. Data Type test_data : a diagonally dominant simple system gcomp_data : a "real life" GCOMP linear system The data set means different things to different data types. test_data : Data set determines the size of the system. There will be n^2 rows & columns of blocks. gcomp_data : The data set indicates which set of files to read for data. Convergence Criterion conv1 : (r,r) < 0.000001 conv2 : sqrt(r,r) < 0.0000004 \begin{code} import Matrix -- matrix implementation import Input -- read gcomp data files import Misc -- for timing function and takeuntil import System.Environment \end{code} AbsCg imports the actual linear system solver which uses a simple conjugate gradient method. Absmatlib imports the preconditioner. \begin{code} import AbsCg (solve_iters, Cg_state (..), show_state) import Absmatlib conv1 (Cg_stateC x r p q c) = (norm r) < 0.000001 conv2 (Cg_stateC x r p q c) = sqrt (norm r) < 0.0000004 \end{code} main resps = [ReadChan stdin, -- to get input parameters ReadFile ... , -- all of the data files AppendChan stdout result] -- the final result where result = case (resps !! 0) of (Str str) -> let (process, data, set, conv) = parseInp str file1 = getFile1 set (tail resps) file2a = getFile2a set (tail resps) ... file6 = getFile6 set (tail resps) in test process data set file1 ... file6a conv _ -> error "bad read on input" ToDo: 1) write parseInp (give read a signature which does the parse) 2) write getFile functions 3) alter test, test' so that instead of propagating set, the files are passed to the appropriate function. For example, pass file5 to soln_vect, but just pass set to a_easy. 4) change soln_vect, gmat, etc. so that they get the file, not set 5) change readmtx, etc. so that x becomes "file"; no call to doread, etc. needed. \begin{code} main = do m <- getArgs let n = read (head m) putStr (result n) where result n = test bilu test_data n conv2 test_data = hard_data noscale a b = (a,b) noprecond a b = b test process data' set conv = run (test' process data' set conv, process ++ "/" ++ data' ++ "/" ++ (show set)) test' process data' set conv = header ++ output ++ "\n" where output = concat (map (show_state soln) iterations) iterations = takeuntil conv (take maxiters all_iterations) all_iterations = solve_iters scale precond a b (scale,precond) = case process of "bilu" -> (doscale,doprecond numwells) "none" -> (noscale,noprecond) _ -> error usage (a,soln,b,numwells) = case data' of "easy_data" -> (a_easy set, x1 set, mvmult a soln, 0) "hard_data" -> (a_hard set, x1 set, mvmult a soln, 0) "gcomp_data" -> (gmat set, soln_vect set, rhside set, wells set) _ -> error usage maxiters = 50 usage = "Usage: test (bilu|none) (test_data|gcomp_data)" ++ " num (conv1|conv2)" header :: [Char] header = "\nIteration norm (x-soln) norm r \n" ++ "========= ============= ======= \n" easy_data = "easy_data" hard_data = "hard_data" gcomp_data = "gcomp_data" bilu = "bilu" none = "none" \end{code}