### Whitespace forward compatibility for proposal #229

```GHC Proposal #229 changes the lexical rules of Haskell, which may
require slight whitespace adjustments in certain cases.

This patch changes formatting in nofib in a way that enables it to
compile under the proposed rules.```
parent d41a2d00
Pipeline #12767 passed with stage
in 4 minutes and 19 seconds
 ... ... @@ -75,7 +75,7 @@ the roots of two binomial trees and makes the larger a child of the smaller (thus bumping its degree by one). It is essential that this only be called on binomial trees of equal degree. >link (a @ (Node x as)) (b @ (Node y bs)) = >link (a@(Node x as)) (b@(Node y bs)) = > if x <= y then Node x (b:as) else Node y (a:bs) It will also be useful to extract the minimum element from a tree. ... ...
 ... ... @@ -17,7 +17,7 @@ p`onto`l | vertical l = proj(p)==proj(s(l)) -- v `into` ls means that proj(v) is inside (including the border of) proj(ls). into :: Vector -> Plate -> Bool v`into`p @ (Plt _ ls) v`into`p@(Plt _ ls) | vertical p = or [v`onto`l |l<-ls] | otherwise = and [a>=0| a<-zs] || and [a<=0| a<-zs] where zs = [z ( (v-s(l)) * h(l) )| l<-ls]
 ... ... @@ -332,7 +332,7 @@ show_comment tr@(TreeSt t _ _) edit_comment tr @ (TreeSt t tl gst) edit_comment tr@(TreeSt t tl gst) = x_form True [InComment "Edit Comment", InMultiText "Comment:" com] /./ exp where ... ...
 ... ... @@ -383,7 +383,7 @@ constructor (SG sg) i j k {- Datatype elimination -} recurse tmL (TM (tm @ (Binder Pi (Symbol_dec tm1 _) _ _ _)) _ sg) recurse tmL (TM (tm@(Binder Pi (Symbol_dec tm1 _) _ _ _)) _ sg) = if forall ok (zip tmL tyL) then TM (Recurse (map fst tmL) tm [] []) tm sg ... ...
 ... ... @@ -148,7 +148,7 @@ select_trm tm iL sel_trm (i:iL) (Binary' _ tm1 tm2 _ _) dcL = sel_trm iL ([tm1,tm2]!!i) dcL sel_trm (i:iL) (Cond (dc @ (Axiom_dec tm inf)) tm1 tm2 _ _) dcL sel_trm (i:iL) (Cond (dc@(Axiom_dec tm inf)) tm1 tm2 _ _) dcL | i==0 = sel_dec iL dc dcL | i/=0 = sel_trm iL ([tm1,tm2]!!(i-1)) (dc1:dcL) where ... ...
 ... ... @@ -289,13 +289,13 @@ extract_dc i dc where extract :: Int -> IDec -> [IDec] -> IDec extract 0 (dc @ (Symbol_dec _ _)) _ = dc extract 0 (dc@(Symbol_dec _ _)) _ = dc extract 0 (dc @ (Axiom_dec _ _)) _ = dc extract 0 (dc@(Axiom_dec _ _)) _ = dc extract 0 (dc @ (Def _ _ _)) _ = dc extract 0 (dc@(Def _ _ _)) _ = dc extract 0 (dc @ (Data _ _ _)) _ = dc extract 0 (dc@(Data _ _ _)) _ = dc -- extract 0 _ _ = error "BadIndex" -- ** exn ... ... @@ -379,7 +379,7 @@ typ_of_dec (Symbol_dec tm _) = tm typ_of_dec (Axiom_dec tm _) = tm typ_of_dec (dc @ (Decpair dc1 dc2 _)) typ_of_dec (dc@(Decpair dc1 dc2 _)) = if is_sym_dec dc then Binder Sigma dc1 (typ_of_dec dc2) [] [] else if is_axm_dec dc ... ... @@ -410,7 +410,7 @@ mk_fnspace tm1 tm2 mk_sms (Symbol_dec _ _) i j = (Sym i j [] [] , j+1) mk_sms (dc @ (Decpair dc1 dc2 _)) i j mk_sms (dc@(Decpair dc1 dc2 _)) i j = (Pair sms1 sms2 (typ_of_dec dc) [] [] , j2) where (sms1, j1) = mk_sms dc1 i (j+1) ... ...
 ... ... @@ -152,7 +152,7 @@ eta_match dc tm i = error "VTS_ERROR" -- ** exn make_rec fntype clause_ty [] = clause_ty make_rec (fntype @ ( Binder Pi dc tm _ _)) clause_ty (ty:tyL) make_rec (fntype@( Binder Pi dc tm _ _)) clause_ty (ty:tyL) = Binder Pi (Symbol_dec ty2 []) ty1 [] [] where ty1 = make_rec (shift_trm [] 1 fntype) (shift_trm [] 1 clause_ty) tyL ... ... @@ -163,10 +163,10 @@ make_rec (fntype @ ( Binder Pi dc tm _ _)) clause_ty (ty:tyL) gen_type i (fntype @(Binder Pi dc tm _ _)) rectypeL const [] gen_type i (fntype@(Binder Pi dc tm _ _)) rectypeL const [] = make_rec fntype (subst_trm dc tm const) rectypeL gen_type i (fntype @(Binder Pi dc tm _ _)) rectypeL const (ty : tyL) gen_type i (fntype@(Binder Pi dc tm _ _)) rectypeL const (ty : tyL) = Binder Pi (Symbol_dec (shift_trm [] i ty) []) ty1 [] [] where const1 = App (shift_trm [] 1 const) (Sym 0 0 [] []) [] [] ... ...
 ... ... @@ -106,7 +106,7 @@ lift_tactic_valid _ _ t = t lift_ordtactic_valid vf gst t @(Tree g tl NONE vf' u) lift_ordtactic_valid vf gst t@(Tree g tl NONE vf' u) = Tree g tl' dn vf' u -- handle _ => t where ... ...
 ... ... @@ -357,11 +357,11 @@ domM = fetch domE rootM :: Dom s Node rootM = gets rootE succsM :: Node -> Dom s [Node] succsM i = gets (IS.toList . (!i) . succE) succsM i = gets (IS.toList . (! i) . succE) predsM :: Node -> Dom s [Node] predsM i = gets (IS.toList . (!i) . predE) predsM i = gets (IS.toList . (! i) . predE) bucketM :: Node -> Dom s [Node] bucketM i = gets (IS.toList . (!i) . bucketE) bucketM i = gets (IS.toList . (! i) . bucketE) sizeM :: Node -> Dom s Int sizeM = fetch sizeE sdnoM :: Node -> Dom s Int ... ...
 ... ... @@ -81,7 +81,7 @@ the roots of two binomial trees and makes the larger a child of the smaller (thus bumping its degree by one). It is essential that this only be called on binomial trees of equal degree. >link (a @ (Node x as)) (b @ (Node y bs)) = >link (a@(Node x as)) (b@(Node y bs)) = > if x <= y then Node x (b:as) else Node y (a:bs) It will also be useful to extract the minimum element from a tree. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!