Simplify.lhs 74.7 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

11
import DynFlags	( dopt, DynFlag(Opt_D_dump_inlinings),
12
			  SimplifierSwitch(..)
sof's avatar
sof committed
13
			)
14
import SimplMonad
15
import SimplEnv	
16
import SimplUtils	( mkCase, mkLam, 
17
			  SimplCont(..), DupFlag(..), LetRhsFlag(..), 
18
			  mkRhsStop, mkBoringStop,  mkLazyArgStop, pushContArgs,
19
			  contResultType, countArgs, contIsDupable, contIsRhsOrArg,
20 21
			  getContArgs, interestingCallContext, interestingArg, isStrictType,
			  preInlineUnconditionally, postInlineUnconditionally, 
22
			  interestingArgContext, inlineMode, activeInline, activeRule
23
			)
24
import Id		( Id, idType, idInfo, idArity, isDataConWorkId, 
25
			  idUnfolding, setIdUnfolding, isDeadBinder,
26
			  idNewDemandInfo, setIdInfo, 
27
			  setIdOccInfo, zapLamIdInfo, setOneShotLambda
28
			)
29
import IdInfo		( OccInfo(..), isLoopBreaker,
30
			  setArityInfo, zapDemandInfo,
31
			  setUnfoldingInfo, 
32
			  occInfo
33
			)
34
import NewDemand	( isStrictDmd )
35
import TcGadt		( dataConCanMatch )
36
import DataCon		( dataConTyCon, dataConRepStrictness )
37
import TyCon		( tyConArity, isAlgTyCon, isNewTyCon, tyConDataCons_maybe )
38
import CoreSyn
39
import PprCore		( pprParendExpr, pprCoreExpr )
40
import CoreUnfold	( mkUnfolding, callSiteInline )
41
import CoreUtils	( exprIsDupable, exprIsTrivial, needsCaseBinding,
42
			  exprIsConApp_maybe, mkPiTypes, findAlt, 
43
			  exprType, exprIsHNF, findDefault, mergeAlts,
44
			  exprOkForSpeculation, exprArity, 
45
			  mkCoerce, mkSCC, mkInlineMe, applyTypeToArg,
46
                          dataConRepInstPat
47
			)
48
import Rules		( lookupRule )
49
import BasicTypes	( isMarkedStrict )
50
import CostCentre	( currentCCS )
51
import Type		( TvSubstEnv, isUnLiftedType, seqType, tyConAppArgs, funArgTy,
52 53
			  coreEqType, splitTyConApp_maybe,
			  isTyVarTy, isFunTy, tcEqType
54
			)
55
import Coercion         ( Coercion, coercionKind,
56
                          mkTransCoercion, mkSymCoercion, splitCoercionKind_maybe, decomposeCo  )
57
import VarEnv		( elemVarEnv, emptyVarEnv )
58
import TysPrim		( realWorldStatePrimTy )
59
import PrelInfo		( realWorldPrimId )
60
import BasicTypes	( TopLevelFlag(..), isTopLevel, 
61 62
			  RecFlag(..), isNonRec
			)
63
import OrdList
64
import List		( nub )
65
import Maybes		( orElse )
66
import Outputable
67
import Util             ( notNull, filterOut )
68 69 70
\end{code}


71 72
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
73 74


75 76 77 78 79 80 81 82
-----------------------------------------
	*** IMPORTANT NOTE ***
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
-----------------------------------------
	*** IMPORTANT NOTE ***
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
	ORGANISATION OF FUNCTIONS
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

	
	------------------------------
simplExpr (applied lambda)	==> simplNonRecBind
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

	------------------------------
simplRecBind	[binders already simplfied]
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
	    top-level non-recursive bindings
  Returns: 
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
	    beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a 
	"thing-inside" and returns an expression

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
	simplStrictArg
	mkAtomicArgs
	completeNonRecX
    else
	simplLazyBind
	addFloats

simplNonRecX:	[given a *simplified* RHS, but an *unsimplified* binder]
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
 
	------------------------------
simplLazyBind:	[binder already simplified, RHS not]
  Used for: recursive bindings (top level and nested)
	    top-level non-recursive bindings
	    non-top-level, but *lazy* non-recursive bindings
	[must not be strict or unboxed]
  Returns floats + an augmented environment, not an expression
  - substituteIdInfo and add result to in-scope 
	[so that rules are available in rec rhs]
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
  - completeLazyBind


completeNonRecX:	[binder and rhs both simplified]
  - if the the thing needs case binding (unlifted and not ok-for-spec)
	build a Case
   else
	completeLazyBind
	addFloats

completeLazyBind: 	[given a simplified RHS]
	[used for both rec and non-rec bindings, top level and not]
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In many ways we want to treat 
	(a) the right hand side of a let(rec), and 
	(b) a function argument
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
	
	f (g x, h x)	
	g (+ x)

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

	f (let { a = g x; b = h x } in (a,b))
	g (\y. + x y)

On the other hand if we see the let-defns

	p = (g x, h x)
	q = + x

then we *do* want to ANF-ise and eta-expand, so that p and q
can be safely inlined.   

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

	r = let x = e in (x,x)

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

	case e of (a,b) -> \x -> case a of (p,q) -> \y -> r

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
222 223


224 225 226 227 228 229 230
%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

\begin{code}
231
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
232

233
simplTopBinds env binds
234 235 236 237
  = 	-- Put all the top-level binders into scope at the start
	-- so that if a transformation rule has unexpectedly brought
	-- anything into scope, then we don't get a complaint about that.
	-- It's rather as if the top-level binders were imported.
238
    simplRecBndrs env (bindersOfBinds binds)	`thenSmpl` \ (env, bndrs') -> 
239 240 241
    simpl_binds env binds bndrs'		`thenSmpl` \ (floats, _) ->
    freeTick SimplifierDone			`thenSmpl_`
    returnSmpl (floatBinds floats)
242
  where
243 244
	-- We need to track the zapped top-level binders, because
	-- they should have their fragile IdInfo zapped (notably occurrence info)
245 246 247 248 249 250 251 252 253 254
	-- That's why we run down binds and bndrs' simultaneously.
    simpl_binds :: SimplEnv -> [InBind] -> [OutId] -> SimplM (FloatsWith ())
    simpl_binds env []		 bs = ASSERT( null bs ) returnSmpl (emptyFloats env, ())
    simpl_binds env (bind:binds) bs = simpl_bind env bind bs 		`thenSmpl` \ (floats,env) ->
				      addFloats env floats		$ \env -> 
				      simpl_binds env binds (drop_bs bind bs)

    drop_bs (NonRec _ _) (_ : bs) = bs
    drop_bs (Rec prs)    bs	  = drop (length prs) bs

255 256 257 258 259 260 261 262 263
    simpl_bind env bind bs 
      = getDOptsSmpl				`thenSmpl` \ dflags ->
        if dopt Opt_D_dump_inlinings dflags then
	   pprTrace "SimplBind" (ppr (bindersOf bind)) $ simpl_bind1 env bind bs
	else
	   simpl_bind1 env bind bs

    simpl_bind1 env (NonRec b r) (b':_) = simplRecOrTopPair env TopLevel b b' r
    simpl_bind1 env (Rec pairs)  bs'    = simplRecBind      env TopLevel pairs bs'
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
\end{code}


%************************************************************************
%*									*
\subsection{simplNonRec}
%*									*
%************************************************************************

simplNonRecBind is used for
  * non-top-level non-recursive lets in expressions
  * beta reduction

It takes 
  * An unsimplified (binder, rhs) pair
  * The env for the RHS.  It may not be the same as the
	current env because the bind might occur via (\x.E) arg

It uses the CPS form because the binding might be strict, in which
case we might discard the continuation:
	let x* = error "foo" in (...x...)

It needs to turn unlifted bindings into a @case@.  They can arise
from, say: 	(\x -> e) (4# + 3#)

\begin{code}
simplNonRecBind :: SimplEnv
		-> InId 				-- Binder
	  	-> InExpr -> SimplEnv			-- Arg, with its subst-env
	  	-> OutType				-- Type of thing computed by the context
	  	-> (SimplEnv -> SimplM FloatsWithExpr)	-- The body
	  	-> SimplM FloatsWithExpr
#ifdef DEBUG
simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
  | isTyVar bndr
  = pprPanic "simplNonRecBind" (ppr bndr <+> ppr rhs)
#endif

simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
303 304 305 306
  = simplNonRecBind' env bndr rhs rhs_se cont_ty thing_inside

simplNonRecBind' env bndr rhs rhs_se cont_ty thing_inside
  | preInlineUnconditionally env NotTopLevel bndr rhs
307
  = tick (PreInlineUnconditionally bndr)		`thenSmpl_`
308
    thing_inside (extendIdSubst env bndr (mkContEx rhs_se rhs))
309

310
  | isStrictDmd (idNewDemandInfo bndr) || isStrictType bndr_ty	-- A strict let
311
  =  	-- Don't use simplBinder because that doesn't keep 
312
	-- fragile occurrence info in the substitution
313 314
    simplNonRecBndr env bndr					`thenSmpl` \ (env, bndr1) ->
    simplStrictArg AnRhs env rhs rhs_se (idType bndr1) cont_ty	$ \ env1 rhs1 ->
315 316

	-- Now complete the binding and simplify the body
317 318 319
    let
	(env2,bndr2) = addLetIdInfo env1 bndr bndr1
    in
320
    completeNonRecX env2 True {- strict -} bndr bndr2 rhs1 thing_inside
321 322 323

  | otherwise							-- Normal, lazy case
  =  	-- Don't use simplBinder because that doesn't keep 
324
	-- fragile occurrence info in the substitution
325
    simplNonRecBndr env bndr				`thenSmpl` \ (env, bndr') ->
326 327 328
    simplLazyBind env NotTopLevel NonRecursive
		  bndr bndr' rhs rhs_se 		`thenSmpl` \ (floats, env) ->
    addFloats env floats thing_inside
329 330 331

  where
    bndr_ty = idType bndr
332 333 334 335 336 337 338 339 340 341 342 343 344
\end{code}

A specialised variant of simplNonRec used when the RHS is already simplified, notably
in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
	     -> InId 		-- Old binder
	     -> OutExpr		-- Simplified RHS
	     -> (SimplEnv -> SimplM FloatsWithExpr)
	     -> SimplM FloatsWithExpr

simplNonRecX env bndr new_rhs thing_inside
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  = do	{ (env, bndr') <- simplBinder env bndr
	; completeNonRecX env False {- Non-strict; pessimistic -} 
		          bndr bndr' new_rhs thing_inside }


completeNonRecX :: SimplEnv
		-> Bool			-- Strict binding
	        -> InId 		-- Old binder
		-> OutId		-- New binder
	     	-> OutExpr		-- Simplified RHS
	     	-> (SimplEnv -> SimplM FloatsWithExpr)
	     	-> SimplM FloatsWithExpr

completeNonRecX env is_strict old_bndr new_bndr new_rhs thing_inside
  | needsCaseBinding (idType new_bndr) new_rhs
360 361 362 363 364 365 366
	-- Make this test *before* the preInlineUnconditionally
	-- Consider 	case I# (quotInt# x y) of 
	--		  I# v -> let w = J# v in ...
	-- If we gaily inline (quotInt# x y) for v, we end up building an
	-- extra thunk:
	--		  let w = J# (quotInt# x y) in ...
	-- because quotInt# can fail.
367 368 369 370
  = do	{ (floats, body) <- thing_inside env
	; let body' = wrapFloats floats body
	; return (emptyFloats env, Case new_rhs new_bndr (exprType body) 
					[(DEFAULT, [], body')]) }
371

372 373 374 375 376 377 378 379 380 381
  | otherwise
  = 	-- Make the arguments atomic if necessary, 
	-- adding suitable bindings
    -- pprTrace "completeNonRecX" (ppr new_bndr <+> ppr new_rhs) $
    mkAtomicArgsE env is_strict new_rhs		$ \ env new_rhs ->
    completeLazyBind env NotTopLevel
		     old_bndr new_bndr new_rhs	`thenSmpl` \ (floats, env) ->
    addFloats env floats thing_inside

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
382 383 384
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
   In the cases described by the folowing commment, postInlineUnconditionally will 
   catch many of the relevant cases.
385 386 387 388 389 390 391 392
  	-- This happens; for example, the case_bndr during case of
	-- known constructor:  case (a,b) of x { (p,q) -> ... }
	-- Here x isn't mentioned in the RHS, so we don't want to
	-- create the (dead) let-binding  let x = (a,b) in ...
	--
	-- Similarly, single occurrences can be inlined vigourously
	-- e.g.  case (f x, g y) of (a,b) -> ....
	-- If a,b occur once we can avoid constructing the let binding for them.
393
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
394
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
395 396

  -- NB: completeLazyBind uses postInlineUnconditionally; no need to do that here
397
-}
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
\end{code}


%************************************************************************
%*									*
\subsection{Lazy bindings}
%*									*
%************************************************************************

simplRecBind is used for
	* recursive bindings only

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
	     -> [(InId, InExpr)] -> [OutId]
	     -> SimplM (FloatsWith SimplEnv)
simplRecBind env top_lvl pairs bndrs'
  = go env pairs bndrs'		`thenSmpl` \ (floats, env) ->
    returnSmpl (flattenFloats floats, env)
417
  where
418
    go env [] _ = returnSmpl (emptyFloats env, env)
419
	
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    go env ((bndr, rhs) : pairs) (bndr' : bndrs')
	= simplRecOrTopPair env top_lvl bndr bndr' rhs 	`thenSmpl` \ (floats, env) ->
	  addFloats env floats (\env -> go env pairs bndrs')
\end{code}


simplRecOrTopPair is used for
	* recursive bindings (whether top level or not)
	* top-level non-recursive bindings

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
	     	  -> TopLevelFlag
	     	  -> InId -> OutId		-- Binder, both pre-and post simpl
	     	  -> InExpr 			-- The RHS and its environment
	     	  -> SimplM (FloatsWith SimplEnv)

simplRecOrTopPair env top_lvl bndr bndr' rhs
440 441
  | preInlineUnconditionally env top_lvl bndr rhs  	-- Check for unconditional inline
  = tick (PreInlineUnconditionally bndr)		`thenSmpl_`
442
    returnSmpl (emptyFloats env, extendIdSubst env bndr (mkContEx env rhs))
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

  | otherwise
  = simplLazyBind env top_lvl Recursive bndr bndr' rhs env
	-- May not actually be recursive, but it doesn't matter
\end{code}


simplLazyBind is used for
	* recursive bindings (whether top level or not)
	* top-level non-recursive bindings
	* non-top-level *lazy* non-recursive bindings

[Thus it deals with the lazy cases from simplNonRecBind, and all cases
from SimplRecOrTopBind]

Nota bene:
    1. It assumes that the binder is *already* simplified, 
       and is in scope, but not its IdInfo

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
	      -> TopLevelFlag -> RecFlag
	      -> InId -> OutId		-- Binder, both pre-and post simpl
	      -> InExpr -> SimplEnv 	-- The RHS and its environment
	      -> SimplM (FloatsWith SimplEnv)

474
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
475
  = let	
476 477
	(env1,bndr2)      = addLetIdInfo env bndr bndr1
	rhs_env      	  = setInScope rhs_se env1
478
 	is_top_level	  = isTopLevel top_lvl
479
	ok_float_unlifted = not is_top_level && isNonRec is_rec
480
	rhs_cont	  = mkRhsStop (idType bndr2)
481
    in
482
  	-- Simplify the RHS; note the mkRhsStop, which tells 
483 484 485 486 487 488
	-- the simplifier that this is the RHS of a let.
    simplExprF rhs_env rhs rhs_cont		`thenSmpl` \ (floats, rhs1) ->

	-- If any of the floats can't be floated, give up now
	-- (The allLifted predicate says True for empty floats.)
    if (not ok_float_unlifted && not (allLifted floats)) then
489
	completeLazyBind env1 top_lvl bndr bndr2
490 491 492 493 494 495 496 497 498
			 (wrapFloats floats rhs1)
    else	

	-- ANF-ise a constructor or PAP rhs
    mkAtomicArgs False {- Not strict -} 
		 ok_float_unlifted rhs1 		`thenSmpl` \ (aux_binds, rhs2) ->

	-- If the result is a PAP, float the floats out, else wrap them
	-- By this time it's already been ANF-ised (if necessary)
499
    if isEmptyFloats floats && isNilOL aux_binds then	-- Shortcut a common case
500
	completeLazyBind env1 top_lvl bndr bndr2 rhs2
501

502
    else if is_top_level || exprIsTrivial rhs2 || exprIsHNF rhs2 then
503 504 505
	-- 	WARNING: long dodgy argument coming up
	--	WANTED: a better way to do this
	--		
506
	-- We can't use "exprIsCheap" instead of exprIsHNF, 
507
	-- because that causes a strictness bug.
508 509 510 511
	--     	   x = let y* = E in case (scc y) of { T -> F; F -> T}
	-- The case expression is 'cheap', but it's wrong to transform to
	-- 	   y* = E; x = case (scc y) of {...}
 	-- Either we must be careful not to float demanded non-values, or
512 513
	-- we must use exprIsHNF for the test, which ensures that the
	-- thing is non-strict.  So exprIsHNF => bindings are non-strict
514 515 516 517 518
	-- I think.  The WARN below tests for this.
	--
	-- We use exprIsTrivial here because we want to reveal lone variables.  
	-- E.g.  let { x = letrec { y = E } in y } in ...
	-- Here we definitely want to float the y=E defn. 
519
	-- exprIsHNF definitely isn't right for that.
520 521 522 523 524 525 526 527 528 529
	--
	-- Again, the floated binding can't be strict; if it's recursive it'll
	-- be non-strict; if it's non-recursive it'd be inlined.
	--
	-- Note [SCC-and-exprIsTrivial]
	-- If we have
	--	y = let { x* = E } in scc "foo" x
	-- then we do *not* want to float out the x binding, because
	-- it's strict!  Fortunately, exprIsTrivial replies False to
	-- (scc "foo" x).
530

531 532 533
		-- There's a subtlety here.  There may be a binding (x* = e) in the
		-- floats, where the '*' means 'will be demanded'.  So is it safe
		-- to float it out?  Answer no, but it won't matter because
534
		-- we only float if (a) arg' is a WHNF, or (b) it's going to top level
535
		-- and so there can't be any 'will be demanded' bindings in the floats.
536
		-- Hence the warning
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
537 538
        WARN( not (is_top_level || not (any demanded_float (floatBinds floats))), 
	      ppr (filter demanded_float (floatBinds floats)) )
539 540

	tick LetFloatFromLet			`thenSmpl_` (
541
	addFloats env1 floats			$ \ env2 ->
542
	addAtomicBinds env2 (fromOL aux_binds)	$ \ env3 ->
543
	completeLazyBind env3 top_lvl bndr bndr2 rhs2)
544 545

    else
546
	completeLazyBind env1 top_lvl bndr bndr2 (wrapFloats floats rhs1)
547 548 549 550 551 552

#ifdef DEBUG
demanded_float (NonRec b r) = isStrictDmd (idNewDemandInfo b) && not (isUnLiftedType (idType b))
		-- Unlifted-type (cheap-eagerness) lets may well have a demanded flag on them
demanded_float (Rec _)	    = False
#endif
553
\end{code}
554 555


556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
%************************************************************************
%*									*
\subsection{Completing a lazy binding}
%*									*
%************************************************************************

completeLazyBind
	* deals only with Ids, not TyVars
	* takes an already-simplified binder and RHS
	* is used for both recursive and non-recursive bindings
	* is used for both top-level and non-top-level bindings

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
	- top-level bindings (when let-to-case is impossible) 
	- many situations where the "rhs" is known to be a WHNF
		(so let-to-case is inappropriate).

\begin{code}
completeLazyBind :: SimplEnv
		 -> TopLevelFlag	-- Flag stuck into unfolding
		 -> InId 		-- Old binder
		 -> OutId		-- New binder
	         -> OutExpr		-- Simplified RHS
	   	 -> SimplM (FloatsWith SimplEnv)
-- We return a new SimplEnv, because completeLazyBind may choose to do its work
-- by extending the substitution (e.g. let x = y in ...)
-- The new binding (if any) is returned as part of the floats.
-- NB: the returned SimplEnv has the right SubstEnv, but you should
--     (as usual) use the in-scope-env from the floats

completeLazyBind env top_lvl old_bndr new_bndr new_rhs
593
  | postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
594 595
  = 		-- Drop the binding
    tick (PostInlineUnconditionally old_bndr)	`thenSmpl_`
596
    -- pprTrace "Inline unconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $
597
    returnSmpl (emptyFloats env, extendIdSubst env old_bndr (DoneEx new_rhs))
598 599 600 601 602 603 604 605
		-- Use the substitution to make quite, quite sure that the substitution
		-- will happen, since we are going to discard the binding

  |  otherwise
  = let
		-- Add arity info
  	new_bndr_info = idInfo new_bndr `setArityInfo` exprArity new_rhs

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	-- Add the unfolding *only* for non-loop-breakers
	-- Making loop breakers not have an unfolding at all 
	-- means that we can avoid tests in exprIsConApp, for example.
	-- This is important: if exprIsConApp says 'yes' for a recursive
	-- thing, then we can get into an infinite loop
	-- If the unfolding is a value, the demand info may
	-- go pear-shaped, so we nuke it.  Example:
	--	let x = (a,b) in
	--	case x of (p,q) -> h p q x
	-- Here x is certainly demanded. But after we've nuked
	-- the case, we'll get just
	--	let x = (a,b) in h a b x
	-- and now x is not demanded (I'm assuming h is lazy)
	-- This really happens.  Similarly
	--	let f = \x -> e in ...f..f...
	-- After inling f at some of its call sites the original binding may
	-- (for example) be no longer strictly demanded.
	-- The solution here is a bit ad hoc...
 	info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
        final_info | loop_breaker		= new_bndr_info
		   | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
		   | otherwise			= info_w_unf

	final_id = new_bndr `setIdInfo` final_info
630 631 632 633
    in
		-- These seqs forces the Id, and hence its IdInfo,
		-- and hence any inner substitutions
    final_id					`seq`
634
    -- pprTrace "Binding" (ppr final_id <+> ppr unfolding) $
635 636
    returnSmpl (unitFloat env final_id new_rhs, env)
  where 
637
    unfolding    = mkUnfolding (isTopLevel top_lvl) new_rhs
638 639 640 641 642 643 644
    loop_breaker = isLoopBreaker occ_info
    old_info     = idInfo old_bndr
    occ_info     = occInfo old_info
\end{code}    



645 646 647 648 649 650
%************************************************************************
%*									*
\subsection[Simplify-simplExpr]{The main function: simplExpr}
%*									*
%************************************************************************

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

	let t = f x
	in fst t
==>
	let t = let a = e1
		    b = e2
		in (a,b)
	in fst t
==>
	let a = e1
	    b = e2
	    t = (a,b)
	in
	a	-- Can't inline a this round, cos it appears twice
==>
	e1

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

	let f = g d
	in \x -> ...f...
==>
	let f = let d1 = ..d.. in \y -> e
	in \x -> ...f...
==>
	let d1 = ..d..
	in \x -> ...(\y ->e)...

Only in this second round can the \y be applied, and it 
might do the same again.


689
\begin{code}
690
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
691
simplExpr env expr = simplExprC env expr (mkBoringStop expr_ty')
692
		   where
693
		     expr_ty' = substTy env (exprType expr)
694
	-- The type in the Stop continuation, expr_ty', is usually not used
695
	-- It's only needed when discarding continuations after finding
696 697
	-- a function that returns bottom.
	-- Hence the lazy substitution
698

699

700 701 702 703 704
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
	-- Simplify an expression, given a continuation
simplExprC env expr cont 
  = simplExprF env expr cont	`thenSmpl` \ (floats, expr) ->
    returnSmpl (wrapFloats floats expr)
705

706
simplExprF :: SimplEnv -> InExpr -> SimplCont -> SimplM FloatsWithExpr
707
	-- Simplify an expression, returning floated binds
708

709 710 711 712
simplExprF env (Var v)	        cont = simplVar env v cont
simplExprF env (Lit lit)	cont = rebuild env (Lit lit) cont
simplExprF env expr@(Lam _ _)   cont = simplLam env expr cont
simplExprF env (Note note expr) cont = simplNote env note expr cont
713 714 715
simplExprF env (Cast body co)   cont = simplCast env body co cont
simplExprF env (App fun arg)    cont = simplExprF env fun 
				         (ApplyTo NoDup arg (Just env) cont)
716

717 718 719 720
simplExprF env (Type ty) cont
  = ASSERT( contIsRhsOrArg cont )
    simplType env ty			`thenSmpl` \ ty' ->
    rebuild env (Type ty') cont
721

722
simplExprF env (Case scrut bndr case_ty alts) cont
723 724 725
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
  = 	-- Simplify the scrutinee with a Select continuation
    simplExprF env scrut (Select NoDup bndr alts env cont)
726

727 728
  | otherwise
  = 	-- If case-of-case is off, simply simplify the case expression
729
	-- in a vanilla Stop context, and rebuild the result around it
730 731 732
    simplExprC env scrut case_cont	`thenSmpl` \ case_expr' ->
    rebuild env case_expr' cont
  where
733
    case_cont = Select NoDup bndr alts env (mkBoringStop case_ty')
734
    case_ty'  = substTy env case_ty	-- c.f. defn of simplExpr
735

736
simplExprF env (Let (Rec pairs) body) cont
737
  = simplRecBndrs env (map fst pairs) 		`thenSmpl` \ (env, bndrs') -> 
738 739
	-- NB: bndrs' don't have unfoldings or rules
	-- We add them as we go down
740

741 742 743
    simplRecBind env NotTopLevel pairs bndrs' 	`thenSmpl` \ (floats, env) ->
    addFloats env floats 			$ \ env ->
    simplExprF env body cont
744

745
-- A non-recursive let is dealt with by simplNonRecBind
746 747 748
simplExprF env (Let (NonRec bndr rhs) body) cont
  = simplNonRecBind env bndr rhs env (contResultType cont)	$ \ env ->
    simplExprF env body cont
749 750 751


---------------------------------
752 753 754 755 756
simplType :: SimplEnv -> InType -> SimplM OutType
	-- Kept monadic just so we can do the seqType
simplType env ty
  = seqType new_ty   `seq`   returnSmpl new_ty
  where
757
    new_ty = substTy env ty
758 759 760
\end{code}


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
%************************************************************************
%*									*
\subsection{Lambdas}
%*									*
%************************************************************************

\begin{code}
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont -> SimplM FloatsWithExpr
simplCast env body co cont
  = let
       addCoerce co cont 
         | (s1, k1) <- coercionKind co
         , s1 `tcEqType` k1 = cont
       addCoerce co1 (CoerceIt co2 cont)
         | (s1, k1) <- coercionKind co1
         , (l1, t1) <- coercionKind co2
                -- 	coerce T1 S1 (coerce S1 K1 e)
		-- ==>
		--	e, 			if T1=K1
		--	coerce T1 K1 e,		otherwise
		--
		-- For example, in the initial form of a worker
		-- we may find 	(coerce T (coerce S (\x.e))) y
		-- and we'd like it to simplify to e[y/x] in one round 
		-- of simplification
         , s1 `coreEqType` t1  = cont		 -- The coerces cancel out  
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
    
       addCoerce co (ApplyTo dup arg arg_se cont)
         | not (isTypeArg arg)    -- This whole case only works for value args
	                        -- Could upgrade to have equiv thing for type apps too	
         , Just (s1s2, t1t2) <- splitCoercionKind_maybe co
         , isFunTy s1s2
                -- co : s1s2 :=: t1t2
		--	(coerce (T1->T2) (S1->S2) F) E
		-- ===> 
		--	coerce T2 S2 (F (coerce S1 T1 E))
		--
		-- t1t2 must be a function type, T1->T2, because it's applied
		-- to something but s1s2 might conceivably not be
		--
		-- When we build the ApplyTo we can't mix the out-types
		-- with the InExpr in the argument, so we simply substitute
		-- to make it all consistent.  It's a bit messy.
		-- But it isn't a common case.
         = result
         where
           -- we split coercion t1->t2 :=: s1->s2 into t1 :=: s1 and 
           -- t2 :=: s2 with left and right on the curried form: 
           --    (->) t1 t2 :=: (->) s1 s2
           [co1, co2] = decomposeCo 2 co
812 813 814 815 816 817
           new_arg    = mkCoerce (mkSymCoercion co1) arg'
	   arg'       = case arg_se of
			  Nothing     -> arg
			  Just arg_se -> substExpr (setInScope arg_se env) arg
           result     = ApplyTo dup new_arg (Just $ zapSubstEnv env) 
				(addCoerce co2 cont)
818 819 820 821 822 823
       addCoerce co cont = CoerceIt co cont
    in
    simplType env co		`thenSmpl` \ co' ->
    simplExprF env body (addCoerce co' cont)
\end{code}

824 825 826 827 828
%************************************************************************
%*									*
\subsection{Lambdas}
%*									*
%************************************************************************
829 830

\begin{code}
831 832
simplLam env fun cont
  = go env fun cont
833
  where
834
    zap_it  = mkLamBndrZapper fun (countArgs cont)
835 836 837
    cont_ty = contResultType cont

      	-- Type-beta reduction
838
    go env (Lam bndr body) (ApplyTo _ (Type ty_arg) mb_arg_se body_cont)
839
      =	ASSERT( isTyVar bndr )
840 841 842 843 844
	do { tick (BetaReduction bndr)
	   ; ty_arg' <- case mb_arg_se of
			  Just arg_se -> simplType (setInScope arg_se env) ty_arg
			  Nothing     -> return ty_arg
	   ; go (extendTvSubst env bndr ty_arg') body body_cont }
845 846

	-- Ordinary beta reduction
847 848 849 850 851 852 853 854 855
    go env (Lam bndr body) cont@(ApplyTo _ arg (Just arg_se) body_cont)
      = do { tick (BetaReduction bndr)	
	   ; simplNonRecBind env (zap_it bndr) arg arg_se cont_ty	$ \ env -> 
	     go env body body_cont }

    go env (Lam bndr body) cont@(ApplyTo _ arg Nothing body_cont)
      = do { tick (BetaReduction bndr)	
	   ; simplNonRecX env (zap_it bndr) arg 	$ \ env -> 
	     go env body body_cont }
856

857 858
	-- Not enough args, so there are real lambdas left to put in the result
    go env lam@(Lam _ _) cont
859 860 861 862 863
      = do { (env, bndrs') <- simplLamBndrs env bndrs
	   ; body' <- simplExpr env body
	   ; (floats, new_lam) <- mkLam env bndrs' body' cont
	   ; addFloats env floats		$ \ env -> 
	     rebuild env new_lam cont }
864 865
      where
	(bndrs,body) = collectBinders lam
866 867

	-- Exactly enough args
868
    go env expr cont = simplExprF env expr cont
869 870

mkLamBndrZapper :: CoreExpr 	-- Function
871
		-> Int		-- Number of args supplied, *including* type args
872
		-> Id -> Id	-- Use this to zap the binders
873
mkLamBndrZapper fun n_args
874
  | n_args >= n_params fun = \b -> b		-- Enough args
875
  | otherwise		   = \b -> zapLamIdInfo b
876
  where
877 878 879 880 881
	-- NB: we count all the args incl type args
	-- so we must count all the binders (incl type lambdas)
    n_params (Note _ e) = n_params e
    n_params (Lam b e)  = 1 + n_params e
    n_params other	= 0::Int
882 883
\end{code}

884

885 886 887 888 889 890
%************************************************************************
%*									*
\subsection{Notes}
%*									*
%************************************************************************

sof's avatar
sof committed
891
\begin{code}
892 893 894 895

		
-- Hack: we only distinguish subsumed cost centre stacks for the purposes of
-- inlining.  All other CCCSs are mapped to currentCCS.
896 897 898 899 900 901 902
simplNote env (SCC cc) e cont
  = simplExpr (setEnclosingCC env currentCCS) e 	`thenSmpl` \ e' ->
    rebuild env (mkSCC cc e') cont

-- See notes with SimplMonad.inlineMode
simplNote env InlineMe e cont
  | contIsRhsOrArg cont		-- Totally boring continuation; see notes above
903
  =				-- Don't inline inside an INLINE expression
904 905
    simplExpr (setMode inlineMode env )  e	`thenSmpl` \ e' ->
    rebuild env (mkInlineMe e') cont
906 907 908 909

  | otherwise  	-- Dissolve the InlineMe note if there's
		-- an interesting context of any kind to combine with
		-- (even a type application -- anything except Stop)
910
  = simplExprF env e cont
911 912 913 914

simplNote env (CoreNote s) e cont
  = simplExpr env e    `thenSmpl` \ e' ->
    rebuild env (Note (CoreNote s) e') cont
915 916 917
\end{code}


918 919
%************************************************************************
%*									*
920
\subsection{Dealing with calls}
921 922
%*									*
%************************************************************************
923

924
\begin{code}
925
simplVar env var cont
926 927 928 929
  = case substId env var of
	DoneEx e	 -> simplExprF (zapSubstEnv env) e cont
	ContEx tvs ids e -> simplExprF (setSubstEnv env tvs ids) e cont
	DoneId var1 occ  -> completeCall (zapSubstEnv env) var1 occ cont
930
		-- Note [zapSubstEnv]
931 932 933 934 935 936 937 938
		-- The template is already simplified, so don't re-substitute.
		-- This is VITAL.  Consider
		--	let x = e in
		--	let y = \z -> ...x... in
		--	\ x -> ...y...
		-- We'll clone the inner \x, adding x->x' in the id_subst
		-- Then when we inline y, we must *not* replace x by x' in
		-- the inlined copy!!
939

940
---------------------------------------------------------
941
--	Dealing with a call site
942

943
completeCall env var occ_info cont
944 945
  =     -- Simplify the arguments
    getDOptsSmpl					`thenSmpl` \ dflags ->
946
    let
947 948 949
	chkr		  = getSwitchChecker env
	(args, call_cont) = getContArgs chkr var cont
	fn_ty		  = idType var
950
    in
951 952
    simplifyArgs env fn_ty (interestingArgContext var call_cont) args 
		 (contResultType call_cont)	$ \ env args ->
953

954
	-- Next, look for rules or specialisations that match
955 956 957 958 959 960 961 962 963
	--
	-- It's important to simplify the args first, because the rule-matcher
	-- doesn't do substitution as it goes.  We don't want to use subst_args
	-- (defined in the 'where') because that throws away useful occurrence info,
	-- and perhaps-very-important specialisations.
	--
	-- Some functions have specialisations *and* are strict; in this case,
	-- we don't want to inline the wrapper of the non-specialised thing; better
	-- to call the specialised thing instead.
964 965 966
	-- We used to use the black-listing mechanism to ensure that inlining of 
	-- the wrapper didn't occur for things that have specialisations till a 
	-- later phase, so but now we just try RULES first
967
	--
968 969 970 971 972 973 974 975 976 977 978
	-- You might think that we shouldn't apply rules for a loop breaker: 
	-- doing so might give rise to an infinite loop, because a RULE is
	-- rather like an extra equation for the function:
	--	RULE:		f (g x) y = x+y
	--	Eqn:		f a     y = a-y
	--
	-- But it's too drastic to disable rules for loop breakers.  
	-- Even the foldr/build rule would be disabled, because foldr 
	-- is recursive, and hence a loop breaker:
	--	foldr k z (build g) = g k z
	-- So it's up to the programmer: rules can cause divergence
979 980

    let
981
	in_scope   = getInScope env
982
	rules	   = getRules env
983 984
	maybe_rule = case activeRule env of
			Nothing     -> Nothing	-- No rules apply
985
			Just act_fn -> lookupRule act_fn in_scope rules var args 
986 987
    in
    case maybe_rule of {
988
	Just (rule_name, rule_rhs) -> 
989
		tick (RuleFired rule_name)			`thenSmpl_`
990 991
		(if dopt Opt_D_dump_inlinings dflags then
		   pprTrace "Rule fired" (vcat [
992
			text "Rule:" <+> ftext rule_name,
993
			text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
994 995
			text "After: " <+> pprCoreExpr rule_rhs,
			text "Cont:  " <+> ppr call_cont])
996 997
		 else
			id)		$
998
		simplExprF env rule_rhs call_cont ;
999
	
1000
	Nothing -> 		-- No rules
1001

1002 1003 1004
	-- Next, look for an inlining
    let
	arg_infos = [ interestingArg arg | arg <- args, isValArg arg]
sof's avatar
sof committed
1005 1006
	interesting_cont = interestingCallContext (notNull args)
						  (notNull arg_infos)
1007
						  call_cont
1008
    	active_inline = activeInline env var occ_info
1009
	maybe_inline  = callSiteInline dflags active_inline occ_info
1010 1011 1012 1013 1014
				       var arg_infos interesting_cont
    in
    case maybe_inline of {
	Just unfolding  	-- There is an inlining!
	  ->  tick (UnfoldingDone var)		`thenSmpl_`
1015 1016 1017 1018 1019 1020 1021
		(if dopt Opt_D_dump_inlinings dflags then
		   pprTrace "Inlining done" (vcat [
			text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
			text "Inlined fn: " <+> ppr unfolding,
			text "Cont:  " <+> ppr call_cont])
		 else
			id)		$
1022
	      simplExprF env unfolding (pushContArgs args call_cont)
1023 1024 1025 1026

	;
	Nothing -> 		-- No inlining!

1027
	-- Done
1028
    rebuild env (mkApps (Var var) args) call_cont
1029
    }}
1030
\end{code}
1031

1032 1033 1034 1035 1036 1037 1038
%************************************************************************
%*									*
\subsection{Arguments}
%*									*
%************************************************************************

\begin{code}
1039
---------------------------------------------------------
1040 1041
--	Simplifying the arguments of a call

1042
simplifyArgs :: SimplEnv 
1043
	     -> OutType				-- Type of the function
1044
	     -> Bool				-- True if the fn has RULES
1045
	     -> [(InExpr, Maybe SimplEnv, Bool)] -- Details of the arguments
1046
	     -> OutType				-- Type of the continuation
1047 1048 1049 1050
	     -> (SimplEnv -> [OutExpr] -> SimplM FloatsWithExpr)
	     -> SimplM FloatsWithExpr

-- [CPS-like because of strict arguments]
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

-- Simplify the arguments to a call.
-- This part of the simplifier may break the no-shadowing invariant
-- Consider
--	f (...(\a -> e)...) (case y of (a,b) -> e')
-- where f is strict in its second arg
-- If we simplify the innermost one first we get (...(\a -> e)...)
-- Simplifying the second arg makes us float the case out, so we end up with
--	case y of (a,b) -> f (...(\a -> e)...) e'
-- So the output does not have the no-shadowing invariant.  However, there is
-- no danger of getting name-capture, because when the first arg was simplified
-- we used an in-scope set that at least mentioned all the variables free in its
-- static environment, and that is enough.
--
-- We can't just do innermost first, or we'd end up with a dual problem:
--	case x of (a,b) -> f e (...(\a -> e')...)
--
-- I spent hours trying to recover the no-shadowing invariant, but I just could
-- not think of an elegant way to do it.  The simplifier is already knee-deep in
-- continuations.  We have to keep the right in-scope set around; AND we have
-- to get the effect that finding (error "foo") in a strict arg position will
-- discard the entire application and replace it with (error "foo").  Getting
-- all this at once is TOO HARD!

1075
simplifyArgs env fn_ty has_rules args cont_ty thing_inside
1076
  = go env fn_ty args thing_inside
1077
  where
1078
    go env fn_ty []	    thing_inside = thing_inside env []
1079
    go env fn_ty (arg:args) thing_inside = simplifyArg env fn_ty has_rules arg cont_ty	$ \ env arg' ->
1080 1081
					   go env (applyTypeToArg fn_ty arg') args 	$ \ env args' ->
					   thing_inside env (arg':args')
1082

1083 1084 1085 1086
simplifyArg env fn_ty has_rules (arg, Nothing, _) cont_ty thing_inside
  = thing_inside env arg	-- Already simplified

simplifyArg env fn_ty has_rules (Type ty_arg, Just se, _) cont_ty thing_inside
1087 1088
  = simplType (setInScope se env) ty_arg 	`thenSmpl` \ new_ty_arg ->
    thing_inside env (Type new_ty_arg)
1089

1090
simplifyArg env fn_ty has_rules (val_arg, Just arg_se, is_strict) cont_ty thing_inside 
1091
  | is_strict 
1092
  = simplStrictArg AnArg env val_arg arg_se arg_ty cont_ty thing_inside
1093

1094 1095 1096 1097 1098 1099
  | otherwise	-- Lazy argument
		-- DO NOT float anything outside, hence simplExprC
		-- There is no benefit (unlike in a let-binding), and we'd
		-- have to be very careful about bogus strictness through 
		-- floating a demanded let.
  = simplExprC (setInScope arg_se env) val_arg
1100 1101
	       (mkLazyArgStop arg_ty has_rules)		`thenSmpl` \ arg1 ->
    thing_inside env arg1
1102 1103
  where
    arg_ty = funArgTy fn_ty
1104 1105


1106 1107 1108 1109
simplStrictArg ::  LetRhsFlag
	        -> SimplEnv		-- The env of the call
		-> InExpr -> SimplEnv	-- The arg plus its env
		-> OutType		-- arg_ty: type of the argument
1110 1111 1112 1113 1114 1115 1116 1117
	        -> OutType		-- cont_ty: Type of thing computed by the context
	        -> (SimplEnv -> OutExpr -> SimplM FloatsWithExpr)	
	 			 	-- Takes an expression of type rhs_ty, 
		 			-- returns an expression of type cont_ty
					-- The env passed to this continuation is the
					-- env of the call, plus any new in-scope variables
	        -> SimplM FloatsWithExpr	-- An expression of type cont_ty

1118
simplStrictArg is_rhs call_env arg arg_env arg_ty cont_ty thing_inside
1119
  = simplExprF (setInScope arg_env call_env) arg
1120
	       (ArgOf is_rhs arg_ty cont_ty (\ new_env -> thing_inside (setInScope call_env new_env)))
1121 1122 1123
  -- Notice the way we use arg_env (augmented with in-scope vars from call_env) 
  --	to simplify the argument
  -- and call-env (augmented with in-scope vars from the arg) to pass to the continuation
1124
\end{code}
1125

1126

1127 1128
%************************************************************************
%*									*
1129
\subsection{mkAtomicArgs}
1130 1131
%*									*
%************************************************************************
1132

1133 1134 1135 1136 1137 1138 1139 1140
mkAtomicArgs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the 
resulting thing can be inlined more easily.  Thus
	x = (f a, g b)
becomes
	t1 = f a
	t2 = g b
	x = (t1,t2)
sof's avatar
sof committed
1141

1142 1143
There are three sorts of binding context, specified by the two
boolean arguments
sof's avatar
sof committed
1144

1145 1146
Strict
   OK-unlifted
1147

1148
N  N	Top-level or recursive			Only bind args of lifted type
1149

1150 1151
N  Y	Non-top-level and non-recursive,	Bind args of lifted type, or
		but lazy			unlifted-and-ok-for-speculation
1152

1153 1154 1155
Y  Y	Non-top-level, non-recursive,		Bind all args
		 and strict (demanded)
	
sof's avatar
sof committed
1156

1157
For example, given
sof's avatar
sof committed
1158

1159
	x = MkC (y div# z)
1160

1161
there is no point in transforming to
1162

1163
	x = case (y div# z) of r -> MkC r