Simplify.lhs 82.1 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
Ian Lynagh's avatar
Ian Lynagh committed
13 14
import Type hiding      ( substTy, extendTvSubst )
import SimplEnv
15
import SimplUtils
16
import MkId		( rUNTIME_ERROR_ID )
17
import FamInstEnv	( FamInstEnv )
18
import Id
19
import Var
20 21
import IdInfo
import Coercion
Ian Lynagh's avatar
Ian Lynagh committed
22 23
import FamInstEnv       ( topNormaliseType )
import DataCon          ( dataConRepStrictness, dataConUnivTyVars )
24
import CoreSyn
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
25
import NewDemand        ( isStrictDmd, splitStrictSig )
Ian Lynagh's avatar
Ian Lynagh committed
26 27
import PprCore          ( pprParendExpr, pprCoreExpr )
import CoreUnfold       ( mkUnfolding, callSiteInline, CallCtxt(..) )
28
import CoreUtils
29
import CoreArity	( exprArity )
30
import Rules            ( lookupRule, getRules )
Ian Lynagh's avatar
Ian Lynagh committed
31 32 33 34 35 36 37 38
import BasicTypes       ( isMarkedStrict )
import CostCentre       ( currentCCS )
import TysPrim          ( realWorldStatePrimTy )
import PrelInfo         ( realWorldPrimId )
import BasicTypes       ( TopLevelFlag(..), isTopLevel,
                          RecFlag(..), isNonRuleLoopBreaker )
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
39
import Outputable
40
import FastString
41 42 43
\end{code}


44 45
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
46 47


48
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
49
        *** IMPORTANT NOTE ***
50 51 52 53 54 55
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


56
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
57
        *** IMPORTANT NOTE ***
58 59 60 61 62 63 64 65 66 67
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
68
        ORGANISATION OF FUNCTIONS
69 70 71 72 73 74
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
75 76 77

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
78 79 80
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
81 82
        ------------------------------
simplRecBind    [binders already simplfied]
83 84 85 86
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
87 88
            top-level non-recursive bindings
  Returns:
89 90 91 92 93
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
94 95 96
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
97 98 99 100

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
101 102 103
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
104
    else
Ian Lynagh's avatar
Ian Lynagh committed
105 106
        simplLazyBind
        addFloats
107

Ian Lynagh's avatar
Ian Lynagh committed
108
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
109 110 111 112
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
113 114 115

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
116
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
117 118 119
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
120
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
121 122
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
123 124 125
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
126
  - completeBind
127 128


Ian Lynagh's avatar
Ian Lynagh committed
129
completeNonRecX:        [binder and rhs both simplified]
130
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
131
        build a Case
132
   else
Ian Lynagh's avatar
Ian Lynagh committed
133 134
        completeBind
        addFloats
135

Ian Lynagh's avatar
Ian Lynagh committed
136 137
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
138 139 140 141 142 143 144 145
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
146 147 148
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
149 150 151
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
152 153 154

        f (g x, h x)
        g (+ x)
155 156 157 158

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
159 160
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
161 162 163

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
164 165
        p = (g x, h x)
        q = + x
166 167

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
168
can be safely inlined.
169 170 171 172 173

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
174
        r = let x = e in (x,x)
175 176 177 178 179 180 181 182 183 184 185 186 187 188

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
189
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
190 191 192 193 194

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
195 196


197
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
198
%*                                                                      *
199
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
200
%*                                                                      *
201 202 203
%************************************************************************

\begin{code}
204
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
205

Ian Lynagh's avatar
Ian Lynagh committed
206
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
207 208 209 210
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
211
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
212 213 214
        ; dflags <- getDOptsSmpl
        ; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
                          dopt Opt_D_dump_rule_firings dflags
Ian Lynagh's avatar
Ian Lynagh committed
215
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
216
        ; freeTick SimplifierDone
Ian Lynagh's avatar
Ian Lynagh committed
217
        ; return (getFloats env2) }
218
  where
Ian Lynagh's avatar
Ian Lynagh committed
219 220 221 222 223 224
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
225
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
226 227
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
228 229
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
230

Ian Lynagh's avatar
Ian Lynagh committed
231 232
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
233

234 235
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
236 237
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
238 239 240 241
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
242
%*                                                                      *
243
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
244
%*                                                                      *
245 246 247
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
248
        * recursive bindings only
249 250 251

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
252 253
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
254 255 256 257 258
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
Thomas Schilling's avatar
Thomas Schilling committed
259
        -- _and_ updates env0 with the in-scope set from env1
260
  where
261
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
262
        -- Add the (substituted) rules to the binder
263
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
264 265
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
266

267
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
268

269
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
270 271
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
272 273
\end{code}

274
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
275 276
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
277 278 279 280 281

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
282 283 284
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
285

286
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
287 288 289
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
290 291

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
292 293
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
294 295 296 297
\end{code}


simplLazyBind is used for
298 299
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
300
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
301 302

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
303
    1. It assumes that the binder is *already* simplified,
304
       and is in scope, and its IdInfo too, except unfolding
305 306 307 308 309 310 311 312

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
313 314 315 316 317
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
318

319
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
320
  = do  { let   rhs_env     = rhs_se `setInScope` env
321 322 323 324 325 326 327 328 329 330
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
331
        ; (body_env, tvs') <- simplBinders rhs_env tvs
332
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
333

334 335
        -- Simplify the RHS
        ; (body_env1, body1) <- simplExprF body_env body mkBoringStop
Ian Lynagh's avatar
Ian Lynagh committed
336 337 338 339 340 341 342

        -- ANF-ise a constructor or PAP rhs
        ; (body_env2, body2) <- prepareRhs body_env1 body1

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
                then                            -- No floating, just wrap up!
343
                     do { rhs' <- mkLam env tvs' (wrapFloats body_env2 body2)
Ian Lynagh's avatar
Ian Lynagh committed
344 345 346 347 348 349 350 351 352
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
353
                        ; rhs' <- mkLam env tvs' body3
Simon Marlow's avatar
Simon Marlow committed
354
                        ; let env' = foldl (addPolyBind top_lvl) env poly_binds
355
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
356 357

        ; completeBind env' top_lvl bndr bndr1 rhs' }
358
\end{code}
359

Ian Lynagh's avatar
Ian Lynagh committed
360
A specialised variant of simplNonRec used when the RHS is already simplified,
361 362 363 364
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
365 366 367
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
368 369

simplNonRecX env bndr new_rhs
370 371 372
  | isDeadBinder bndr	-- Not uncommon; e.g. case (a,b) of b { (p,q) -> p }
  = return env		-- 		 Here b is dead, and we avoid creating
  | otherwise		--		 the binding b = (a,b)
Ian Lynagh's avatar
Ian Lynagh committed
373
  = do  { (env', bndr') <- simplBinder env bndr
374
        ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
375 376

completeNonRecX :: SimplEnv
377
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
378 379 380 381
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
382

383
completeNonRecX env is_strict old_bndr new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
384 385
  = do  { (env1, rhs1) <- prepareRhs (zapFloats env) new_rhs
        ; (env2, rhs2) <-
386
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
387 388 389 390
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
391 392 393 394
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
395
   In the cases described by the folowing commment, postInlineUnconditionally will
396
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
397 398 399 400 401 402 403 404
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
405

406
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
407 408 409 410 411 412
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
413

414 415 416 417
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

418
----------------------------------
419
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
420
constructor application and, if so, converts it to ANF, so that the
421
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
422
        x = (f a, g b)
423
becomes
Ian Lynagh's avatar
Ian Lynagh committed
424 425 426
        t1 = f a
        t2 = g b
        x = (t1,t2)
427

428
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
429
        v = (f e1 `cast` co) e2
430
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
431
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
432 433
That's what the 'go' loop in prepareRhs does

434 435 436
\begin{code}
prepareRhs :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Adds new floats to the env iff that allows us to return a good RHS
Ian Lynagh's avatar
Ian Lynagh committed
437
prepareRhs env (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
438
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
439 440 441
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
  = do  { (env', rhs') <- makeTrivial env rhs
        ; return (env', Cast rhs' co) }
442

Ian Lynagh's avatar
Ian Lynagh committed
443 444 445
prepareRhs env0 rhs0
  = do  { (_is_val, env1, rhs1) <- go 0 env0 rhs0
        ; return (env1, rhs1) }
446
  where
447
    go n_val_args env (Cast rhs co)
Ian Lynagh's avatar
Ian Lynagh committed
448 449
        = do { (is_val, env', rhs') <- go n_val_args env rhs
             ; return (is_val, env', Cast rhs' co) }
450
    go n_val_args env (App fun (Type ty))
Ian Lynagh's avatar
Ian Lynagh committed
451 452
        = do { (is_val, env', rhs') <- go n_val_args env fun
             ; return (is_val, env', App rhs' (Type ty)) }
453
    go n_val_args env (App fun arg)
Ian Lynagh's avatar
Ian Lynagh committed
454 455 456 457 458
        = do { (is_val, env', fun') <- go (n_val_args+1) env fun
             ; case is_val of
                True -> do { (env'', arg') <- makeTrivial env' arg
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
459
    go n_val_args env (Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
460 461 462 463
        = return (is_val, env, Var fun)
        where
          is_val = n_val_args > 0       -- There is at least one arg
                                        -- ...and the fun a constructor or PAP
464
                 && (isConLikeId fun || n_val_args < idArity fun)
Ian Lynagh's avatar
Ian Lynagh committed
465
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
466
        = return (False, env, other)
467 468
\end{code}

469

470 471 472
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
473
        x = e `cast` co
474
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
475 476
        x' = e
        x = x `cast` co         -- A trivial binding
477 478 479 480 481 482 483 484 485 486 487 488 489
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
490
                -- This case should optimise
491

492 493
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
494
BUT don't do [Float coercions] if 'e' has an unlifted type.
495 496
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
497 498
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
499 500 501

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
502
But 'v' isn't in scope!
503 504

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
505 506
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
507

508 509 510 511 512 513 514

\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial env expr
  | exprIsTrivial expr
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
515
  | otherwise           -- See Note [Take care] below
Ian Lynagh's avatar
Ian Lynagh committed
516
  = do  { var <- newId (fsLit "a") (exprType expr)
517
        ; env' <- completeNonRecX env False var var expr
518 519 520 521 522
--	  pprTrace "makeTrivial" (vcat [ppr var <+> ppr (exprArity (substExpr env' (Var var)))
--	  	   		       , ppr expr
--	  	   		       , ppr (substExpr env' (Var var))
--				       , ppr (idArity (fromJust (lookupInScope (seInScope env') var))) ]) $
	; return (env', substExpr env' (Var var)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
523 524 525 526 527 528 529
	-- The substitution is needed becase we're constructing a new binding
	--     a = rhs
	-- And if rhs is of form (rhs1 |> co), then we might get
	--     a1 = rhs1
	--     a = a1 |> co
	-- and now a's RHS is trivial and can be substituted out, and that
	-- is what completeNonRecX will do
530
\end{code}
531 532


533
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
534
%*                                                                      *
535
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
536
%*                                                                      *
537 538
%************************************************************************

539 540 541 542 543
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
544 545 546 547 548 549 550 551

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
552
  - top-level bindings (when let-to-case is impossible)
553
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
554
                (so let-to-case is inappropriate).
555

556 557
Nor does it do the atomic-argument thing

558
\begin{code}
559
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
560 561 562 563 564 565 566
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
567 568

completeBind env top_lvl old_bndr new_bndr new_rhs
Simon Marlow's avatar
Simon Marlow committed
569 570 571 572 573 574 575
  | postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
                -- Inline and discard the binding
  = do  { tick (PostInlineUnconditionally old_bndr)
        ; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $
          return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
        -- Use the substitution to make quite, quite sure that the
        -- substitution will happen, since we are going to discard the binding
576

Simon Marlow's avatar
Simon Marlow committed
577 578 579 580
  | otherwise
  = return (addNonRecWithUnf env new_bndr new_rhs unfolding wkr)
  where
    unfolding | omit_unfolding = NoUnfolding
581
	      | otherwise      = mkUnfolding (isTopLevel top_lvl) new_rhs
Simon Marlow's avatar
Simon Marlow committed
582 583 584 585 586 587 588 589 590 591
    old_info    = idInfo old_bndr
    occ_info    = occInfo old_info
    wkr		= substWorker env (workerInfo old_info)
    omit_unfolding = isNonRuleLoopBreaker occ_info 
		   --       or not (activeInline env old_bndr)
    		   -- Do *not* trim the unfolding in SimplGently, else
		   -- the specialiser can't see it!

-----------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv
592 593 594 595 596 597 598 599 600 601 602 603
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
Simon Marlow's avatar
Simon Marlow committed
604 605 606 607 608 609 610
  = addNonRecWithUnf env poly_id rhs unfolding NoWorker
  where
    unfolding | not (activeInline env poly_id) = NoUnfolding
	      | otherwise		       = mkUnfolding (isTopLevel top_lvl) rhs
		-- addNonRecWithInfo adds the new binding in the
		-- proper way (ie complete with unfolding etc),
		-- and extends the in-scope set
611

Simon Marlow's avatar
Simon Marlow committed
612
addPolyBind _ env bind@(Rec _) = extendFloats env bind
613 614 615 616
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

Simon Marlow's avatar
Simon Marlow committed
617
-----------------
618
addNonRecWithUnf :: SimplEnv
Simon Marlow's avatar
Simon Marlow committed
619 620 621 622 623 624
             	  -> OutId -> OutExpr        -- New binder and RHS
		  -> Unfolding -> WorkerInfo -- and unfolding
             	  -> SimplEnv
-- Add suitable IdInfo to the Id, add the binding to the floats, and extend the in-scope set
addNonRecWithUnf env new_bndr rhs unfolding wkr
  = ASSERT( isId new_bndr )
625
    WARN( new_arity < old_arity || new_arity < dmd_arity, 
Simon Marlow's avatar
Simon Marlow committed
626 627 628 629 630
          (ppr final_id <+> ppr old_arity <+> ppr new_arity <+> ppr dmd_arity) $$ ppr rhs )
    final_id `seq`      -- This seq forces the Id, and hence its IdInfo,
	                -- and hence any inner substitutions
    addNonRec env final_id rhs
	-- The addNonRec adds it to the in-scope set too
631
  where
Simon Marlow's avatar
Simon Marlow committed
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr
	old_arity = idArity new_bndr

        --      Arity info
	new_arity = exprArity rhs
        new_bndr_info = idInfo new_bndr `setArityInfo` new_arity

        --      Unfolding info
        -- Add the unfolding *only* for non-loop-breakers
        -- Making loop breakers not have an unfolding at all
        -- means that we can avoid tests in exprIsConApp, for example.
        -- This is important: if exprIsConApp says 'yes' for a recursive
        -- thing, then we can get into an infinite loop

        --      Demand info
        -- If the unfolding is a value, the demand info may
        -- go pear-shaped, so we nuke it.  Example:
        --      let x = (a,b) in
        --      case x of (p,q) -> h p q x
        -- Here x is certainly demanded. But after we've nuked
        -- the case, we'll get just
        --      let x = (a,b) in h a b x
        -- and now x is not demanded (I'm assuming h is lazy)
        -- This really happens.  Similarly
        --      let f = \x -> e in ...f..f...
        -- After inlining f at some of its call sites the original binding may
        -- (for example) be no longer strictly demanded.
        -- The solution here is a bit ad hoc...
        info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
				   `setWorkerInfo`    wkr

        final_info | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
                   | otherwise                  = info_w_unf
	
        final_id = new_bndr `setIdInfo` final_info
SamB's avatar
SamB committed
667
\end{code}
668

669

670

671
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
672
%*                                                                      *
673
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
674
%*                                                                      *
675 676
%************************************************************************

677 678 679 680 681 682
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
683 684
        let t = f x
        in fst t
685
==>
Ian Lynagh's avatar
Ian Lynagh committed
686 687 688 689
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
690
==>
Ian Lynagh's avatar
Ian Lynagh committed
691 692 693 694 695
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
696
==>
Ian Lynagh's avatar
Ian Lynagh committed
697
        e1
698 699 700 701

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
702 703
        let f = g d
        in \x -> ...f...
704
==>
Ian Lynagh's avatar
Ian Lynagh committed
705 706
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
707
==>
Ian Lynagh's avatar
Ian Lynagh committed
708 709
        let d1 = ..d..
        in \x -> ...(\y ->e)...
710

Ian Lynagh's avatar
Ian Lynagh committed
711
Only in this second round can the \y be applied, and it
712 713 714
might do the same again.


715
\begin{code}
716
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
717
simplExpr env expr = simplExprC env expr mkBoringStop
718

719
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
720 721
        -- Simplify an expression, given a continuation
simplExprC env expr cont
722
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
723 724 725 726
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
727 728 729 730
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
731
           -> SimplM (SimplEnv, OutExpr)
732

Ian Lynagh's avatar
Ian Lynagh committed
733
simplExprF env e cont
734 735
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
736

Ian Lynagh's avatar
Ian Lynagh committed
737 738
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
739
simplExprF' env (Var v)        cont = simplVar env v cont
740 741 742 743
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
744
                                      ApplyTo NoDup arg env cont
745

Ian Lynagh's avatar
Ian Lynagh committed
746
simplExprF' env expr@(Lam _ _) cont
747
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
748 749 750 751 752 753
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
754 755 756 757
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
758 759 760 761 762
    zap | n_args >= n_params = \b -> b
        | otherwise          = \b -> if isTyVar b then b
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
763

764
simplExprF' env (Type ty) cont
765
  = ASSERT( contIsRhsOrArg cont )
Ian Lynagh's avatar
Ian Lynagh committed
766 767
    do  { ty' <- simplType env ty
        ; rebuild env (Type ty') cont }
768

769
simplExprF' env (Case scrut bndr _ alts) cont
770
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
771
  =     -- Simplify the scrutinee with a Select continuation
772
    simplExprF env scrut (Select NoDup bndr alts env cont)
773

774
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
775 776 777 778
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
779
  where
780
    case_cont = Select NoDup bndr alts env mkBoringStop
781

782
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
783
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
784 785
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
786

Ian Lynagh's avatar
Ian Lynagh committed
787 788
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
789

790 791
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
792 793

---------------------------------
794
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
795
        -- Kept monadic just so we can do the seqType
796
simplType env ty
797
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
798
    seqType new_ty   `seq`   return new_ty
799
  where
800
    new_ty = substTy env ty
801 802 803
\end{code}


804
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
805
%*                                                                      *
806
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
807
%*                                                                      *
808 809 810 811 812 813
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
814 815 816
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
817 818
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
819
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
820
      StrictArg fun _ info cont    -> rebuildCall env (fun `App` expr) info cont
821
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
822 823 824
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
825 826 827
\end{code}


828
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
829
%*                                                                      *
830
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
831
%*                                                                      *
832 833 834
%************************************************************************

\begin{code}
835
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
836
          -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
837 838 839
simplCast env body co0 cont0
  = do  { co1 <- simplType env co0
        ; simplExprF env body (addCoerce co1 cont0) }
840
  where
841 842
       addCoerce co cont = add_coerce co (coercionKind co) cont

Ian Lynagh's avatar
Ian Lynagh committed
843
       add_coerce _co (s1, k1) cont     -- co :: ty~ty
Ian Lynagh's avatar
Ian Lynagh committed
844
         | s1 `coreEqType` k1 = cont    -- is a no-op
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
845

Ian Lynagh's avatar
Ian Lynagh committed
846 847
       add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
         | (_l1, t1) <- coercionKind co2
848
		-- 	e |> (g1 :: S1~L) |> (g2 :: L~T1)
Ian Lynagh's avatar
Ian Lynagh committed
849
                -- ==>
850 851
                --      e,                       if T1=T2
                --      e |> (g1 . g2 :: T1~T2)  otherwise
Ian Lynagh's avatar
Ian Lynagh committed
852 853 854 855 856 857
                --
                -- For example, in the initial form of a worker
                -- we may find  (coerce T (coerce S (\x.e))) y
                -- and we'd like it to simplify to e[y/x] in one round
                -- of simplification
         , s1 `coreEqType` t1  = cont            -- The coerces cancel out
858
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
Ian Lynagh's avatar
Ian Lynagh committed
859

Ian Lynagh's avatar
Ian Lynagh committed
860
       add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
861
                -- (f |> g) ty  --->   (f ty) |> (g @ ty)
Ian Lynagh's avatar
Ian Lynagh committed
862 863 864 865 866
                -- This implements the PushT rule from the paper
         | Just (tyvar,_) <- splitForAllTy_maybe s1s2
         , not (isCoVar tyvar)
         = ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
         where
867
           ty' = substTy (arg_se `setInScope` env) arg_ty
868

Ian Lynagh's avatar
Ian Lynagh committed
869
        -- ToDo: the PushC rule is not implemented at all
870

Ian Lynagh's avatar
Ian Lynagh committed
871
       add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
872
         | not (isTypeArg arg)  -- This implements the Push rule from the paper
Ian Lynagh's avatar
Ian Lynagh committed
873
         , isFunTy s1s2   -- t1t2 must be a function type, becuase it's applied
874
                --      (e |> (g :: s1s2 ~ t1->t2)) f
Ian Lynagh's avatar
Ian Lynagh committed
875
                -- ===>
876 877
                --      (e (f |> (arg g :: t1~s1))
		--	|> (res g :: s2->t2)
Ian Lynagh's avatar
Ian Lynagh committed
878
                --
879
                -- t1t2 must be a function type, t1->t2, because it's applied
Ian Lynagh's avatar
Ian Lynagh committed
880 881 882 883 884 885 886 887
                -- to something but s1s2 might conceivably not be
                --
                -- When we build the ApplyTo we can't mix the out-types
                -- with the InExpr in the argument, so we simply substitute
                -- to make it all consistent.  It's a bit messy.
                -- But it isn't a common case.
                --
                -- Example of use: Trac #995
888
         = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)
889
         where
890 891 892
           -- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and
           -- t2 ~ s2 with left and right on the curried form:
           --    (->) t1 t2 ~ (->) s1 s2
893
           [co1, co2] = decomposeCo 2 co
894
           new_arg    = mkCoerce (mkSymCoercion co1) arg'
895
           arg'       = substExpr (arg_se `setInScope` env) arg
896

897
       add_coerce co _ cont = CoerceIt co cont
898 899
\end{code}

900

901
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
902
%*                                                                      *
903
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
904
%*                                                                      *
905
%************************************************************************
906 907

\begin{code}
908
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
909
         -> SimplM (SimplEnv, OutExpr)
910 911

simplLam env [] body cont = simplExprF env body cont
912

913
        -- Beta reduction
914
simplLam env (bndr:bndrs) body (ApplyTo _ arg arg_se cont)
Ian Lynagh's avatar
Ian Lynagh committed
915 916
  = do  { tick (BetaReduction bndr)
        ; simplNonRecE env bndr (arg, arg_se) (bndrs, body) cont }
917

Ian Lynagh's avatar
Ian Lynagh committed
918
        -- Not enough args, so there are real lambdas left to put in the result
919
simplLam env bndrs body cont
Ian Lynagh's avatar
Ian Lynagh committed
920 921
  = do  { (env', bndrs') <- simplLamBndrs env bndrs
        ; body' <- simplExpr env' body
922
        ; new_lam <- mkLam env' bndrs' body'
Ian Lynagh's avatar
Ian Lynagh committed
923
        ; rebuild env' new_lam cont }
924 925

------------------
Ian Lynagh's avatar
Ian Lynagh committed
926
simplNonRecE :: SimplEnv
Simon Marlow's avatar
Simon Marlow committed
927
             -> InId                    -- The binder
Ian Lynagh's avatar
Ian Lynagh committed
928
             -> (InExpr, SimplEnv)      -- Rhs of binding (or arg of lambda)
929
             -> ([InBndr], InExpr)      -- Body of the let/lambda
Ian Lynagh's avatar
Ian Lynagh committed
930 931 932
                                        --      \xs.e
             -> SimplCont
             -> SimplM (SimplEnv, OutExpr)
933 934 935 936 937 938 939 940 941 942

-- simplNonRecE is used for
--  * non-top-level non-recursive lets in expressions
--  * beta reduction
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
Ian Lynagh's avatar
Ian Lynagh committed
943 944
-- Why?  Because of the binder-occ-info-zapping done before
--       the call to simplLam in simplExprF (Lam ...)
945

946 947
	-- First deal with type applications and type lets
	--   (/\a. e) (Type ty)   and   (let a = Type ty in e)
948
simplNonRecE env bndr (Type ty_arg, rhs_se) (bndrs, body) cont
949 950
  = ASSERT( isTyVar bndr )
    do	{ ty_arg' <- simplType (rhs_se `setInScope` env) ty_arg
951 952
	; simplLam (extendTvSubst env bndr ty_arg') bndrs body cont }