TcPat.hs 51 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5 6

TcPat: Typechecking patterns
Austin Seipp's avatar
Austin Seipp committed
7
-}
8

9
{-# LANGUAGE CPP, RankNTypes, TupleSections #-}
Ian Lynagh's avatar
Ian Lynagh committed
10

11
module TcPat ( tcLetPat
12 13
             , TcPragEnv, lookupPragEnv, emptyPragEnv
             , LetBndrSpec(..), addInlinePrags
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
14
             , tcPat, tcPat_O, tcPats, newNoSigLetBndr
15
             , addDataConStupidTheta, badFieldCon, polyPatSig ) where
16

17
#include "HsVersions.h"
18

19
import {-# SOURCE #-}   TcExpr( tcSyntaxOp, tcSyntaxOpGen, tcInferSigma )
20 21 22

import HsSyn
import TcHsSyn
23
import TcRnMonad
24 25 26 27
import Inst
import Id
import Var
import Name
28
import NameEnv
Adam Gundry's avatar
Adam Gundry committed
29
import RdrName
30 31
import TcEnv
import TcMType
32
import TcValidity( arityErr )
33 34 35 36
import TcType
import TcUnify
import TcHsType
import TysWiredIn
37
import TcEvidence
38 39
import TyCon
import DataCon
cactus's avatar
cactus committed
40 41
import PatSyn
import ConLike
42 43
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
44
import DynFlags
45
import SrcLoc
46
import VarSet
47
import Util
sof's avatar
sof committed
48
import Outputable
49
import Maybes( orElse )
50
import qualified GHC.LanguageExtensions as LangExt
Ian Lynagh's avatar
Ian Lynagh committed
51
import Control.Monad
52
import Control.Arrow  ( second )
53

Austin Seipp's avatar
Austin Seipp committed
54 55 56
{-
************************************************************************
*                                                                      *
57
                External interface
Austin Seipp's avatar
Austin Seipp committed
58 59 60
*                                                                      *
************************************************************************
-}
61

62
tcLetPat :: TcSigFun -> LetBndrSpec
63
         -> LPat Name -> ExpSigmaType
64 65
         -> TcM a
         -> TcM (LPat TcId, a)
66
tcLetPat sig_fn no_gen pat pat_ty thing_inside
67
  = tc_lpat pat pat_ty penv thing_inside
68
  where
69
    penv = PE { pe_lazy = True
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
70 71
              , pe_ctxt = LetPat sig_fn no_gen
              , pe_orig = PatOrigin }
72 73

-----------------
74
tcPats :: HsMatchContext Name
75
       -> [LPat Name]            -- Patterns,
76
       -> [ExpSigmaType]         --   and their types
77
       -> TcM a                  --   and the checker for the body
78
       -> TcM ([LPat TcId], a)
79 80 81

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
82
-- do the thing inside, use any existentially-bound dictionaries to
83 84 85 86 87
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
88 89
--   3. Check the body
--   4. Check that no existentials escape
90

91
tcPats ctxt pats pat_tys thing_inside
92 93
  = tc_lpats penv pats pat_tys thing_inside
  where
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
94
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = PatOrigin }
95

96
tcPat :: HsMatchContext Name
97
      -> LPat Name -> ExpSigmaType
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
98
      -> TcM a                     -- Checker for body
99
      -> TcM (LPat TcId, a)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
100 101 102 103 104
tcPat ctxt = tcPat_O ctxt PatOrigin

-- | A variant of 'tcPat' that takes a custom origin
tcPat_O :: HsMatchContext Name
        -> CtOrigin              -- ^ origin to use if the type needs inst'ing
105
        -> LPat Name -> ExpSigmaType
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
106 107 108
        -> TcM a                 -- Checker for body
        -> TcM (LPat TcId, a)
tcPat_O ctxt orig pat pat_ty thing_inside
109 110
  = tc_lpat pat pat_ty penv thing_inside
  where
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
111
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = orig }
112

113

114
-----------------
115
data PatEnv
116 117
  = PE { pe_lazy :: Bool        -- True <=> lazy context, so no existentials allowed
       , pe_ctxt :: PatCtxt     -- Context in which the whole pattern appears
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
118
       , pe_orig :: CtOrigin    -- origin to use if the pat_ty needs inst'ing
119
       }
120 121 122

data PatCtxt
  = LamPat   -- Used for lambdas, case etc
123
       (HsMatchContext Name)
124

125
  | LetPat   -- Used only for let(rec) pattern bindings
126
             -- See Note [Typing patterns in pattern bindings]
127 128 129
       TcSigFun        -- Tells type sig if any
       LetBndrSpec     -- True <=> no generalisation of this let

130 131 132
data LetBndrSpec
  = LetLclBndr            -- The binder is just a local one;
                          -- an AbsBinds will provide the global version
133

134
  | LetGblBndr TcPragEnv  -- Generalisation plan is NoGen, so there isn't going
135
                          -- to be an AbsBinds; So we must bind the global version
136
                          -- of the binder right away.
137
                          -- Oh, and here is the inline-pragma information
138

139 140 141
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }

142 143 144
inPatBind :: PatEnv -> Bool
inPatBind (PE { pe_ctxt = LetPat {} }) = True
inPatBind (PE { pe_ctxt = LamPat {} }) = False
145 146

---------------
147
type TcPragEnv = NameEnv [LSig Name]
148

149 150 151 152 153 154
emptyPragEnv :: TcPragEnv
emptyPragEnv = emptyNameEnv

lookupPragEnv :: TcPragEnv -> Name -> [LSig Name]
lookupPragEnv prag_fn n = lookupNameEnv prag_fn n `orElse` []

155
{- *********************************************************************
Austin Seipp's avatar
Austin Seipp committed
156
*                                                                      *
157
                Binders
Austin Seipp's avatar
Austin Seipp committed
158
*                                                                      *
159
********************************************************************* -}
160

161
tcPatBndr :: PatEnv -> Name -> ExpSigmaType -> TcM (HsWrapper, TcId)
162 163 164
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
165 166
tcPatBndr (PE { pe_ctxt = LetPat lookup_sig no_gen
              , pe_orig = orig }) bndr_name pat_ty
167
          -- See Note [Typing patterns in pattern bindings]
168
  | LetGblBndr prags   <- no_gen
169
  , Just (TcIdSig sig) <- mb_sig
170
  , Just poly_id <- completeIdSigPolyId_maybe sig
171
  = do { bndr_id <- addInlinePrags poly_id (lookupPragEnv prags bndr_name)
172
       ; traceTc "tcPatBndr(gbl,sig)" (ppr bndr_id $$ ppr (idType bndr_id))
173
       ; co <- unifyPatType bndr_id (idType bndr_id) pat_ty
174 175 176 177 178 179 180 181 182 183 184 185
       ; return (mkWpCastN co, bndr_id) }

  -- See Note [Partial signatures for pattern bindings]
  | LetLclBndr         <- no_gen
  , Just (TcIdSig sig) <- mb_sig
  = do { mono_name <- newLocalName bndr_name
       ; (subst, _) <- newMetaSigTyVars (map snd (sig_skols sig))
       ; let tau     = substTy subst (sig_tau sig)
             mono_id = mkLocalId mono_name tau
       ; wrap <- tcSubTypeET orig pat_ty tau
       ; traceTc "tcPatBndr(lsl,sig)" (ppr mono_id $$ ppr tau $$ ppr pat_ty)
       ; return (wrap, mono_id) }
186 187

  | otherwise
188 189
  = do { pat_ty <- expTypeToType pat_ty
       ; bndr_id <- newNoSigLetBndr no_gen bndr_name pat_ty
190
       ; traceTc "tcPatBndr(no-sig)" (ppr bndr_id $$ ppr (idType bndr_id))
191 192 193
       ; return (idHsWrapper, bndr_id) }
  where
    mb_sig = lookup_sig bndr_name
194 195

tcPatBndr (PE { pe_ctxt = _lam_or_proc }) bndr_name pat_ty
196
  = do { pat_ty <- expTypeToType pat_ty
197
       ; return (idHsWrapper, mkLocalId bndr_name pat_ty) }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
198 199
               -- whether or not there is a sig is irrelevant, as this
               -- is local
200

201 202
------------
newNoSigLetBndr :: LetBndrSpec -> Name -> TcType -> TcM TcId
203
-- In the polymorphic case (no_gen = LetLclBndr), generate a "monomorphic version"
204 205
--    of the Id; the original name will be bound to the polymorphic version
--    by the AbsBinds
206
-- In the monomorphic case (no_gen = LetBglBndr) there is no AbsBinds, and we
207
--    use the original name directly
208
newNoSigLetBndr LetLclBndr name ty
209
  =do  { mono_name <- newLocalName name
210
       ; return (mkLocalId mono_name ty) }
211
newNoSigLetBndr (LetGblBndr prags) name ty
212
  = addInlinePrags (mkLocalId name ty) (lookupPragEnv prags name)
213 214 215 216

----------
addInlinePrags :: TcId -> [LSig Name] -> TcM TcId
addInlinePrags poly_id prags
217 218 219 220 221 222
  | inl@(L _ prag) : inls <- inl_prags
  = do { traceTc "addInlinePrag" (ppr poly_id $$ ppr prag)
       ; unless (null inls) (warn_multiple_inlines inl inls)
       ; return (poly_id `setInlinePragma` prag) }
  | otherwise
  = return poly_id
223
  where
224 225 226 227 228 229 230 231 232 233 234 235
    inl_prags = [L loc prag | L loc (InlineSig _ prag) <- prags]

    warn_multiple_inlines _ [] = return ()

    warn_multiple_inlines inl1@(L loc prag1) (inl2@(L _ prag2) : inls)
       | inlinePragmaActivation prag1 == inlinePragmaActivation prag2
       , isEmptyInlineSpec (inlinePragmaSpec prag1)
       =    -- Tiresome: inl1 is put there by virtue of being in a hs-boot loop
            -- and inl2 is a user NOINLINE pragma; we don't want to complain
         warn_multiple_inlines inl2 inls
       | otherwise
       = setSrcSpan loc $
236 237
         addWarnTc NoReason
                     (hang (text "Multiple INLINE pragmas for" <+> ppr poly_id)
238
                       2 (vcat (text "Ignoring all but the first"
239 240 241
                                : map pp_inl (inl1:inl2:inls))))

    pp_inl (L loc prag) = ppr prag <+> parens (ppr loc)
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
{- Note [Partial signatures for pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a function binding and a pattern binding, both
with a partial type signature

   f1 :: (True, _) -> Char
   f1 = \x -> x

   f2 :: (True, _) -> Char
   Just f2 = Just (\x->x)

Obviously, both should be rejected.  That happens naturally for the
function binding, f1, because we typecheck the RHS with "expected"
type '(True, apha) -> Char', which correctly fails.

But what of the pattern binding for f2?  We infer the type of the
pattern, and check tha the RHS has that type.  So we must feed in the
type of f2 when inferring the type of the pattern!  We do this right
here, in tcPatBndr, for a LetLclBndr. The signature already has fresh
unification variables for the wildcards (if any).

Extra notes

* For /complete/ type signatures, we could im principle ignore all this
  and just infer the most general type for f2, and check (in
  TcBinds.mkExport) whether it has the claimed type.

  But not so for /partial/ signatures; to get the wildcard unification
  variables into the game we really must inject them here. If we don't
  we never get /any/ value assigned to the wildcards; and programs that
  are bogus, like f2, are accepted.

  Moreover, by feeding in the expected type we do less fruitless
  creation of unification variables, and improve error messages.

* We need to take care with the skolems.  Consider
      data T a = MkT a a
      f :: forall a. a->a
      g :: forall b. b->b
      MkT f g = MkT (\x->x) (\y->y)
  Here we'll infer a type from the pattern of 'T a', but if we feed in
  the signature types for f and g, we'll end up unifying 'a' and 'b'.
  So we instantiate the skolems with SigTvs; hence newMetaSigTyVars.

  All we are doing here is getting the "shapes" right.  In tcExport
  we'll check that the Id really does have the claimed type, with
  the claimed polymorphism.

* We need to do a subsumption, not equality, check.  If
      data T = MkT (forall a. a->a)
      f :: forall b. [b]->[b]
      MkT f = blah
  Since 'blah' returns a value of type T, its payload is a polymorphic
  function of type (forall a. a->a).  And that's enough to bind the
  less-polymorphic function 'f', but we need some impedence matching
  to witness the instantiation.

300 301 302 303 304 305 306 307
Note [Typing patterns in pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are typing a pattern binding
    pat = rhs
Then the PatCtxt will be (LetPat sig_fn let_bndr_spec).

There can still be signatures for the binders:
     data T = MkT (forall a. a->a) Int
308
     x :: forall a. a->a
309 310 311 312 313 314 315 316 317 318
     y :: Int
     MkT x y = <rhs>

Two cases, dealt with by the LetPat case of tcPatBndr

 * If we are generalising (generalisation plan is InferGen or
   CheckGen), then the let_bndr_spec will be LetLclBndr.  In that case
   we want to bind a cloned, local version of the variable, with the
   type given by the pattern context, *not* by the signature (even if
   there is one; see Trac #7268). The mkExport part of the
Gabor Greif's avatar
Gabor Greif committed
319
   generalisation step will do the checking and impedance matching
320 321 322 323 324 325 326 327
   against the signature.

 * If for some some reason we are not generalising (plan = NoGen), the
   LetBndrSpec will be LetGblBndr.  In that case we must bind the
   global version of the Id, and do so with precisely the type given
   in the signature.  (Then we unify with the type from the pattern
   context type.

328

Austin Seipp's avatar
Austin Seipp committed
329 330
************************************************************************
*                                                                      *
331
                The main worker functions
Austin Seipp's avatar
Austin Seipp committed
332 333
*                                                                      *
************************************************************************
334

335 336
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
337
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
338
so that tcPat can extend the environment for the thing_inside, but also
339 340 341 342
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
343
want the error-context for the pattern to scope over the RHS.
344
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
Austin Seipp's avatar
Austin Seipp committed
345
-}
346 347

--------------------
348
type Checker inp out =  forall r.
349 350 351 352
                          inp
                       -> PatEnv
                       -> TcM r
                       -> TcM (out, r)
353 354

tcMultiple :: Checker inp out -> Checker [inp] [out]
355
tcMultiple tc_pat args penv thing_inside
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  = do  { err_ctxt <- getErrCtxt
        ; let loop _ []
                = do { res <- thing_inside
                     ; return ([], res) }

              loop penv (arg:args)
                = do { (p', (ps', res))
                                <- tc_pat arg penv $
                                   setErrCtxt err_ctxt $
                                   loop penv args
                -- setErrCtxt: restore context before doing the next pattern
                -- See note [Nesting] above

                     ; return (p':ps', res) }

        ; loop penv args }
372 373

--------------------
374
tc_lpat :: LPat Name
375
        -> ExpSigmaType
376 377 378
        -> PatEnv
        -> TcM a
        -> TcM (LPat TcId, a)
379
tc_lpat (L span pat) pat_ty penv thing_inside
380
  = setSrcSpan span $
381
    do  { (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
382
                                          thing_inside
383
        ; return (L span pat', res) }
384 385

tc_lpats :: PatEnv
386
         -> [LPat Name] -> [ExpSigmaType]
387 388 389
         -> TcM a
         -> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside
Simon Peyton Jones's avatar
Simon Peyton Jones committed
390
  = ASSERT2( equalLength pats tys, ppr pats $$ ppr tys )
391
    tcMultiple (\(p,t) -> tc_lpat p t)
392
                (zipEqual "tc_lpats" pats tys)
393
                penv thing_inside
394 395

--------------------
396 397
tc_pat  :: PatEnv
        -> Pat Name
398
        -> ExpSigmaType  -- Fully refined result type
399 400 401
        -> TcM a                -- Thing inside
        -> TcM (Pat TcId,       -- Translated pattern
                a)              -- Result of thing inside
402

403
tc_pat penv (VarPat (L l name)) pat_ty thing_inside
404
  = do  { (wrap, id) <- tcPatBndr penv name pat_ty
batterseapower's avatar
batterseapower committed
405
        ; res <- tcExtendIdEnv1 name id thing_inside
406
        ; pat_ty <- readExpType pat_ty
407
        ; return (mkHsWrapPat wrap (VarPat (L l id)) pat_ty, res) }
408 409

tc_pat penv (ParPat pat) pat_ty thing_inside
410 411
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (ParPat pat', res) }
412 413

tc_pat penv (BangPat pat) pat_ty thing_inside
414 415
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (BangPat pat', res) }
416

417
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
418 419 420 421
  = do  { (pat', (res, pat_ct))
                <- tc_lpat pat pat_ty (makeLazy penv) $
                   captureConstraints thing_inside
                -- Ignore refined penv', revert to penv
422

423 424
        ; emitConstraints pat_ct
        -- captureConstraints/extendConstraints:
425
        --   see Note [Hopping the LIE in lazy patterns]
426

427
        -- Check there are no unlifted types under the lazy pattern
428
        ; when (any (isUnliftedType . idType) $ collectPatBinders pat') $
429 430
               lazyUnliftedPatErr lpat

431
        -- Check that the expected pattern type is itself lifted
432 433
        ; pat_ty <- readExpType pat_ty
        ; _ <- unifyType noThing (typeKind pat_ty) liftedTypeKind
434

435
        ; return (LazyPat pat', res) }
436

437
tc_pat _ (WildPat _) pat_ty thing_inside
438
  = do  { res <- thing_inside
439
        ; pat_ty <- expTypeToType pat_ty
440
        ; return (WildPat pat_ty, res) }
441

442
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
443
  = do  { (wrap, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
444
        ; (pat', res) <- tcExtendIdEnv1 name bndr_id $
445 446
                         tc_lpat pat (mkCheckExpType $ idType bndr_id)
                                 penv thing_inside
447 448 449 450 451 452 453
            -- NB: if we do inference on:
            --          \ (y@(x::forall a. a->a)) = e
            -- we'll fail.  The as-pattern infers a monotype for 'y', which then
            -- fails to unify with the polymorphic type for 'x'.  This could
            -- perhaps be fixed, but only with a bit more work.
            --
            -- If you fix it, don't forget the bindInstsOfPatIds!
454
        ; pat_ty <- readExpType pat_ty
455
        ; return (mkHsWrapPat wrap (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }
456 457 458

tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside
  = do  {
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
459
         -- Expr must have type `forall a1...aN. OPT' -> B`
460
         -- where overall_pat_ty is an instance of OPT'.
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
461
        ; (expr',expr'_inferred) <- tcInferSigma expr
462

463 464 465 466 467 468 469 470
         -- expression must be a function
        ; let expr_orig = exprCtOrigin (unLoc expr)
              herald    = text "A view pattern expression expects"
        ; (expr_wrap1, [inf_arg_ty], inf_res_ty)
            <- matchActualFunTys herald expr_orig (Just expr) 1 expr'_inferred
            -- expr_wrap1 :: expr'_inferred "->" (inf_arg_ty -> inf_res_ty)

         -- check that overall pattern is more polymorphic than arg type
471
        ; expr_wrap2 <- tcSubTypeET (pe_orig penv) overall_pat_ty inf_arg_ty
472 473 474 475 476 477 478 479 480 481 482
            -- expr_wrap2 :: overall_pat_ty "->" inf_arg_ty

         -- pattern must have inf_res_ty
        ; (pat', res) <- tc_lpat pat (mkCheckExpType inf_res_ty) penv thing_inside

        ; overall_pat_ty <- readExpType overall_pat_ty
        ; let expr_wrap2' = mkWpFun expr_wrap2 idHsWrapper
                                    overall_pat_ty inf_res_ty
               -- expr_wrap2' :: (inf_arg_ty -> inf_res_ty) "->"
               --                (overall_pat_ty -> inf_res_ty)
              expr_wrap = expr_wrap2' <.> expr_wrap1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
483
        ; return (ViewPat (mkLHsWrap expr_wrap expr') pat' overall_pat_ty, res) }
484

485 486
-- Type signatures in patterns
-- See Note [Pattern coercions] below
487
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
488
  = do  { (inner_ty, tv_binds, wcs, wrap) <- tcPatSig (inPatBind penv)
thomasw's avatar
thomasw committed
489
                                                            sig_ty pat_ty
490 491
        ; (pat', res) <- tcExtendTyVarEnv2 wcs      $
                         tcExtendTyVarEnv  tv_binds $
492 493
                         tc_lpat pat (mkCheckExpType inner_ty) penv thing_inside
        ; pat_ty <- readExpType pat_ty
494
        ; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
495 496 497

------------------------
-- Lists, tuples, arrays
498
tc_pat penv (ListPat pats _ Nothing) pat_ty thing_inside
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
499
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy penv pat_ty
500
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p (mkCheckExpType elt_ty))
501
                                     pats penv thing_inside
502
        ; pat_ty <- readExpType pat_ty
503
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty Nothing) pat_ty, res)
504 505 506
        }

tc_pat penv (ListPat pats _ (Just (_,e))) pat_ty thing_inside
507 508 509 510 511 512 513 514 515
  = do  { tau_pat_ty <- expTypeToType pat_ty
        ; ((pats', res, elt_ty), e')
            <- tcSyntaxOpGen ListOrigin e [SynType (mkCheckExpType tau_pat_ty)]
                                          SynList $
                 \ [elt_ty] ->
                 do { (pats', res) <- tcMultiple (\p -> tc_lpat p (mkCheckExpType elt_ty))
                                                 pats penv thing_inside
                    ; return (pats', res, elt_ty) }
        ; return (ListPat pats' elt_ty (Just (tau_pat_ty,e')), res)
516
        }
517

518
tc_pat penv (PArrPat pats _) pat_ty thing_inside
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
519
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTy penv pat_ty
520
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p (mkCheckExpType elt_ty))
521
                                     pats penv thing_inside
522
        ; pat_ty <- readExpType pat_ty
523
        ; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
524
        }
525

526
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
527 528
  = do  { let arity = length pats
              tc = tupleTyCon boxity arity
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
529 530
        ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc)
                                               penv pat_ty
531 532
                     -- Unboxed tuples have RuntimeRep vars, which we discard:
                     -- See Note [Unboxed tuple RuntimeRep vars] in TyCon
533 534
        ; let con_arg_tys = case boxity of Unboxed -> drop arity arg_tys
                                           Boxed   -> arg_tys
535 536
        ; (pats', res) <- tc_lpats penv pats (map mkCheckExpType con_arg_tys)
                                   thing_inside
537

538
        ; dflags <- getDynFlags
539

540 541 542 543 544
        -- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
        -- so that we can experiment with lazy tuple-matching.
        -- This is a pretty odd place to make the switch, but
        -- it was easy to do.
        ; let
545
              unmangled_result = TuplePat pats' boxity con_arg_tys
546
                                 -- pat_ty /= pat_ty iff coi /= IdCo
547 548
              possibly_mangled_result
                | gopt Opt_IrrefutableTuples dflags &&
549
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
550
                | otherwise                 = unmangled_result
551

552
        ; pat_ty <- readExpType pat_ty
553
        ; ASSERT( length con_arg_tys == length pats ) -- Syntactically enforced
554
          return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
555
        }
556 557 558

------------------------
-- Data constructors
559 560
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
  = tcConPat penv con pat_ty arg_pats thing_inside
561 562 563

------------------------
-- Literal patterns
564
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
565
  = do  { let lit_ty = hsLitType simple_lit
566
        ; co <- unifyPatType simple_lit lit_ty pat_ty
567 568
                -- coi is of kind: pat_ty ~ lit_ty
        ; res <- thing_inside
569
        ; pat_ty <- readExpType pat_ty
570
        ; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty
571
                 , res) }
572 573 574

------------------------
-- Overloaded patterns: n, and n+k
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

-- In the case of a negative literal (the more complicated case),
-- we get
--
--   case v of (-5) -> blah
--
-- becoming
--
--   if v == (negate (fromInteger 5)) then blah else ...
--
-- There are two bits of rebindable syntax:
--   (==)   :: pat_ty -> neg_lit_ty -> Bool
--   negate :: lit_ty -> neg_lit_ty
-- where lit_ty is the type of the overloaded literal 5.
--
-- When there is no negation, neg_lit_ty and lit_ty are the same
tc_pat _ (NPat (L l over_lit) mb_neg eq _) pat_ty thing_inside
592
  = do  { let orig = LiteralOrigin over_lit
593 594 595 596 597 598 599 600 601 602 603 604 605 606
        ; ((lit', mb_neg'), eq')
            <- tcSyntaxOp orig eq [SynType pat_ty, SynAny]
                          (mkCheckExpType boolTy) $
               \ [neg_lit_ty] ->
               let new_over_lit lit_ty = newOverloadedLit over_lit
                                           (mkCheckExpType lit_ty)
               in case mb_neg of
                 Nothing  -> (, Nothing) <$> new_over_lit neg_lit_ty
                 Just neg -> -- Negative literal
                             -- The 'negate' is re-mappable syntax
                   second Just <$>
                   (tcSyntaxOp orig neg [SynRho] (mkCheckExpType neg_lit_ty) $
                    \ [lit_ty] -> new_over_lit lit_ty)

607
        ; res <- thing_inside
608 609
        ; pat_ty <- readExpType pat_ty
        ; return (NPat (L l lit') mb_neg' eq' pat_ty, res) }
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{-
Note [NPlusK patterns]
~~~~~~~~~~~~~~~~~~~~~~
From

  case v of x + 5 -> blah

we get

  if v >= 5 then (\x -> blah) (v - 5) else ...

There are two bits of rebindable syntax:
  (>=) :: pat_ty -> lit1_ty -> Bool
  (-)  :: pat_ty -> lit2_ty -> var_ty

lit1_ty and lit2_ty could conceivably be different.
var_ty is the type inferred for x, the variable in the pattern.

If the pushed-down pattern type isn't a tau-type, the two pat_ty's above
could conceivably be different specializations. But this is very much
like the situation in Note [Case branches must be taus] in TcMatches.
So we tauify the pat_ty before proceeding.

Note that we need to type-check the literal twice, because it is used
twice, and may be used at different types. The second HsOverLit stored in the
AST is used for the subtraction operation.
-}

-- See Note [NPlusK patterns]
tc_pat penv (NPlusKPat (L nm_loc name) (L loc lit) _ ge minus _) pat_ty thing_inside
  = do  { pat_ty <- expTypeToType pat_ty
        ; let orig = LiteralOrigin lit
        ; (lit1', ge')
            <- tcSyntaxOp orig ge [synKnownType pat_ty, SynRho]
                                  (mkCheckExpType boolTy) $
               \ [lit1_ty] ->
               newOverloadedLit lit (mkCheckExpType lit1_ty)
        ; ((lit2', minus_wrap, bndr_id), minus')
            <- tcSyntaxOpGen orig minus [synKnownType pat_ty, SynRho] SynAny $
               \ [lit2_ty, var_ty] ->
               do { lit2' <- newOverloadedLit lit (mkCheckExpType lit2_ty)
652
                  ; (wrap, bndr_id) <- setSrcSpan nm_loc $
653 654 655 656
                                     tcPatBndr penv name (mkCheckExpType var_ty)
                           -- co :: var_ty ~ idType bndr_id

                           -- minus_wrap is applicable to minus'
657
                  ; return (lit2', wrap, bndr_id) }
658

659
        -- The Report says that n+k patterns must be in Integral
660 661 662 663
        -- but it's silly to insist on this in the RebindableSyntax case
        ; unlessM (xoptM LangExt.RebindableSyntax) $
          do { icls <- tcLookupClass integralClassName
             ; instStupidTheta orig [mkClassPred icls [pat_ty]] }
664

665
        ; res <- tcExtendIdEnv1 name bndr_id thing_inside
666 667 668 669 670 671

        ; let minus'' = minus' { syn_res_wrap =
                                    minus_wrap <.> syn_res_wrap minus' }
              pat' = NPlusKPat (L nm_loc bndr_id) (L loc lit1') lit2'
                               ge' minus'' pat_ty
        ; return (pat', res) }
672 673

tc_pat _ _other_pat _ _ = panic "tc_pat"        -- ConPatOut, SigPatOut
674 675

----------------
676
unifyPatType :: Outputable a => a -> TcType -> ExpSigmaType -> TcM TcCoercion
677 678 679 680
-- In patterns we want a coercion from the
-- context type (expected) to the actual pattern type
-- But we don't want to reverse the args to unifyType because
-- that controls the actual/expected stuff in error messages
681
unifyPatType thing actual_ty expected_ty
682
  = do { coi <- unifyExpType (Just thing) actual_ty expected_ty
683
       ; return (mkTcSymCo coi) }
684

Austin Seipp's avatar
Austin Seipp committed
685
{-
686 687 688 689
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern.  E.g.
690
        f ~(C x) = 3
691
We can't discharge the Num constraint from dictionaries bound by
692
the pattern C!
693

694
So we have to make the constraints from thing_inside "hop around"
695
the pattern.  Hence the captureConstraints and emitConstraints.
696 697 698

The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
699 700 701
        data T a where { T1 :: Int -> T Int; ... }
        f :: T a -> Int -> a
        f ~(T1 i) y = y
702
It's obviously not sound to refine a to Int in the right
703
hand side, because the argument might not match T1 at all!
704 705 706 707

Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring

708

Austin Seipp's avatar
Austin Seipp committed
709 710
************************************************************************
*                                                                      *
711 712
        Most of the work for constructors is here
        (the rest is in the ConPatIn case of tc_pat)
Austin Seipp's avatar
Austin Seipp committed
713 714
*                                                                      *
************************************************************************
715

716 717 718 719 720 721 722 723 724 725 726
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

727
As explained by [Wrappers for data instance tycons] in MkIds.hs, the
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

743
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
744

745
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
746 747 748 749 750 751

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

752
Now it might appear seem as if we could have used the previous GADT type
753 754 755 756 757 758 759 760 761 762 763 764
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

765 766 767
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
Austin Seipp's avatar
Austin Seipp committed
768
-}
769

770
--      Running example:
771
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
772
--       with scrutinee of type (T ty)
773

774
tcConPat :: PatEnv -> Located Name
775
         -> ExpSigmaType           -- Type of the pattern
776 777
         -> HsConPatDetails Name -> TcM a
         -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
778 779 780 781 782 783 784 785 786 787
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
  = do  { con_like <- tcLookupConLike con_name
        ; case con_like of
            RealDataCon data_con -> tcDataConPat penv con_lname data_con
                                                 pat_ty arg_pats thing_inside
            PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
                                             pat_ty arg_pats thing_inside
        }

tcDataConPat :: PatEnv -> Located Name -> DataCon
788
             -> ExpSigmaType               -- Type of the pattern
789 790
             -> HsConPatDetails Name -> TcM a
             -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
791
tcDataConPat penv (L con_span con_name) data_con pat_ty arg_pats thing_inside
792 793 794
  = do  { let tycon = dataConTyCon data_con
                  -- For data families this is the representation tycon
              (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
795
                = dataConFullSig data_con
cactus's avatar
cactus committed
796
              header = L con_span (RealDataCon data_con)
797

798 799 800
          -- Instantiate the constructor type variables [a->ty]
          -- This may involve doing a family-instance coercion,
          -- and building a wrapper
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
801
        ; (wrap, ctxt_res_tys) <- matchExpectedConTy penv tycon pat_ty
802
        ; pat_ty <- readExpType pat_ty
803

804 805
          -- Add the stupid theta
        ; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
806

807 808
        ; let all_arg_tys = eqSpecPreds eq_spec ++ theta ++ arg_tys
        ; checkExistentials ex_tvs all_arg_tys penv
809
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
niteria's avatar
niteria committed
810
                               (zipTvSubst univ_tvs ctxt_res_tys) ex_tvs
811 812
                     -- Get location from monad, not from ex_tvs

813
        ; let -- pat_ty' = mkTyConApp tycon ctxt_res_tys
814
              -- pat_ty' is type of the actual constructor application
815
              -- pat_ty' /= pat_ty iff coi /= IdCo
Simon Peyton Jones's avatar
Simon Peyton Jones committed
816

817
              arg_tys' = substTys tenv arg_tys
818

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
819 820 821
        ; traceTc "tcConPat" (vcat [ ppr con_name
                                   , pprTvBndrs univ_tvs
                                   , pprTvBndrs ex_tvs
822
                                   , ppr eq_spec
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
823 824 825 826
                                   , ppr theta
                                   , pprTvBndrs ex_tvs'
                                   , ppr ctxt_res_tys
                                   , ppr arg_tys'
827
                                   , ppr arg_pats ])
828 829
        ; if null ex_tvs && null eq_spec && null theta
          then do { -- The common case; no class bindings etc
830
                    -- (see Note [Arrows and patterns])
831 832 833 834
                    (arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys'
                                                  arg_pats penv thing_inside
                  ; let res_pat = ConPatOut { pat_con = header,
                                              pat_tvs = [], pat_dicts = [],
835
                                              pat_binds = emptyTcEvBinds,
836
                                              pat_args = arg_pats',
837
                                              pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
838
                                              pat_wrap = idHsWrapper }
839

840
                  ; return (mkHsWrapPat wrap res_pat pat_ty, res) }
841

842
          else do   -- The general case, with existential,
843
                    -- and local equality constraints
844
        { let theta'     = substTheta tenv (eqSpecPreds eq_spec ++ theta)
845 846
                           -- order is *important* as we generate the list of
                           -- dictionary binders from theta'
847
              no_equalities = not (any isNomEqPred theta')
848
              skol_info = case pe_ctxt penv of
cactus's avatar
cactus committed
849
                            LamPat mc -> PatSkol (RealDataCon data_con) mc
850
                            LetPat {} -> UnkSkol -- Doesn't matter
851

852 853
        ; gadts_on    <- xoptM LangExt.GADTs
        ; families_on <- xoptM LangExt.TypeFamilies
854
        ; checkTc (no_equalities || gadts_on || families_on)
sivteck's avatar
sivteck committed
855 856
                  (text "A pattern match on a GADT requires the" <+>
                   text "GADTs or TypeFamilies language extension")
857 858 859
                  -- Trac #2905 decided that a *pattern-match* of a GADT
                  -- should require the GADT language flag.
                  -- Re TypeFamilies see also #7156
860

861
        ; given <- newEvVars theta'
862
        ; (ev_binds, (arg_pats', res))
863
             <- checkConstraints skol_info ex_tvs' given $
cactus's avatar
cactus committed
864
                tcConArgs (RealDataCon data_con) arg_tys' arg_pats penv thing_inside
865

cactus's avatar
cactus committed
866