TcBinds.lhs 50.4 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 5 6 7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9 10 11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13 14
-- for details

15
module TcBinds ( tcLocalBinds, tcTopBinds, 
Ian Lynagh's avatar
Ian Lynagh committed
16 17 18 19
                 tcHsBootSigs, tcMonoBinds, 
                 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
                 TcSigInfo(..), TcSigFun, mkTcSigFun,
                 badBootDeclErr ) where
20

ross's avatar
ross committed
21
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
22
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
23

Simon Marlow's avatar
Simon Marlow committed
24 25 26
import DynFlags
import HsSyn
import TcHsSyn
27

28
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
29 30 31 32 33 34 35 36 37
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
38
import Coercion
Simon Marlow's avatar
Simon Marlow committed
39 40 41 42
import VarEnv
import TysPrim
import Id
import IdInfo
43
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
44
import Name
45
import NameSet
46
import NameEnv
47
import VarSet
Simon Marlow's avatar
Simon Marlow committed
48
import SrcLoc
49
import Bag
Simon Marlow's avatar
Simon Marlow committed
50 51 52
import ErrUtils
import Digraph
import Maybes
53
import List
Simon Marlow's avatar
Simon Marlow committed
54 55
import Util
import BasicTypes
56
import Outputable
57
import FastString
58 59

import Control.Monad
60
\end{code}
61

62

63
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
64
%*                                                                      *
65
\subsection{Type-checking bindings}
Ian Lynagh's avatar
Ian Lynagh committed
66
%*                                                                      *
67 68
%************************************************************************

69
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
70 71 72 73 74 75 76 77 78 79
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

80
The real work is done by @tcBindWithSigsAndThen@.
81 82 83 84 85 86 87 88 89 90

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

91 92 93
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

94
\begin{code}
95
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
Ian Lynagh's avatar
Ian Lynagh committed
96 97 98
        -- Note: returning the TcLclEnv is more than we really
        --       want.  The bit we care about is the local bindings
        --       and the free type variables thereof
99
tcTopBinds binds
Ian Lynagh's avatar
Ian Lynagh committed
100 101 102 103
  = do  { (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
        ; return (foldr (unionBags . snd) emptyBag prs, env) }
        -- The top level bindings are flattened into a giant 
        -- implicitly-mutually-recursive LHsBinds
104

105
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
106 107
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
108
tcHsBootSigs (ValBindsOut binds sigs)
Ian Lynagh's avatar
Ian Lynagh committed
109 110
  = do  { checkTc (null binds) badBootDeclErr
        ; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
111
  where
112
    tc_boot_sig (TypeSig (L _ name) ty)
113
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
Ian Lynagh's avatar
Ian Lynagh committed
114 115
           ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
        -- Notice that we make GlobalIds, not LocalIds
116
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
117

118
badBootDeclErr :: Message
Ian Lynagh's avatar
Ian Lynagh committed
119
badBootDeclErr = ptext (sLit "Illegal declarations in an hs-boot file")
120

121 122
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
Ian Lynagh's avatar
Ian Lynagh committed
123
             -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
124

125
tcLocalBinds EmptyLocalBinds thing_inside 
Ian Lynagh's avatar
Ian Lynagh committed
126 127
  = do  { thing <- thing_inside
        ; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
128

129
tcLocalBinds (HsValBinds binds) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
130 131
  = do  { (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
        ; return (HsValBinds binds', thing) }
132

133
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
134 135
  = do  { (thing, lie) <- getLIE thing_inside
        ; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
136

Ian Lynagh's avatar
Ian Lynagh committed
137 138 139 140
        -- If the binding binds ?x = E, we  must now 
        -- discharge any ?x constraints in expr_lie
        ; dict_binds <- tcSimplifyIPs avail_ips lie
        ; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
141
  where
Ian Lynagh's avatar
Ian Lynagh committed
142 143 144
        -- I wonder if we should do these one at at time
        -- Consider     ?x = 4
        --              ?y = ?x + 1
145 146 147 148 149
    tc_ip_bind (IPBind ip expr) = do
        ty <- newFlexiTyVarTy argTypeKind
        (ip', ip_inst) <- newIPDict (IPBindOrigin ip) ip ty
        expr' <- tcMonoExpr expr ty
        return (ip_inst, (IPBind ip' expr'))
150

151 152
------------------------
tcValBinds :: TopLevelFlag 
Ian Lynagh's avatar
Ian Lynagh committed
153 154
           -> HsValBinds Name -> TcM thing
           -> TcM (HsValBinds TcId, thing) 
155

156 157 158
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

159
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  = do  {       -- Typecheck the signature
        ; let { prag_fn = mkPragFun sigs
              ; ty_sigs = filter isVanillaLSig sigs
              ; sig_fn  = mkTcSigFun ty_sigs }

        ; poly_ids <- mapM tcTySig ty_sigs
                -- No recovery from bad signatures, because the type sigs
                -- may bind type variables, so proceeding without them
                -- can lead to a cascade of errors
                -- ToDo: this means we fall over immediately if any type sig
                -- is wrong, which is over-conservative, see Trac bug #745

                -- Extend the envt right away with all 
                -- the Ids declared with type signatures
        ; poly_rec <- doptM Opt_RelaxedPolyRec
        ; (binds', thing) <- tcExtendIdEnv poly_ids $
                             tc_val_binds poly_rec top_lvl sig_fn prag_fn 
                                          binds thing_inside

        ; return (ValBindsOut binds' sigs, thing) }
180

181
------------------------
182
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
Ian Lynagh's avatar
Ian Lynagh committed
183 184
             -> [(RecFlag, LHsBinds Name)] -> TcM thing
             -> TcM ([(RecFlag, LHsBinds TcId)], thing)
185 186 187
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

188
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
189 190
  = do  { thing <- thing_inside
        ; return ([], thing) }
191

192
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
193 194 195 196
  = do  { (group', (groups', thing))
                <- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
                   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
        ; return (group' ++ groups', thing) }
sof's avatar
sof committed
197

198
------------------------
199
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
Ian Lynagh's avatar
Ian Lynagh committed
200 201
         -> (RecFlag, LHsBinds Name) -> TcM thing
         -> TcM ([(RecFlag, LHsBinds TcId)], thing)
202 203 204 205 206

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

207
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
208 209
        -- A single non-recursive binding
        -- We want to keep non-recursive things non-recursive
210
        -- so that we desugar unlifted bindings correctly
Ian Lynagh's avatar
Ian Lynagh committed
211 212
 =  do  { (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
        ; return ([(NonRecursive, b) | b <- binds], thing) }
213

214
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
Ian Lynagh's avatar
Ian Lynagh committed
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  | not poly_rec        -- Recursive group, normal Haskell 98 route
  = do  { (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
        ; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise           -- Recursive group, with gla-exts
  =     -- To maximise polymorphism (with -fglasgow-exts), we do a new 
        -- strongly-connected-component analysis, this time omitting 
        -- any references to variables with type signatures.
        --
        -- Notice that the bindInsts thing covers *all* the bindings in the original
        -- group at once; an earlier one may use a later one!
    do  { traceTc (text "tc_group rec" <+> pprLHsBinds binds)
        ; (binds1,thing) <- bindLocalInsts top_lvl $
                            go (stronglyConnComp (mkEdges sig_fn binds))
        ; return ([(Recursive, unionManyBags binds1)], thing) }
                -- Rec them all together
231
  where
232
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
Ian Lynagh's avatar
Ian Lynagh committed
233 234 235 236
    go (scc:sccs) = do  { (binds1, ids1) <- tc_scc scc
                        ; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
                        ; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go []         = do  { thing <- thing_inside; return ([], [], thing) }
237

238 239
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
240

241
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
242

243 244 245 246 247 248 249 250 251 252
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
Ian Lynagh's avatar
Ian Lynagh committed
253 254 255
        -- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
        -- All the top level things are rec'd together anyway, so it's fine to
        -- leave them to the tcSimplifyTop, and quite a bit faster too
256

Ian Lynagh's avatar
Ian Lynagh committed
257 258 259 260
  | otherwise   -- Nested case
  = do  { ((binds, ids, thing), lie) <- getLIE thing_inside
        ; lie_binds <- bindInstsOfLocalFuns lie ids
        ; return (binds ++ [lie_binds], thing) }
261 262 263

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
Ian Lynagh's avatar
Ian Lynagh committed
264
        -> [(LHsBind Name, BKey, [BKey])]
265 266 267 268

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
269
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
Ian Lynagh's avatar
Ian Lynagh committed
270
                         Just key <- [lookupNameEnv key_map n], no_sig n ])
271 272 273 274 275 276 277 278
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

Ian Lynagh's avatar
Ian Lynagh committed
279
    key_map :: NameEnv BKey     -- Which binding it comes from
280
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
Ian Lynagh's avatar
Ian Lynagh committed
281
                                     , bndr <- bindersOfHsBind bind ]
282 283

bindersOfHsBind :: HsBind Name -> [Name]
284 285
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
286

287
------------------------
288
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
Ian Lynagh's avatar
Ian Lynagh committed
289 290 291 292 293
            -> RecFlag                  -- Whether the group is really recursive
            -> RecFlag                  -- Whether it's recursive after breaking
                                        -- dependencies based on type signatures
            -> LHsBinds Name
            -> TcM ([LHsBinds TcId], [TcId])
294 295 296 297 298

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
299 300 301
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
302
-- 
303 304
-- Knows nothing about the scope of the bindings

305
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
306
  = let 
Ian Lynagh's avatar
Ian Lynagh committed
307
        bind_list    = bagToList binds
308
        binder_names = collectHsBindBinders binds
Ian Lynagh's avatar
Ian Lynagh committed
309 310 311
        loc          = getLoc (head bind_list)
                -- TODO: location a bit awkward, but the mbinds have been
                --       dependency analysed and may no longer be adjacent
312
    in
Ian Lynagh's avatar
Ian Lynagh committed
313 314 315
        -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
    setSrcSpan loc                              $
    recoverM (recoveryCode binder_names sig_fn) $ do 
316

Ian Lynagh's avatar
Ian Lynagh committed
317 318
  { traceTc (ptext (sLit "------------------------------------------------"))
  ; traceTc (ptext (sLit "Bindings for") <+> ppr binder_names)
319

Ian Lynagh's avatar
Ian Lynagh committed
320
        -- TYPECHECK THE BINDINGS
321
  ; ((binds', mono_bind_infos), lie_req) 
Ian Lynagh's avatar
Ian Lynagh committed
322
        <- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
323
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
324

Ian Lynagh's avatar
Ian Lynagh committed
325 326 327
        -- CHECK FOR UNLIFTED BINDINGS
        -- These must be non-recursive etc, and are not generalised
        -- They desugar to a case expression in the end
328
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
329
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
Ian Lynagh's avatar
Ian Lynagh committed
330
                                  zonked_mono_tys mono_bind_infos
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
331
  ; if is_strict then
Ian Lynagh's avatar
Ian Lynagh committed
332 333 334 335 336
    do  { extendLIEs lie_req
        ; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
              mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
              mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
                        -- ToDo: prags for unlifted bindings
337

Ian Lynagh's avatar
Ian Lynagh committed
338 339
        ; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
                   [poly_id | (_, poly_id, _, _) <- exports]) } -- Guaranteed zonked
340

Ian Lynagh's avatar
Ian Lynagh committed
341
    else do     -- The normal lifted case: GENERALISE
342
  { dflags <- getDOpts 
343
  ; (tyvars_to_gen, dicts, dict_binds)
Ian Lynagh's avatar
Ian Lynagh committed
344 345
        <- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
           generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
346

Ian Lynagh's avatar
Ian Lynagh committed
347 348
        -- BUILD THE POLYMORPHIC RESULT IDs
  ; let dict_vars = map instToVar dicts -- May include equality constraints
349
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
Ian Lynagh's avatar
Ian Lynagh committed
350
                    mono_bind_infos
sof's avatar
sof committed
351

Ian Lynagh's avatar
Ian Lynagh committed
352
  ; let poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
353
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
354

355
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
Ian Lynagh's avatar
Ian Lynagh committed
356 357
                                    dict_vars exports
                                    (dict_binds `unionBags` binds')
358

Ian Lynagh's avatar
Ian Lynagh committed
359
  ; return ([unitBag abs_bind], poly_ids)       -- poly_ids are guaranteed zonked by mkExport
360 361 362 363
  } }


--------------
364
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
Ian Lynagh's avatar
Ian Lynagh committed
365 366
         -> MonoBindInfo
         -> TcM ([TyVar], Id, Id, [LPrag])
367
-- mkExport generates exports with 
Ian Lynagh's avatar
Ian Lynagh committed
368 369
--      zonked type variables, 
--      zonked poly_ids
370 371 372 373 374 375 376 377
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

378
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
Ian Lynagh's avatar
Ian Lynagh committed
379 380 381 382
  = do  { warn_missing_sigs <- doptM Opt_WarnMissingSigs
        ; let warn = isTopLevel top_lvl && warn_missing_sigs
        ; (tvs, poly_id) <- mk_poly_id warn mb_sig
                -- poly_id has a zonked type
383

Ian Lynagh's avatar
Ian Lynagh committed
384 385
        ; prags <- tcPrags poly_id (prag_fn poly_name)
                -- tcPrags requires a zonked poly_id
386

Ian Lynagh's avatar
Ian Lynagh committed
387
        ; return (tvs, poly_id, mono_id, prags) }
388 389 390
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

391
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
Ian Lynagh's avatar
Ian Lynagh committed
392 393
                                    ; missingSigWarn warn poly_name poly_ty'
                                    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
394
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
Ian Lynagh's avatar
Ian Lynagh committed
395
                                    ; return (tvs,  sig_id sig) }
396

397
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
398 399 400 401 402 403

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
Ian Lynagh's avatar
Ian Lynagh committed
404 405 406 407 408
        where
          prs = [(expectJust "mkPragFun" (sigName sig), sig) 
                | sig <- sigs, isPragLSig sig]
          env = foldl add emptyNameEnv prs
          add env (n,p) = extendNameEnv_Acc (:) singleton env n p
409

410 411
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
412
  where
413
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
Ian Lynagh's avatar
Ian Lynagh committed
414
                   tcPrag poly_id prag
415

Ian Lynagh's avatar
Ian Lynagh committed
416
pragSigCtxt prag = hang (ptext (sLit "In the pragma")) 2 (ppr prag)
417 418

tcPrag :: TcId -> Sig Name -> TcM Prag
419 420
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
421
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
Ian Lynagh's avatar
Ian Lynagh committed
422
tcPrag poly_id (SpecInstSig hs_ty)           = tcSpecPrag poly_id hs_ty defaultInlineSpec
423
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
424

425

426 427
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
Ian Lynagh's avatar
Ian Lynagh committed
428 429 430 431 432 433
  = do  { let name = idName poly_id
        ; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
        ; co_fn <- tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty
        ; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty inl) }
        -- Most of the work of specialisation is done by 
        -- the desugarer, guided by the SpecPrag
434 435
  
--------------
436 437 438
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
439
recoveryCode binder_names sig_fn
Ian Lynagh's avatar
Ian Lynagh committed
440 441 442
  = do  { traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
        ; poly_ids <- mapM mk_dummy binder_names
        ; return ([], poly_ids) }
443
  where
444
    mk_dummy name 
Ian Lynagh's avatar
Ian Lynagh committed
445 446
        | isJust (sig_fn name) = tcLookupId name        -- Had signature; look it up
        | otherwise            = return (mkLocalId name forall_a_a)    -- No signature
447 448 449 450

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

451

452
-- Check that non-overloaded unlifted bindings are
Ian Lynagh's avatar
Ian Lynagh committed
453 454 455
--      a) non-recursive,
--      b) not top level, 
--      c) not a multiple-binding group (more or less implied by (a))
456

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
457
checkStrictBinds :: TopLevelFlag -> RecFlag
Ian Lynagh's avatar
Ian Lynagh committed
458 459
                 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
                 -> TcM Bool
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
460 461
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
Ian Lynagh's avatar
Ian Lynagh committed
462 463 464 465 466 467 468 469
  = do  { checkTc (isNotTopLevel top_lvl)
                  (strictBindErr "Top-level" unlifted mbind)
        ; checkTc (isNonRec rec_group)
                  (strictBindErr "Recursive" unlifted mbind)
        ; checkTc (isSingletonBag mbind)
                  (strictBindErr "Multiple" unlifted mbind) 
        ; mapM_ check_sig infos
        ; return True }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
470 471
  | otherwise
  = return False
472
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
473 474
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
475
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
Ian Lynagh's avatar
Ian Lynagh committed
476 477
                                         (badStrictSig unlifted sig)
    check_sig other            = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
478 479

strictBindErr flavour unlifted mbind
Ian Lynagh's avatar
Ian Lynagh committed
480
  = hang (text flavour <+> msg <+> ptext (sLit "aren't allowed:")) 
Ian Lynagh's avatar
Ian Lynagh committed
481
         4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
482
  where
Ian Lynagh's avatar
Ian Lynagh committed
483
    msg | unlifted  = ptext (sLit "bindings for unlifted types")
Ian Lynagh's avatar
Ian Lynagh committed
484
        | otherwise = ptext (sLit "bang-pattern bindings")
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
485 486

badStrictSig unlifted sig
Ian Lynagh's avatar
Ian Lynagh committed
487
  = hang (ptext (sLit "Illegal polymorphic signature in") <+> msg)
Ian Lynagh's avatar
Ian Lynagh committed
488
         4 (ppr sig)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
489
  where
Ian Lynagh's avatar
Ian Lynagh committed
490
    msg | unlifted  = ptext (sLit "an unlifted binding")
Ian Lynagh's avatar
Ian Lynagh committed
491
        | otherwise = ptext (sLit "a bang-pattern binding")
492 493
\end{code}

494

495
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
496
%*                                                                      *
497
\subsection{tcMonoBind}
Ian Lynagh's avatar
Ian Lynagh committed
498
%*                                                                      *
499 500
%************************************************************************

501
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
502 503
The signatures have been dealt with already.

504
\begin{code}
505
tcMonoBinds :: [LHsBind Name]
Ian Lynagh's avatar
Ian Lynagh committed
506 507 508 509 510
            -> TcSigFun
            -> RecFlag  -- Whether the binding is recursive for typechecking purposes
                        -- i.e. the binders are mentioned in their RHSs, and
                        --      we are not resuced by a type signature
            -> TcM (LHsBinds TcId, [MonoBindInfo])
511

512
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
Ian Lynagh's avatar
Ian Lynagh committed
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                                fun_matches = matches, bind_fvs = fvs })]
            sig_fn              -- Single function binding,
            NonRecursive        -- binder isn't mentioned in RHS,
  | Nothing <- sig_fn name      -- ...with no type signature
  =     -- In this very special case we infer the type of the
        -- right hand side first (it may have a higher-rank type)
        -- and *then* make the monomorphic Id for the LHS
        -- e.g.         f = \(x::forall a. a->a) -> <body>
        --      We want to infer a higher-rank type for f
    setSrcSpan b_loc    $
    do  { ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)

                -- Check for an unboxed tuple type
                --      f = (# True, False #)
                -- Zonk first just in case it's hidden inside a meta type variable
                -- (This shows up as a (more obscure) kind error 
                --  in the 'otherwise' case of tcMonoBinds.)
        ; zonked_rhs_ty <- zonkTcType rhs_ty
        ; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
                  (unboxedTupleErr name zonked_rhs_ty)

        ; mono_name <- newLocalName name
        ; let mono_id = mkLocalId mono_name zonked_rhs_ty
        ; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
                                              fun_matches = matches', bind_fvs = fvs,
                                              fun_co_fn = co_fn, fun_tick = Nothing })),
                  [(name, Nothing, mono_id)]) }
540

541
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
Ian Lynagh's avatar
Ian Lynagh committed
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
                                fun_matches = matches, bind_fvs = fvs })]
            sig_fn              -- Single function binding
            non_rec     
  | Just scoped_tvs <- sig_fn name      -- ...with a type signature
  =     -- When we have a single function binding, with a type signature
        -- we can (a) use genuine, rigid skolem constants for the type variables
        --        (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc    $
    do  { tc_sig <- tcInstSig True name
        ; mono_name <- newLocalName name
        ; let mono_ty = sig_tau tc_sig
              mono_id = mkLocalId mono_name mono_ty
              rhs_tvs = [ (name, mkTyVarTy tv)
                        | (name, tv) <- scoped_tvs `zip` sig_tvs tc_sig ]
                        -- See Note [More instantiated than scoped]
                        -- Note that the scoped_tvs and the (sig_tvs sig) 
                        -- may have different Names. That's quite ok.

        ; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs $
                               tcMatchesFun mono_name inf matches mono_ty

        ; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
                                    fun_infix = inf, fun_matches = matches',
                                    bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
                                    fun_tick = Nothing }
        ; return (unitBag (L b_loc fun_bind'),
                  [(name, Just tc_sig, mono_id)]) }
569

570
tcMonoBinds binds sig_fn non_rec
Ian Lynagh's avatar
Ian Lynagh committed
571
  = do  { tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
572

Ian Lynagh's avatar
Ian Lynagh committed
573 574 575 576 577
        -- Bring the monomorphic Ids, into scope for the RHSs
        ; let mono_info  = getMonoBindInfo tc_binds
              rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
                                -- A monomorphic binding for each term variable that lacks 
                                -- a type sig.  (Ones with a sig are already in scope.)
578

Ian Lynagh's avatar
Ian Lynagh committed
579 580 581 582 583
        ; binds' <- tcExtendIdEnv2 rhs_id_env $ do
                    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
                                                         | (n,id) <- rhs_id_env])
                    mapM (wrapLocM tcRhs) tc_binds
        ; return (listToBag binds', mono_info) }
584 585 586 587

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
Ian Lynagh's avatar
Ian Lynagh committed
588 589
--      if there's a signature for it, use the instantiated signature type
--      otherwise invent a type variable
590 591 592
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
Ian Lynagh's avatar
Ian Lynagh committed
593 594
--      data T = MkT (forall a. a->a)
--      MkT f = e
595 596 597 598 599 600
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

Ian Lynagh's avatar
Ian Lynagh committed
601
data TcMonoBind         -- Half completed; LHS done, RHS not done
602 603 604
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

605
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
Ian Lynagh's avatar
Ian Lynagh committed
606 607
        -- Type signature (if any), and
        -- the monomorphic bound things
608 609 610 611 612 613 614

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

615
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
616
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
Ian Lynagh's avatar
Ian Lynagh committed
617 618 619 620 621
  = do  { mb_sig <- tcInstSig_maybe sig_fn name
        ; mono_name <- newLocalName name
        ; mono_ty   <- mk_mono_ty mb_sig
        ; let mono_id = mkLocalId mono_name mono_ty
        ; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
622 623
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
624 625 626
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
Ian Lynagh's avatar
Ian Lynagh committed
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
  = do  { mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
        ; mono_pat_binds <- doptM Opt_MonoPatBinds
                -- With -fmono-pat-binds, we do no generalisation of pattern bindings
                -- But the signature can still be polymoprhic!
                --      data T = MkT (forall a. a->a)
                --      x :: forall a. a->a
                --      MkT x = <rhs>
                -- The function get_sig_ty decides whether the pattern-bound variables
                -- should have exactly the type in the type signature (-fmono-pat-binds), 
                -- or the instantiated version (-fmono-pat-binds)

        ; let nm_sig_prs  = names `zip` mb_sigs
              get_sig_ty | mono_pat_binds = idType . sig_id
                         | otherwise      = sig_tau
              tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
                                      | (name, Just sig) <- nm_sig_prs]
              sig_tau_fn  = lookupNameEnv tau_sig_env

              tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
                              mapM lookup_info nm_sig_prs

                -- After typechecking the pattern, look up the binder
                -- names, which the pattern has brought into scope.
              lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
              lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
                                              ; return (name, mb_sig, mono_id) }

        ; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
                                     tcInfer tc_pat

        ; return (TcPatBind infos pat' grhss pat_ty) }
658 659 660 661
  where
    names = collectPatBinders pat


662
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
Ian Lynagh's avatar
Ian Lynagh committed
663
        -- AbsBind, VarBind impossible
664

665 666
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
667 668 669 670 671
-- When we are doing pattern bindings, or multiple function bindings at a time
-- we *don't* bring any scoped type variables into scope
-- Wny not?  They are not completely rigid.
-- That's why we have the special case for a single FunBind in tcMonoBinds
tcRhs (TcFunBind (_,_,mono_id) fun' inf matches)
Ian Lynagh's avatar
Ian Lynagh committed
672 673 674 675 676
  = do  { (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
                                            matches (idType mono_id)
        ; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
                            bind_fvs = placeHolderNames, fun_co_fn = co_fn,
                            fun_tick = Nothing }) }
677 678

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
Ian Lynagh's avatar
Ian Lynagh committed
679 680 681 682
  = do  { grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
                    tcGRHSsPat grhss pat_ty
        ; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
                            bind_fvs = placeHolderNames }) }
683 684 685


---------------------
686
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
687
getMonoBindInfo tc_binds
688
  = foldr (get_info . unLoc) [] tc_binds
689 690 691 692 693 694 695
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
696 697 698
%*                                                                      *
                Generalisation
%*                                                                      *
699 700 701
%************************************************************************

\begin{code}
702
generalise :: DynFlags -> TopLevelFlag 
Ian Lynagh's avatar
Ian Lynagh committed
703 704 705
           -> [LHsBind Name] -> TcSigFun 
           -> [MonoBindInfo] -> [Inst]
           -> TcM ([TyVar], [Inst], TcDictBinds)
706 707
-- The returned [TyVar] are all ready to quantify

708 709
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
Ian Lynagh's avatar
Ian Lynagh committed
710 711
  = do  { extendLIEs lie_req
        ; return ([], [], emptyBag) }
712

Ian Lynagh's avatar
Ian Lynagh committed
713 714 715 716
  | isRestrictedGroup dflags bind_list sig_fn   -- RESTRICTED CASE
  =     -- Check signature contexts are empty 
    do  { checkTc (all is_mono_sig sigs)
                  (restrictedBindCtxtErr bndrs)
717

Ian Lynagh's avatar
Ian Lynagh committed
718 719 720 721
        -- Now simplify with exactly that set of tyvars
        -- We have to squash those Methods
        ; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
                                                tau_tvs lie_req
722

Ian Lynagh's avatar
Ian Lynagh committed
723 724
        -- Check that signature type variables are OK
        ; final_qtvs <- checkSigsTyVars qtvs sigs
725

Ian Lynagh's avatar
Ian Lynagh committed
726
        ; return (final_qtvs, [], binds) }
727

Ian Lynagh's avatar
Ian Lynagh committed
728
  | null sigs   -- UNRESTRICTED CASE, NO TYPE SIGS
729 730
  = tcSimplifyInfer doc tau_tvs lie_req

Ian Lynagh's avatar
Ian Lynagh committed
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  | otherwise   -- UNRESTRICTED CASE, WITH TYPE SIGS
  = do  { sig_lie <- unifyCtxts sigs    -- sigs is non-empty; sig_lie is zonked
        ; let   -- The "sig_avails" is the stuff available.  We get that from
                -- the context of the type signature, BUT ALSO the lie_avail
                -- so that polymorphic recursion works right (see Note [Polymorphic recursion])
                local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
                sig_avails = sig_lie ++ local_meths
                loc = sig_loc (head sigs)

        -- Check that the needed dicts can be
        -- expressed in terms of the signature ones
        ; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
        
        -- Check that signature type variables are OK
        ; final_qtvs <- checkSigsTyVars qtvs sigs

        ; return (final_qtvs, sig_lie, binds) }
748
  where
749 750
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
Ian Lynagh's avatar
Ian Lynagh committed
751 752
    get_tvs | isTopLevel top_lvl = tyVarsOfType  -- See Note [Silly type synonym] in TcType
            | otherwise          = exactTyVarsOfType
753
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
754
    is_mono_sig sig = null (sig_theta sig)
Ian Lynagh's avatar
Ian Lynagh committed
755
    doc = ptext (sLit "type signature(s) for") <+> pprBinders bndrs
756

757
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
Ian Lynagh's avatar
Ian Lynagh committed
758
                            sig_theta = theta, sig_loc = loc }) mono_id
759
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
Ian Lynagh's avatar
Ian Lynagh committed
760
                tci_theta = theta, tci_loc = loc}
761
\end{code}
762

763 764 765
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
766

767 768 769 770 771 772 773 774 775
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
776
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
777
-- Post-condition: the returned Insts are full zonked
Ian Lynagh's avatar
Ian Lynagh committed
778 779 780 781
unifyCtxts (sig1 : sigs)        -- Argument is always non-empty
  = do  { mapM unify_ctxt sigs
        ; theta <- zonkTcThetaType (sig_theta sig1)
        ; newDictBndrs (sig_loc sig1) theta }
782 783 784 785
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
Ian Lynagh's avatar
Ian Lynagh committed
786 787 788 789 790 791 792 793 794 795 796 797 798
        = setSrcSpan (instLocSpan (sig_loc sig))        $
          addErrCtxt (sigContextsCtxt sig1 sig)         $
          do { cois <- unifyTheta theta1 theta
             ; -- Check whether all coercions are identity coercions
               -- That can happen if we have, say
               --         f :: C [a]   => ...
               --         g :: C (F a) => ...
               -- where F is a type function and (F a ~ [a])
               -- Then unification might succeed with a coercion.  But it's much
               -- much simpler to require that such signatures have identical contexts
               checkTc (all isIdentityCoercion cois)
                       (ptext (sLit "Mutually dependent functions have syntactically distinct contexts"))
             }
799

800 801
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
Ian Lynagh's avatar
Ian Lynagh committed
802 803 804 805 806 807 808 809 810 811 812 813 814 815
  = do  { gbl_tvs <- tcGetGlobalTyVars
        ; sig_tvs_s <- mapM (check_sig gbl_tvs) sigs

        ; let   -- Sigh.  Make sure that all the tyvars in the type sigs
                -- appear in the returned ty var list, which is what we are
                -- going to generalise over.  Reason: we occasionally get
                -- silly types like
                --      type T a = () -> ()
                --      f :: T a
                --      f () = ()
                -- Here, 'a' won't appear in qtvs, so we have to add it
                sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
                all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
        ; return all_tvs }
816
  where
817
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
Ian Lynagh's avatar
Ian Lynagh committed
818 819 820 821 822 823 824
                                  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext (sLit "In the type signature for") <+> quotes (ppr id))       $
        addErrCtxtM (sigCtxt id tvs theta tau)                                          $
        do { tvs' <- checkDistinctTyVars tvs
           ; when (any (`elemVarSet` gbl_tvs) tvs')
                  (bleatEscapedTvs gbl_tvs tvs tvs')
           ; return tvs' }
825 826 827 828 829 830

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
Ian Lynagh's avatar
Ian Lynagh committed
831
--      f :: forall a b. a -> b -> b
832
-- we want to check that 'a' and 'b' haven't 
Ian Lynagh's avatar
Ian Lynagh committed
833 834
--      (a) been unified with a non-tyvar type
--      (b) been unified with each other (all distinct)
835 836

checkDistinctTyVars sig_tvs
Ian Lynagh's avatar
Ian Lynagh committed
837 838 839
  = do  { zonked_tvs <- mapM zonkSigTyVar sig_tvs
        ; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
        ; return zonked_tvs }
840 841
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
Ian Lynagh's avatar
Ian Lynagh committed
842 843
        -- The TyVarEnv maps each zonked type variable back to its
        -- corresponding user-written signature type variable
844
    check_dup acc (sig_tv, zonked_tv)
Ian Lynagh's avatar
Ian Lynagh committed
845 846
        = case lookupVarEnv acc zonked_tv of
                Just sig_tv' -> bomb_out sig_tv sig_tv'
847

Ian Lynagh's avatar
Ian Lynagh committed
848
                Nothing -> return (extendVarEnv acc zonked_tv sig_tv)
849

850
    bomb_out sig_tv1 sig_tv2
851
       = do { env0 <- tcInitTidyEnv
Ian Lynagh's avatar
Ian Lynagh committed
852 853 854 855 856 857
            ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
                  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
                  msg = ptext (sLit "Quantified type variable") <+> quotes (ppr tidy_tv1) 
                         <+> ptext (sLit "is unified with another quantified type variable") 
                         <+> quotes (ppr tidy_tv2)
            ; failWithTcM (env2, msg) }
858
       where
SamB's avatar
SamB committed
859
\end{code}
860

861

862
@getTyVarsToGen@ decides what type variables to generalise over.
863 864 865 866 867 868 869 870

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
Ian Lynagh's avatar
Ian Lynagh committed
871 872
        f :: Array Int Int
        f x = array ... xs where xs = [1,2,3,4,5]
873 874 875 876 877
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

878 879 880 881
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

882
 (a) If we fail to generalise a tyvar which is not actually
Ian Lynagh's avatar
Ian Lynagh committed
883 884 885 886 887 888 889
        constrained, then it will never, ever get bound, and lands
        up printed out in interface files!  Notorious example:
                instance Eq a => Eq (Foo a b) where ..
        Here, b is not constrained, even though it looks as if it is.
        Another, more common, example is when there's a Method inst in
        the LIE, whose type might very well involve non-overloaded
        type variables.
890
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
Ian Lynagh's avatar
Ian Lynagh committed
891
        the simple thing instead]
892

893
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
Ian Lynagh's avatar
Ian Lynagh committed
894 895
        because we are going to pass on out the unmodified LIE, with those
        tyvars in it.  They won't be in scope if we've generalised them.
896 897 898 899 900

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

901 902 903
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
904

Ian Lynagh's avatar
Ian Lynagh committed
905 906 907
        * Bind any variable for which we have a type signature
          to an Id with a polymorphic type.  Then when type-checking 
          the RHSs we'll make a full polymorphic call.
908

909 910
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
911

Ian Lynagh's avatar
Ian Lynagh committed
912 913
        f :: Eq a => [a] -> [a]
        f xs = ...f...
914 915 916

If we don't take care, after typechecking we get

Ian Lynagh's avatar
Ian Lynagh committed
917 918 919
        f = /\a -> \d::Eq a -> let f' = f a d
                               in
                               \ys:[a] -> ...f'...
920 921 922 923 924 925 926

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

Ian Lynagh's avatar
Ian Lynagh committed
927 928
        ff :: [Int] -> [Int]
        ff = f Int dEqInt
929 930 931 932 933

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

Ian Lynagh's avatar
Ian Lynagh committed
934
        ff = f Int dEqInt
935

Ian Lynagh's avatar
Ian Lynagh committed
936
           = let f' = f Int dEqInt in \ys. ...f'...
937

Ian Lynagh's avatar
Ian Lynagh committed
938 939
           = let f' = let f' = f Int dEqInt in \ys. ...f'...
                      in \ys. ...f'...
940 941

Etc.
942 943 944 945

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

946 947 948 949 950 951
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
952

953 954
Then we get

Ian Lynagh's avatar
Ian Lynagh committed
955 956 957 958
        f = /\a -> \d::Eq a -> letrec
                                 fm = \ys:[a] -> ...fm...
                               in
                               fm
959 960


961 962

%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
963 964 965
%*                                                                      *
                Signatures
%*                                                                      *
966 967
%************************************************************************

968
Type signatures are tricky.  See Note [Signature skolems] in TcType
969

970 971 972 973 974 975 976 977 978
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

979 980 981 982
Note [Scoped tyvars]
~~~~~~~~~~~~~~~~~~~~
The -XScopedTypeVariables flag brings lexically-scoped type variables
into scope for any explicitly forall-quantified type variables:
Ian Lynagh's avatar
Ian Lynagh committed
983 984
        f :: forall a. a -> a
        f x = e
985 986 987 988
Then 'a' is in scope inside 'e'.

However, we do *not* support this 
  - For pattern bindings e.g
Ian Lynagh's avatar
Ian Lynagh committed
989 990
        f :: forall a. a->a
        (f,g) = e
991 992

  - For multiple function bindings, unless Opt_RelaxedPolyRec is on
Ian Lynagh's avatar
Ian Lynagh committed
993 994 995 996
        f :: forall a. a -> a
        f = g
        g :: forall b. b -> b
        g = ...f...
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    Reason: we use mutable variables for 'a' and 'b', since they may
    unify to each other, and that means the scoped type variable would
    not stand for a completely rigid variable.

    Currently, we simply make Opt_ScopedTypeVariables imply Opt_RelaxedPolyRec


Note [More instantiated than scoped]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There may be more instantiated type variables than lexically-scoped 
ones.  For example:
Ian Lynagh's avatar
Ian Lynagh committed
1008 1009
        type T a = forall b. b -> (a,b)
        f :: forall c. T c
1010 1011 1012 1013 1014 1015 1016
Here, the signature for f will have one scoped type variable, c,
but two instantiated type variables, c' and b'.  

We assume that the scoped ones are at the *front* of sig_tvs,
and remember the names from the original HsForAllTy in the TcSigFun.


1017
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
1018 1019 1020 1021
type TcSigFun = Name -> Maybe [Name]    -- Maps a let-binder to the list of
                                        -- type variables brought into scope
                                        -- by its type signature.
                                        -- Nothing => no type signature
1022

1023
mkTcSigFun :: [LSig Name] -> TcSigFun