Capability.c 20.3 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

34
nat n_capabilities;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
41
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
42

43
#if defined(THREADED_RTS)
44
45
46
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
47
    return blackholes_need_checking
48
	|| sched_state >= SCHED_INTERRUPTING
49
50
	;
}
51
#endif
52

53
54
55
#if defined(THREADED_RTS)
STATIC_INLINE rtsBool
anyWorkForMe( Capability *cap, Task *task )
56
{
57
58
59
60
61
62
    if (task->tso != NULL) {
	// A bound task only runs if its thread is on the run queue of
	// the capability on which it was woken up.  Otherwise, we
	// can't be sure that we have the right capability: the thread
	// might be woken up on some other capability, and task->cap
	// could change under our feet.
63
	return !emptyRunQueue(cap) && cap->run_queue_hd->bound == task;
64
    } else {
65
66
67
68
69
70
	// A vanilla worker task runs if either there is a lightweight
	// thread at the head of the run queue, or the run queue is
	// empty and (there are sparks to execute, or there is some
	// other global condition to check, such as threads blocked on
	// blackholes).
	if (emptyRunQueue(cap)) {
71
72
73
	    return !emptySparkPoolCap(cap)
		|| !emptyWakeupQueue(cap)
		|| globalWorkToDo();
74
75
	} else
	    return cap->run_queue_hd->bound == NULL;
76
77
    }
}
78
#endif
79
80
81

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
82
 *
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
99
100
}

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

117
/* ----------------------------------------------------------------------------
118
119
120
121
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
122
123

static void
124
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
125
{
126
    nat g;
127

128
129
130
131
132
133
134
135
136
137
138
139
140
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
141
142
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
143
144
#endif

sof's avatar
sof committed
145
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
146
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
147

148
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
149
150
				     RtsFlags.GcFlags.generations,
				     "initCapability");
151
152
153

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
154
    }
155

tharris@microsoft.com's avatar
tharris@microsoft.com committed
156
157
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
158
159
160
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
sof's avatar
sof committed
161
162
}

163
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
164
165
 * Function:  initCapabilities()
 *
166
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
167
 *            we keep a table of them, the size of which is
168
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
169
 *
170
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
171
void
172
initCapabilities( void )
sof's avatar
sof committed
173
{
174
175
#if defined(THREADED_RTS)
    nat i;
176

177
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
178
179
180
181
182
183
184
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

185
186
187
188
189
190
191
192
193
194
195
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
196

197
    for (i = 0; i < n_capabilities; i++) {
198
	initCapability(&capabilities[i], i);
199
    }
200

Simon Marlow's avatar
Simon Marlow committed
201
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
202
203
204

#else /* !THREADED_RTS */

205
    n_capabilities = 1;
206
    capabilities = &MainCapability;
207
    initCapability(&MainCapability, 0);
208

209
210
#endif

211
212
213
214
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
215
216
}

217
/* ----------------------------------------------------------------------------
218
219
220
221
222
223
224
225
226
227
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
228
229
 *
 * ------------------------------------------------------------------------- */
230
231
232

#if defined(THREADED_RTS)
STATIC_INLINE void
233
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
234
{
235
236
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
237
238
239
240
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
241
242
243
244
245
246
247
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
248
}
249
#endif
250

251
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
252
253
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
254
255
256
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
257
258
 * ------------------------------------------------------------------------- */

259
#if defined(THREADED_RTS)
260
void
261
releaseCapability_ (Capability* cap)
262
{
263
264
265
266
    Task *task;

    task = cap->running_task;

267
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
268
269

    cap->running_task = NULL;
270

271
272
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
273
274
275
276
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
277
    }
278
279
280
281
282
283
284
285
286

    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
287
    }
288

289
    if (!cap->spare_workers) {
290
291
292
293
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
294
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
295
296
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
297
298
299
	    startWorkerTask(cap, workerStart);
	    return;
	}
300
    }
301

302
303
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
304
305
    if (!emptyRunQueue(cap) || !emptyWakeupQueue(cap)
	      || !emptySparkPoolCap(cap) || globalWorkToDo()) {
306
307
308
309
310
311
312
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

313
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
314
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
315
316
}

317
void
318
releaseCapability (Capability* cap USED_IF_THREADS)
319
320
321
322
323
324
325
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap);
    RELEASE_LOCK(&cap->lock);
}

static void
326
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

    releaseCapability_(cap);

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
352

353
/* ----------------------------------------------------------------------------
354
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
355
356
 *
 * Purpose:  when an OS thread returns from an external call,
357
358
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
359
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
360
361
 * made it.
 *
362
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
363
void
364
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
365
{
366
#if !defined(THREADED_RTS)
367

368
369
370
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
371

372
#else
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
	    for (i = 0; i < n_capabilities; i++) {
		cap = &capabilities[i];
		if (!cap->running_task) {
		    break;
		}
	    }
	    // Can't find a free one, use last_free_capability.
	    cap = last_free_capability;
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

394
    } else {
395
	ASSERT(task->cap == cap);
396
397
    }

398
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
399

Simon Marlow's avatar
Simon Marlow committed
400
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

436
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
437

Simon Marlow's avatar
Simon Marlow committed
438
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
439
440
441
442
443
444

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
445
/* ----------------------------------------------------------------------------
446
 * yieldCapability
447
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
448

sof's avatar
sof committed
449
void
450
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
451
{
452
453
    Capability *cap = *pCap;

454
    // The fast path has no locking, if we don't enter this while loop
455
456

    while ( cap->returning_tasks_hd != NULL || !anyWorkForMe(cap,task) ) {
Simon Marlow's avatar
Simon Marlow committed
457
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
458
459

	// We must now release the capability and wait to be woken up
460
	// again.
461
	task->wakeup = rtsFalse;
462
463
464
465
466
467
468
469
470
471
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
472
473
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

474
475
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
476
477
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
499
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
500
	ASSERT(cap->running_task == task);
501
502
    }

503
    *pCap = cap;
504

505
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
506

507
    return;
sof's avatar
sof committed
508
509
}

510
511
512
513
514
515
516
517
518
519
520
521
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
wakeupThreadOnCapability (Capability *cap, StgTSO *tso)
{
    ASSERT(tso->cap == cap);
    ASSERT(tso->bound ? tso->bound->cap == cap : 1);
522
523
524
    ASSERT_LOCK_HELD(&cap->lock);

    tso->cap = cap;
525
526
527
528
529
530
531
532

    if (cap->running_task == NULL) {
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.
	appendToRunQueue(cap,tso);

	// start it up
	cap->running_task = myTask(); // precond for releaseCapability_()
Simon Marlow's avatar
Simon Marlow committed
533
	trace(TRACE_sched, "resuming capability %d", cap->no);
534
535
536
537
538
539
540
	releaseCapability_(cap);
    } else {
	appendToWakeupQueue(cap,tso);
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
}

void
wakeupThreadOnCapability_lock (Capability *cap, StgTSO *tso)
{
    ACQUIRE_LOCK(&cap->lock);
    migrateThreadToCapability (cap, tso);
    RELEASE_LOCK(&cap->lock);
}

void
migrateThreadToCapability (Capability *cap, StgTSO *tso)
{
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = cap;
    }
    tso->cap = cap;
    wakeupThreadOnCapability(cap,tso);
}

void
migrateThreadToCapability_lock (Capability *cap, StgTSO *tso)
{
    ACQUIRE_LOCK(&cap->lock);
    migrateThreadToCapability (cap, tso);
568
569
570
    RELEASE_LOCK(&cap->lock);
}

571
/* ----------------------------------------------------------------------------
572
 * prodCapabilities
sof's avatar
sof committed
573
 *
574
575
576
 * Used to indicate that the interrupted flag is now set, or some
 * other global condition that might require waking up a Task on each
 * Capability.
577
578
 * ------------------------------------------------------------------------- */

579
580
581
582
583
584
static void
prodCapabilities(rtsBool all)
{
    nat i;
    Capability *cap;
    Task *task;
585

586
587
588
589
590
    for (i=0; i < n_capabilities; i++) {
	cap = &capabilities[i];
	ACQUIRE_LOCK(&cap->lock);
	if (!cap->running_task) {
	    if (cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
591
		trace(TRACE_sched, "resuming capability %d", cap->no);
592
593
594
595
596
597
598
599
		task = cap->spare_workers;
		ASSERT(!task->stopped);
		giveCapabilityToTask(cap,task);
		if (!all) {
		    RELEASE_LOCK(&cap->lock);
		    return;
		}
	    }
600
	}
601
	RELEASE_LOCK(&cap->lock);
602
    }
603
    return;
sof's avatar
sof committed
604
}
605

606
607
608
609
610
void
prodAllCapabilities (void)
{
    prodCapabilities(rtsTrue);
}
sof's avatar
sof committed
611

612
/* ----------------------------------------------------------------------------
613
614
615
616
617
618
 * prodOneCapability
 *
 * Like prodAllCapabilities, but we only require a single Task to wake
 * up in order to service some global event, such as checking for
 * deadlock after some idle time has passed.
 * ------------------------------------------------------------------------- */
619

620
621
622
623
void
prodOneCapability (void)
{
    prodCapabilities(rtsFalse);
624
}
625
626
627
628
629
630
631
632
633
634
635
636
637

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
638
 *
639
 * ------------------------------------------------------------------------- */
640
641

void
642
shutdownCapability (Capability *cap, Task *task)
643
{
644
645
    nat i;

646
    ASSERT(sched_state == SCHED_SHUTTING_DOWN);
647
648
649

    task->cap = cap;

650
651
652
653
654
655
656
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
657
658
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
659
660
661
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
662
	    debugTrace(DEBUG_sched, "not owner, yielding");
663
664
	    yieldThread();
	    continue;
665
	}
666
667
	cap->running_task = task;
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
668
669
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
670
671
672
673
	    releaseCapability_(cap); // this will wake up a worker
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
674
	}
Simon Marlow's avatar
Simon Marlow committed
675
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
Ian Lynagh's avatar
Ian Lynagh committed
676
677
        stgFree(cap->mut_lists);
        freeSparkPool(&cap->r.rSparks);
678
679
	RELEASE_LOCK(&cap->lock);
	break;
680
    }
681
682
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
683

684
685
686
687
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
688
}
689

690
691
692
693
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
694
 *
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


713
#endif /* THREADED_RTS */
714
715