TcPat.hs 44.7 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5 6

TcPat: Typechecking patterns
Austin Seipp's avatar
Austin Seipp committed
7
-}
8

9
{-# LANGUAGE CPP, RankNTypes #-}
Ian Lynagh's avatar
Ian Lynagh committed
10

11 12 13
module TcPat ( tcLetPat, TcSigFun
             , TcPragEnv, lookupPragEnv, emptyPragEnv
             , LetBndrSpec(..), addInlinePrags
14
             , tcPat, tcPats, newNoSigLetBndr
15
             , addDataConStupidTheta, badFieldCon, polyPatSig ) where
16

17
#include "HsVersions.h"
18

19
import {-# SOURCE #-}   TcExpr( tcSyntaxOp, tcInferRho)
20 21 22

import HsSyn
import TcHsSyn
23
import TcRnMonad
24 25 26 27
import Inst
import Id
import Var
import Name
28
import NameEnv
Adam Gundry's avatar
Adam Gundry committed
29
import RdrName
30 31
import TcEnv
import TcMType
32
import TcValidity( arityErr )
33 34 35 36
import TcType
import TcUnify
import TcHsType
import TysWiredIn
37
import TcEvidence
38 39
import TyCon
import DataCon
cactus's avatar
cactus committed
40 41
import PatSyn
import ConLike
42 43
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
44
import DynFlags
45
import SrcLoc
46
import VarSet
47
import Util
sof's avatar
sof committed
48
import Outputable
49
import FastString
50
import Maybes( orElse )
Ian Lynagh's avatar
Ian Lynagh committed
51
import Control.Monad
52

Austin Seipp's avatar
Austin Seipp committed
53 54 55
{-
************************************************************************
*                                                                      *
56
                External interface
Austin Seipp's avatar
Austin Seipp committed
57 58 59
*                                                                      *
************************************************************************
-}
60

61
tcLetPat :: TcSigFun -> LetBndrSpec
62 63 64
         -> LPat Name -> TcSigmaType
         -> TcM a
         -> TcM (LPat TcId, a)
65
tcLetPat sig_fn no_gen pat pat_ty thing_inside
66
  = tc_lpat pat pat_ty penv thing_inside
67
  where
68
    penv = PE { pe_lazy = True
69
              , pe_ctxt = LetPat sig_fn no_gen }
70 71

-----------------
72
tcPats :: HsMatchContext Name
73 74
       -> [LPat Name]            -- Patterns,
       -> [TcSigmaType]          --   and their types
75
       -> TcM a                  --   and the checker for the body
76
       -> TcM ([LPat TcId], a)
77 78 79

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
80
-- do the thing inside, use any existentially-bound dictionaries to
81 82 83 84 85
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
86 87
--   3. Check the body
--   4. Check that no existentials escape
88

89
tcPats ctxt pats pat_tys thing_inside
90 91
  = tc_lpats penv pats pat_tys thing_inside
  where
92
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
93

94
tcPat :: HsMatchContext Name
95
      -> LPat Name -> TcSigmaType
96 97
      -> TcM a                 -- Checker for body, given
                               -- its result type
98
      -> TcM (LPat TcId, a)
99
tcPat ctxt pat pat_ty thing_inside
100 101
  = tc_lpat pat pat_ty penv thing_inside
  where
102
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
103

104

105
-----------------
106
data PatEnv
107 108
  = PE { pe_lazy :: Bool        -- True <=> lazy context, so no existentials allowed
       , pe_ctxt :: PatCtxt     -- Context in which the whole pattern appears
109
       }
110 111 112

data PatCtxt
  = LamPat   -- Used for lambdas, case etc
113
       (HsMatchContext Name)
114

115
  | LetPat   -- Used only for let(rec) pattern bindings
116
             -- See Note [Typing patterns in pattern bindings]
117 118 119
       TcSigFun        -- Tells type sig if any
       LetBndrSpec     -- True <=> no generalisation of this let

120 121 122
data LetBndrSpec
  = LetLclBndr            -- The binder is just a local one;
                          -- an AbsBinds will provide the global version
123

124
  | LetGblBndr TcPragEnv  -- Generalisation plan is NoGen, so there isn't going
125
                          -- to be an AbsBinds; So we must bind the global version
126
                          -- of the binder right away.
127
                          -- Oh, and here is the inline-pragma information
128

129 130 131
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }

132 133 134
inPatBind :: PatEnv -> Bool
inPatBind (PE { pe_ctxt = LetPat {} }) = True
inPatBind (PE { pe_ctxt = LamPat {} }) = False
135 136

---------------
137
type TcPragEnv = NameEnv [LSig Name]
138
type TcSigFun  = Name -> Maybe TcSigInfo
139

140 141 142 143 144 145
emptyPragEnv :: TcPragEnv
emptyPragEnv = emptyNameEnv

lookupPragEnv :: TcPragEnv -> Name -> [LSig Name]
lookupPragEnv prag_fn n = lookupNameEnv prag_fn n `orElse` []

146
{- *********************************************************************
Austin Seipp's avatar
Austin Seipp committed
147
*                                                                      *
148
                Binders
Austin Seipp's avatar
Austin Seipp committed
149
*                                                                      *
150
********************************************************************* -}
151

152
tcPatBndr :: PatEnv -> Name -> TcSigmaType -> TcM (TcCoercionN, TcId)
153 154 155 156
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
tcPatBndr (PE { pe_ctxt = LetPat lookup_sig no_gen}) bndr_name pat_ty
157
          -- See Note [Typing patterns in pattern bindings]
158 159 160
  | LetGblBndr prags   <- no_gen
  , Just (TcIdSig sig) <- lookup_sig bndr_name
  , Just poly_id <- completeIdSigPolyId_maybe sig
161
  = do { bndr_id <- addInlinePrags poly_id (lookupPragEnv prags bndr_name)
162
       ; traceTc "tcPatBndr(gbl,sig)" (ppr bndr_id $$ ppr (idType bndr_id))
163
       ; co <- unifyPatType bndr_id (idType bndr_id) pat_ty
batterseapower's avatar
batterseapower committed
164
       ; return (co, bndr_id) }
165 166

  | otherwise
167
  = do { bndr_id <- newNoSigLetBndr no_gen bndr_name pat_ty
168
       ; traceTc "tcPatBndr(no-sig)" (ppr bndr_id $$ ppr (idType bndr_id))
169
       ; return (mkTcNomReflCo pat_ty, bndr_id) }
170 171

tcPatBndr (PE { pe_ctxt = _lam_or_proc }) bndr_name pat_ty
172
  = return (mkTcNomReflCo pat_ty, mkLocalId bndr_name pat_ty)
173

174 175
------------
newNoSigLetBndr :: LetBndrSpec -> Name -> TcType -> TcM TcId
176
-- In the polymorphic case (no_gen = LetLclBndr), generate a "monomorphic version"
177 178
--    of the Id; the original name will be bound to the polymorphic version
--    by the AbsBinds
179
-- In the monomorphic case (no_gen = LetBglBndr) there is no AbsBinds, and we
180
--    use the original name directly
181
newNoSigLetBndr LetLclBndr name ty
182
  =do  { mono_name <- newLocalName name
183
       ; return (mkLocalId mono_name ty) }
184
newNoSigLetBndr (LetGblBndr prags) name ty
185
  = addInlinePrags (mkLocalId name ty) (lookupPragEnv prags name)
186 187 188 189

----------
addInlinePrags :: TcId -> [LSig Name] -> TcM TcId
addInlinePrags poly_id prags
190 191 192 193 194 195
  | inl@(L _ prag) : inls <- inl_prags
  = do { traceTc "addInlinePrag" (ppr poly_id $$ ppr prag)
       ; unless (null inls) (warn_multiple_inlines inl inls)
       ; return (poly_id `setInlinePragma` prag) }
  | otherwise
  = return poly_id
196
  where
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    inl_prags = [L loc prag | L loc (InlineSig _ prag) <- prags]

    warn_multiple_inlines _ [] = return ()

    warn_multiple_inlines inl1@(L loc prag1) (inl2@(L _ prag2) : inls)
       | inlinePragmaActivation prag1 == inlinePragmaActivation prag2
       , isEmptyInlineSpec (inlinePragmaSpec prag1)
       =    -- Tiresome: inl1 is put there by virtue of being in a hs-boot loop
            -- and inl2 is a user NOINLINE pragma; we don't want to complain
         warn_multiple_inlines inl2 inls
       | otherwise
       = setSrcSpan loc $
         addWarnTc (hang (ptext (sLit "Multiple INLINE pragmas for") <+> ppr poly_id)
                       2 (vcat (ptext (sLit "Ignoring all but the first")
                                : map pp_inl (inl1:inl2:inls))))

    pp_inl (L loc prag) = ppr prag <+> parens (ppr loc)
214

Austin Seipp's avatar
Austin Seipp committed
215
{-
216 217 218 219 220 221 222 223
Note [Typing patterns in pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are typing a pattern binding
    pat = rhs
Then the PatCtxt will be (LetPat sig_fn let_bndr_spec).

There can still be signatures for the binders:
     data T = MkT (forall a. a->a) Int
224
     x :: forall a. a->a
225 226 227 228 229 230 231 232 233 234
     y :: Int
     MkT x y = <rhs>

Two cases, dealt with by the LetPat case of tcPatBndr

 * If we are generalising (generalisation plan is InferGen or
   CheckGen), then the let_bndr_spec will be LetLclBndr.  In that case
   we want to bind a cloned, local version of the variable, with the
   type given by the pattern context, *not* by the signature (even if
   there is one; see Trac #7268). The mkExport part of the
Gabor Greif's avatar
Gabor Greif committed
235
   generalisation step will do the checking and impedance matching
236 237 238 239 240 241 242 243
   against the signature.

 * If for some some reason we are not generalising (plan = NoGen), the
   LetBndrSpec will be LetGblBndr.  In that case we must bind the
   global version of the Id, and do so with precisely the type given
   in the signature.  (Then we unify with the type from the pattern
   context type.

244

Austin Seipp's avatar
Austin Seipp committed
245 246
************************************************************************
*                                                                      *
247
                The main worker functions
Austin Seipp's avatar
Austin Seipp committed
248 249
*                                                                      *
************************************************************************
250

251 252
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
253
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
254
so that tcPat can extend the environment for the thing_inside, but also
255 256 257 258
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
259
want the error-context for the pattern to scope over the RHS.
260
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
Austin Seipp's avatar
Austin Seipp committed
261
-}
262 263

--------------------
264
type Checker inp out =  forall r.
265 266 267 268
                          inp
                       -> PatEnv
                       -> TcM r
                       -> TcM (out, r)
269 270

tcMultiple :: Checker inp out -> Checker [inp] [out]
271
tcMultiple tc_pat args penv thing_inside
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  = do  { err_ctxt <- getErrCtxt
        ; let loop _ []
                = do { res <- thing_inside
                     ; return ([], res) }

              loop penv (arg:args)
                = do { (p', (ps', res))
                                <- tc_pat arg penv $
                                   setErrCtxt err_ctxt $
                                   loop penv args
                -- setErrCtxt: restore context before doing the next pattern
                -- See note [Nesting] above

                     ; return (p':ps', res) }

        ; loop penv args }
288 289

--------------------
290 291 292 293 294
tc_lpat :: LPat Name
        -> TcSigmaType
        -> PatEnv
        -> TcM a
        -> TcM (LPat TcId, a)
295
tc_lpat (L span pat) pat_ty penv thing_inside
296
  = setSrcSpan span $
297
    do  { (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
298
                                          thing_inside
299
        ; return (L span pat', res) }
300 301

tc_lpats :: PatEnv
302 303 304 305
         -> [LPat Name] -> [TcSigmaType]
         -> TcM a
         -> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside
Simon Peyton Jones's avatar
Simon Peyton Jones committed
306
  = ASSERT2( equalLength pats tys, ppr pats $$ ppr tys )
307
    tcMultiple (\(p,t) -> tc_lpat p t)
308
                (zipEqual "tc_lpats" pats tys)
309
                penv thing_inside
310 311

--------------------
312 313 314 315 316 317
tc_pat  :: PatEnv
        -> Pat Name
        -> TcSigmaType  -- Fully refined result type
        -> TcM a                -- Thing inside
        -> TcM (Pat TcId,       -- Translated pattern
                a)              -- Result of thing inside
318

319
tc_pat penv (VarPat (L l name)) pat_ty thing_inside
320
  = do  { (co, id) <- tcPatBndr penv name pat_ty
batterseapower's avatar
batterseapower committed
321
        ; res <- tcExtendIdEnv1 name id thing_inside
322
        ; return (mkHsWrapPatCo co (VarPat (L l id)) pat_ty, res) }
323 324

tc_pat penv (ParPat pat) pat_ty thing_inside
325 326
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (ParPat pat', res) }
327 328

tc_pat penv (BangPat pat) pat_ty thing_inside
329 330
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (BangPat pat', res) }
331

332
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
333 334 335 336
  = do  { (pat', (res, pat_ct))
                <- tc_lpat pat pat_ty (makeLazy penv) $
                   captureConstraints thing_inside
                -- Ignore refined penv', revert to penv
337

338 339
        ; emitConstraints pat_ct
        -- captureConstraints/extendConstraints:
340
        --   see Note [Hopping the LIE in lazy patterns]
341

342 343
        -- Check there are no unlifted types under the lazy pattern
        ; when (any (isUnLiftedType . idType) $ collectPatBinders pat') $
344 345
               lazyUnliftedPatErr lpat

346 347
        -- Check that the expected pattern type is itself lifted
        ; pat_ty' <- newFlexiTyVarTy liftedTypeKind
348
        ; _ <- unifyType noThing pat_ty pat_ty'
349

350
        ; return (LazyPat pat', res) }
351

352
tc_pat _ (WildPat _) pat_ty thing_inside
353 354
  = do  { res <- thing_inside
        ; return (WildPat pat_ty, res) }
355

356
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
357
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
358
        ; (pat', res) <- tcExtendIdEnv1 name bndr_id $
359 360 361 362 363 364 365 366 367 368 369 370 371
                         tc_lpat pat (idType bndr_id) penv thing_inside
            -- NB: if we do inference on:
            --          \ (y@(x::forall a. a->a)) = e
            -- we'll fail.  The as-pattern infers a monotype for 'y', which then
            -- fails to unify with the polymorphic type for 'x'.  This could
            -- perhaps be fixed, but only with a bit more work.
            --
            -- If you fix it, don't forget the bindInstsOfPatIds!
        ; return (mkHsWrapPatCo co (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }

tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside
  = do  {
         -- Morally, expr must have type `forall a1...aN. OPT' -> B`
372 373 374 375
         -- where overall_pat_ty is an instance of OPT'.
         -- Here, we infer a rho type for it,
         -- which replaces the leading foralls and constraints
         -- with fresh unification variables.
376 377
        ; (expr',expr'_inferred) <- tcInferRho expr

378
         -- next, we check that expr is coercible to `overall_pat_ty -> pat_ty`
379
         -- NOTE: this forces pat_ty to be a monotype (because we use a unification
380 381 382 383
         -- variable to find it).  this means that in an example like
         -- (view -> f)    where view :: _ -> forall b. b
         -- we will only be able to use view at one instantation in the
         -- rest of the view
384
        ; (expr_co, pat_ty) <- tcInfer $ \ pat_ty ->
385
                unifyType (Just expr) expr'_inferred (mkFunTy overall_pat_ty pat_ty)
386

387
         -- pattern must have pat_ty
388 389
        ; (pat', res) <- tc_lpat pat pat_ty penv thing_inside

390
        ; return (ViewPat (mkLHsWrapCo expr_co expr') pat' overall_pat_ty, res) }
391

392 393
-- Type signatures in patterns
-- See Note [Pattern coercions] below
394
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
395
  = do  { (inner_ty, tv_binds, wcs, wrap) <- tcPatSig (inPatBind penv)
thomasw's avatar
thomasw committed
396
                                                            sig_ty pat_ty
397 398
        ; (pat', res) <- tcExtendTyVarEnv2 wcs      $
                         tcExtendTyVarEnv  tv_binds $
399
                         tc_lpat pat inner_ty penv thing_inside
400
        ; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
401 402 403

------------------------
-- Lists, tuples, arrays
404
tc_pat penv (ListPat pats _ Nothing) pat_ty thing_inside
405
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTyR pat_ty
406
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
407 408
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty Nothing) pat_ty, res)
409 410 411
        }

tc_pat penv (ListPat pats _ (Just (_,e))) pat_ty thing_inside
412
  = do  { list_pat_ty <- newFlexiTyVarTy liftedTypeKind
413
        ; e' <- tcSyntaxOp ListOrigin e (mkFunTy pat_ty list_pat_ty)
414
        ; (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTyR list_pat_ty
415
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
416 417
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty (Just (pat_ty,e'))) list_pat_ty, res)
418
        }
419

420
tc_pat penv (PArrPat pats _) pat_ty thing_inside
421
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTyR pat_ty
422 423 424
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
425
        }
426

427
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
428 429
  = do  { let arity = length pats
              tc = tupleTyCon boxity arity
430
        ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConAppR tc) pat_ty
431 432 433 434 435
                     -- Unboxed tuples have levity vars, which we discard:
                     -- See Note [Unboxed tuple levity vars] in TyCon
        ; let con_arg_tys = case boxity of Unboxed -> drop arity arg_tys
                                           Boxed   -> arg_tys
        ; (pats', res) <- tc_lpats penv pats con_arg_tys thing_inside
436

437
        ; dflags <- getDynFlags
438

439 440 441 442 443
        -- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
        -- so that we can experiment with lazy tuple-matching.
        -- This is a pretty odd place to make the switch, but
        -- it was easy to do.
        ; let
444
              unmangled_result = TuplePat pats' boxity con_arg_tys
445
                                 -- pat_ty /= pat_ty iff coi /= IdCo
446 447
              possibly_mangled_result
                | gopt Opt_IrrefutableTuples dflags &&
448
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
449
                | otherwise                 = unmangled_result
450

451
        ; ASSERT( length con_arg_tys == length pats ) -- Syntactically enforced
452
          return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
453
        }
454 455 456

------------------------
-- Data constructors
457 458
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
  = tcConPat penv con pat_ty arg_pats thing_inside
459 460 461

------------------------
-- Literal patterns
462
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
463
  = do  { let lit_ty = hsLitType simple_lit
464
        ; co <- unifyPatType simple_lit lit_ty pat_ty
465 466 467
                -- coi is of kind: pat_ty ~ lit_ty
        ; res <- thing_inside
        ; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty
468
                 , res) }
469 470 471

------------------------
-- Overloaded patterns: n, and n+k
Alan Zimmerman's avatar
Alan Zimmerman committed
472
tc_pat _ (NPat (L l over_lit) mb_neg eq) pat_ty thing_inside
473 474 475 476 477 478 479 480 481 482
  = do  { let orig = LiteralOrigin over_lit
        ; lit'    <- newOverloadedLit orig over_lit pat_ty
        ; eq'     <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
        ; mb_neg' <- case mb_neg of
                        Nothing  -> return Nothing      -- Positive literal
                        Just neg ->     -- Negative literal
                                        -- The 'negate' is re-mappable syntax
                            do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
                               ; return (Just neg') }
        ; res <- thing_inside
Alan Zimmerman's avatar
Alan Zimmerman committed
483
        ; return (NPat (L l lit') mb_neg' eq', res) }
484

Alan Zimmerman's avatar
Alan Zimmerman committed
485
tc_pat penv (NPlusKPat (L nm_loc name) (L loc lit) ge minus) pat_ty thing_inside
486
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
487
        ; let pat_ty' = idType bndr_id
488 489
              orig    = LiteralOrigin lit
        ; lit' <- newOverloadedLit orig lit pat_ty'
490

491 492 493
        -- The '>=' and '-' parts are re-mappable syntax
        ; ge'    <- tcSyntaxOp orig ge    (mkFunTys [pat_ty', pat_ty'] boolTy)
        ; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
Alan Zimmerman's avatar
Alan Zimmerman committed
494
        ; let pat' = NPlusKPat (L nm_loc bndr_id) (L loc lit') ge' minus'
495

496 497 498 499
        -- The Report says that n+k patterns must be in Integral
        -- We may not want this when using re-mappable syntax, though (ToDo?)
        ; icls <- tcLookupClass integralClassName
        ; instStupidTheta orig [mkClassPred icls [pat_ty']]
500

501 502 503 504
        ; res <- tcExtendIdEnv1 name bndr_id thing_inside
        ; return (mkHsWrapPatCo co pat' pat_ty, res) }

tc_pat _ _other_pat _ _ = panic "tc_pat"        -- ConPatOut, SigPatOut
505 506

----------------
507
unifyPatType :: Outputable a => a -> TcType -> TcType -> TcM TcCoercion
508 509 510 511
-- In patterns we want a coercion from the
-- context type (expected) to the actual pattern type
-- But we don't want to reverse the args to unifyType because
-- that controls the actual/expected stuff in error messages
512 513
unifyPatType thing actual_ty expected_ty
  = do { coi <- unifyType (Just thing) actual_ty expected_ty
514
       ; return (mkTcSymCo coi) }
515

Austin Seipp's avatar
Austin Seipp committed
516
{-
517 518 519 520
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern.  E.g.
521
        f ~(C x) = 3
522
We can't discharge the Num constraint from dictionaries bound by
523
the pattern C!
524

525
So we have to make the constraints from thing_inside "hop around"
526
the pattern.  Hence the captureConstraints and emitConstraints.
527 528 529

The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
530 531 532
        data T a where { T1 :: Int -> T Int; ... }
        f :: T a -> Int -> a
        f ~(T1 i) y = y
533
It's obviously not sound to refine a to Int in the right
534
hand side, because the argument might not match T1 at all!
535 536 537 538

Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring

539

Austin Seipp's avatar
Austin Seipp committed
540 541
************************************************************************
*                                                                      *
542 543
        Most of the work for constructors is here
        (the rest is in the ConPatIn case of tc_pat)
Austin Seipp's avatar
Austin Seipp committed
544 545
*                                                                      *
************************************************************************
546

547 548 549 550 551 552 553 554 555 556 557
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

558
As explained by [Wrappers for data instance tycons] in MkIds.hs, the
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

574
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
575

576
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
577 578 579 580 581 582

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

583
Now it might appear seem as if we could have used the previous GADT type
584 585 586 587 588 589 590 591 592 593 594 595
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

596 597 598
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
Austin Seipp's avatar
Austin Seipp committed
599
-}
600

601
--      Running example:
602
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
603
--       with scrutinee of type (T ty)
604

605 606 607 608
tcConPat :: PatEnv -> Located Name
         -> TcRhoType           -- Type of the pattern
         -> HsConPatDetails Name -> TcM a
         -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
609 610 611 612 613 614 615 616 617 618
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
  = do  { con_like <- tcLookupConLike con_name
        ; case con_like of
            RealDataCon data_con -> tcDataConPat penv con_lname data_con
                                                 pat_ty arg_pats thing_inside
            PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
                                             pat_ty arg_pats thing_inside
        }

tcDataConPat :: PatEnv -> Located Name -> DataCon
619 620 621
             -> TcRhoType               -- Type of the pattern
             -> HsConPatDetails Name -> TcM a
             -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
622
tcDataConPat penv (L con_span con_name) data_con pat_ty arg_pats thing_inside
623 624 625
  = do  { let tycon = dataConTyCon data_con
                  -- For data families this is the representation tycon
              (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
626
                = dataConFullSig data_con
cactus's avatar
cactus committed
627
              header = L con_span (RealDataCon data_con)
628

629 630 631 632
          -- Instantiate the constructor type variables [a->ty]
          -- This may involve doing a family-instance coercion,
          -- and building a wrapper
        ; (wrap, ctxt_res_tys) <- matchExpectedPatTy (matchExpectedConTy tycon) pat_ty
633

634 635
          -- Add the stupid theta
        ; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
636

637 638
        ; let all_arg_tys = eqSpecPreds eq_spec ++ theta ++ arg_tys
        ; checkExistentials ex_tvs all_arg_tys penv
639
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
640
                               (zipTopTCvSubst univ_tvs ctxt_res_tys) ex_tvs
641 642
                     -- Get location from monad, not from ex_tvs

643
        ; let -- pat_ty' = mkTyConApp tycon ctxt_res_tys
644
              -- pat_ty' is type of the actual constructor application
645
              -- pat_ty' /= pat_ty iff coi /= IdCo
Simon Peyton Jones's avatar
Simon Peyton Jones committed
646

647
              arg_tys' = substTys tenv arg_tys
648

649 650 651 652
        ; traceTc "tcConPat" (vcat [ ppr con_name, ppr univ_tvs, ppr ex_tvs
                                   , ppr eq_spec
                                   , ppr ex_tvs', ppr ctxt_res_tys, ppr arg_tys'
                                   , ppr arg_pats ])
653 654
        ; if null ex_tvs && null eq_spec && null theta
          then do { -- The common case; no class bindings etc
655
                    -- (see Note [Arrows and patterns])
656 657 658 659
                    (arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys'
                                                  arg_pats penv thing_inside
                  ; let res_pat = ConPatOut { pat_con = header,
                                              pat_tvs = [], pat_dicts = [],
660
                                              pat_binds = emptyTcEvBinds,
661
                                              pat_args = arg_pats',
662
                                              pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
663
                                              pat_wrap = idHsWrapper }
664

665
                  ; return (mkHsWrapPat wrap res_pat pat_ty, res) }
666

667
          else do   -- The general case, with existential,
668
                    -- and local equality constraints
669
        { let theta'     = substTheta tenv (eqSpecPreds eq_spec ++ theta)
670 671
                           -- order is *important* as we generate the list of
                           -- dictionary binders from theta'
672
              no_equalities = not (any isNomEqPred theta')
673
              skol_info = case pe_ctxt penv of
cactus's avatar
cactus committed
674
                            LamPat mc -> PatSkol (RealDataCon data_con) mc
675
                            LetPat {} -> UnkSkol -- Doesn't matter
676

677 678
        ; gadts_on    <- xoptM Opt_GADTs
        ; families_on <- xoptM Opt_TypeFamilies
679
        ; checkTc (no_equalities || gadts_on || families_on)
sivteck's avatar
sivteck committed
680 681
                  (text "A pattern match on a GADT requires the" <+>
                   text "GADTs or TypeFamilies language extension")
682 683 684
                  -- Trac #2905 decided that a *pattern-match* of a GADT
                  -- should require the GADT language flag.
                  -- Re TypeFamilies see also #7156
685

686
        ; given <- newEvVars theta'
687
        ; (ev_binds, (arg_pats', res))
688
             <- checkConstraints skol_info ex_tvs' given $
cactus's avatar
cactus committed
689
                tcConArgs (RealDataCon data_con) arg_tys' arg_pats penv thing_inside
690

cactus's avatar
cactus committed
691
        ; let res_pat = ConPatOut { pat_con   = header,
692 693 694 695
                                    pat_tvs   = ex_tvs',
                                    pat_dicts = given,
                                    pat_binds = ev_binds,
                                    pat_args  = arg_pats',
696
                                    pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
697
                                    pat_wrap  = idHsWrapper }
698 699
        ; return (mkHsWrapPat wrap res_pat pat_ty, res)
        } }
700

cactus's avatar
cactus committed
701
tcPatSynPat :: PatEnv -> Located Name -> PatSyn
702 703 704
            -> TcRhoType                -- Type of the pattern
            -> HsConPatDetails Name -> TcM a
            -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
705
tcPatSynPat penv (L con_span _) pat_syn pat_ty arg_pats thing_inside
706
  = do  { let (univ_tvs, req_theta, ex_tvs, prov_theta, arg_tys, ty) = patSynSig pat_syn
cactus's avatar
cactus committed
707

708
        ; (subst, univ_tvs') <- tcInstTyVars univ_tvs
cactus's avatar
cactus committed
709

710 711
        ; let all_arg_tys = ty : prov_theta ++ arg_tys
        ; checkExistentials ex_tvs all_arg_tys penv
cactus's avatar
cactus committed
712
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX subst ex_tvs
713 714
        ; let ty'         = substTy tenv ty
              arg_tys'    = substTys tenv arg_tys
cactus's avatar
cactus committed
715
              prov_theta' = substTheta tenv prov_theta
716
              req_theta'  = substTheta tenv req_theta
cactus's avatar
cactus committed
717

718
        ; wrap <- mkWpCastN <$> unifyType noThing ty' pat_ty
cactus's avatar
cactus committed
719 720 721 722 723 724 725 726 727 728 729 730 731 732
        ; traceTc "tcPatSynPat" (ppr pat_syn $$
                                 ppr pat_ty $$
                                 ppr ty' $$
                                 ppr ex_tvs' $$
                                 ppr prov_theta' $$
                                 ppr req_theta' $$
                                 ppr arg_tys')

        ; prov_dicts' <- newEvVars prov_theta'

        ; let skol_info = case pe_ctxt penv of
                            LamPat mc -> PatSkol (PatSynCon pat_syn) mc
                            LetPat {} -> UnkSkol -- Doesn't matter

733
        ; req_wrap <- instCall PatOrigin (mkTyVarTys univ_tvs') req_theta'
cactus's avatar
cactus committed
734 735
        ; traceTc "instCall" (ppr req_wrap)

736
        ; traceTc "checkConstraints {" Outputable.empty
cactus's avatar
cactus committed
737 738 739 740 741 742
        ; (ev_binds, (arg_pats', res))
             <- checkConstraints skol_info ex_tvs' prov_dicts' $
                tcConArgs (PatSynCon pat_syn) arg_tys' arg_pats penv thing_inside

        ; traceTc "checkConstraints }" (ppr ev_binds)
        ; let res_pat = ConPatOut { pat_con   = L con_span $ PatSynCon pat_syn,
743 744 745 746
                                    pat_tvs   = ex_tvs',
                                    pat_dicts = prov_dicts',
                                    pat_binds = ev_binds,
                                    pat_args  = arg_pats',
747
                                    pat_arg_tys = mkTyVarTys univ_tvs',
cactus's avatar
cactus committed
748
                                    pat_wrap  = req_wrap }
749
        ; return (mkHsWrapPat wrap res_pat pat_ty, res) }
cactus's avatar
cactus committed
750

751
----------------------------
752 753 754 755 756 757 758 759 760 761 762 763 764
downgrade :: (TcRhoType -> TcM (TcCoercionN, a))
          -> TcRhoType -> TcM (TcCoercionR, a)
downgrade f a = do { (co,res) <- f a; return (mkTcSubCo co, res) }

matchExpectedListTyR :: TcRhoType -> TcM (TcCoercionR, TcRhoType)
matchExpectedListTyR = downgrade matchExpectedListTy
matchExpectedPArrTyR :: TcRhoType -> TcM (TcCoercionR, TcRhoType)
matchExpectedPArrTyR = downgrade matchExpectedPArrTy
matchExpectedTyConAppR :: TyCon -> TcRhoType -> TcM (TcCoercionR, [TcSigmaType])
matchExpectedTyConAppR tc = downgrade (matchExpectedTyConApp tc)

----------------------------
matchExpectedPatTy :: (TcRhoType -> TcM (TcCoercionR, a))
765 766
                    -> TcRhoType            -- Type of the pattern
                    -> TcM (HsWrapper, a)
767
-- See Note [Matching polytyped patterns]
768
-- Returns a wrapper : pat_ty ~R inner_ty
769 770
matchExpectedPatTy inner_match pat_ty
  | null tvs && null theta
771 772
  = do { (co, res) <- inner_match pat_ty   -- 'co' is Representational
       ; traceTc "matchExpectedPatTy" (ppr pat_ty $$ ppr co $$ ppr (isTcReflCo co))
773
       ; return (mkWpCastR (mkTcSymCo co), res) }
774 775
         -- The Sym is because the inner_match returns a coercion
         -- that is the other way round to matchExpectedPatTy
776

777
  | otherwise
778 779
  = do { (subst, tvs') <- tcInstTyVars tvs
       ; wrap1 <- instCall PatOrigin (mkTyVarTys tvs') (substTheta subst theta)
780
       ; (wrap2, arg_tys) <- matchExpectedPatTy inner_match (TcType.substTy subst tau)
781
       ; return (wrap2 <.> wrap1, arg_tys) }
782
  where
783 784 785
    (tvs, theta, tau) = tcSplitSigmaTy pat_ty

----------------------------
786 787
matchExpectedConTy :: TyCon      -- The TyCon that this data
                                 -- constructor actually returns
788 789 790 791 792
                                 -- In the case of a data family this is
                                 -- the /representation/ TyCon
                   -> TcRhoType  -- The type of the pattern; in the case
                                 -- of a data family this would mention
                                 -- the /family/ TyCon
793
                   -> TcM (TcCoercionR, [TcSigmaType])
794
-- See Note [Matching constructor patterns]
795
-- Returns a coercion : T ty1 ... tyn ~R pat_ty
796 797 798 799
-- This is the same way round as matchExpectedListTy etc
-- but the other way round to matchExpectedPatTy
matchExpectedConTy data_tc pat_ty
  | Just (fam_tc, fam_args, co_tc) <- tyConFamInstSig_maybe data_tc
800 801
         -- Comments refer to Note [Matching constructor patterns]
         -- co_tc :: forall a. T [a] ~ T7 a