Capability.c 26.1 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
29
#include "GC.h"
sof's avatar
sof committed
30

31
32
33
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
34

35
nat n_capabilities;
36
Capability *capabilities = NULL;
sof's avatar
sof committed
37

38
39
40
41
42
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
43

44
45
46
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

47
#if defined(THREADED_RTS)
48
49
50
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
51
    return blackholes_need_checking
52
	|| sched_state >= SCHED_INTERRUPTING
53
54
	;
}
55
#endif
56

57
#if defined(THREADED_RTS)
58
StgClosure *
59
findSpark (Capability *cap)
60
{
61
62
  Capability *robbed;
  StgClosurePtr spark;
63
  rtsBool retry;
64
65
  nat i = 0;

66
67
68
69
70
71
72
  if (!emptyRunQueue(cap)) {
      // If there are other threads, don't try to run any new
      // sparks: sparks might be speculative, we don't want to take
      // resources away from the main computation.
      return 0;
  }

73
74
75
76
77
78
79
80
81
82
83
84
85
86
  // first try to get a spark from our own pool.
  // We should be using reclaimSpark(), because it works without
  // needing any atomic instructions:
  //   spark = reclaimSpark(cap->sparks);
  // However, measurements show that this makes at least one benchmark
  // slower (prsa) and doesn't affect the others.
  spark = tryStealSpark(cap);
  if (spark != NULL) {
      cap->sparks_converted++;
      return spark;
  }

  if (n_capabilities == 1) { return NULL; } // makes no sense...

87
88
89
90
  debugTrace(DEBUG_sched,
	     "cap %d: Trying to steal work from other capabilities", 
	     cap->no);

91
92
  do {
      retry = rtsFalse;
93

94
95
96
97
98
99
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
100

101
102
103
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

104
          spark = tryStealSpark(robbed);
105
106
107
108
109
110
111
112
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
              debugTrace(DEBUG_sched,
113
		 "cap %d: Stole a spark from capability %d",
114
                         cap->no, robbed->no);
115
              cap->sparks_converted++;
116
              return spark;
117
118
119
120
          }
          // otherwise: no success, try next one
      }
  } while (retry);
121

122
  debugTrace(DEBUG_sched, "No sparks stolen");
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
rtsBool
anySparks (void)
{
    nat i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(&capabilities[i])) {
            return rtsTrue;
        }
    }
    return rtsFalse;
141
}
142
#endif
143
144
145

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
146
 *
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
163
164
}

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

181
/* ----------------------------------------------------------------------------
182
183
184
185
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
186
187

static void
188
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
189
{
190
    nat g;
191

192
193
    cap->no = i;
    cap->in_haskell        = rtsFalse;
194
    cap->in_gc             = rtsFalse;
195
196
197
198
199
200
201
202
203
204
205

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
206
207
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
208
209
210
    cap->sparks_created     = 0;
    cap->sparks_converted   = 0;
    cap->sparks_pruned      = 0;
211
212
#endif

213
    cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
sof's avatar
sof committed
214
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
215
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
216

217
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
218
219
				     RtsFlags.GcFlags.generations,
				     "initCapability");
220
221
222
    cap->saved_mut_lists = stgMallocBytes(sizeof(bdescr *) *
                                          RtsFlags.GcFlags.generations,
                                          "initCapability");
223
224
225

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
226
    }
227

tharris@microsoft.com's avatar
tharris@microsoft.com committed
228
229
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
230
231
232
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
233
    cap->context_switch = 0;
sof's avatar
sof committed
234
235
}

236
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
237
238
 * Function:  initCapabilities()
 *
239
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
240
 *            we keep a table of them, the size of which is
241
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
242
 *
243
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
244
void
245
initCapabilities( void )
sof's avatar
sof committed
246
{
247
248
#if defined(THREADED_RTS)
    nat i;
249

250
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
251
252
253
254
255
256
257
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

258
259
260
261
262
263
264
265
266
267
268
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
269

270
    for (i = 0; i < n_capabilities; i++) {
271
	initCapability(&capabilities[i], i);
272
    }
273

Simon Marlow's avatar
Simon Marlow committed
274
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
275
276
277

#else /* !THREADED_RTS */

278
    n_capabilities = 1;
279
    capabilities = &MainCapability;
280
    initCapability(&MainCapability, 0);
281

282
283
#endif

284
285
286
287
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
288
289
}

290
291
292
293
294
295
296
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
297
298
299
300
    nat i;
    for (i=0; i < n_capabilities; i++) {
        contextSwitchCapability(&capabilities[i]);
    }
301
302
}

303
/* ----------------------------------------------------------------------------
304
305
306
307
308
309
310
311
312
313
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
314
315
 *
 * ------------------------------------------------------------------------- */
316
317
318

#if defined(THREADED_RTS)
STATIC_INLINE void
319
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
320
{
321
322
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
323
324
325
326
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
327
328
329
330
331
332
333
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
334
}
335
#endif
336

337
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
338
339
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
340
341
342
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
343
344
 * ------------------------------------------------------------------------- */

345
#if defined(THREADED_RTS)
346
void
347
348
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
349
{
350
351
352
353
    Task *task;

    task = cap->running_task;

354
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
355
356

    cap->running_task = NULL;
357

358
359
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
360
361
362
363
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
364
    }
365

366
    if (waiting_for_gc == PENDING_GC_SEQ) {
367
368
369
370
371
372
373
      last_free_capability = cap; // needed?
      trace(TRACE_sched | DEBUG_sched, 
	    "GC pending, set capability %d free", cap->no);
      return;
    } 


374
375
376
377
378
379
380
381
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
382
    }
383

384
    if (!cap->spare_workers) {
385
386
387
388
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
389
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
390
391
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
392
393
394
	    startWorkerTask(cap, workerStart);
	    return;
	}
395
    }
396

397
398
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
399
400
401
    if (always_wakeup || 
        !emptyRunQueue(cap) || !emptyWakeupQueue(cap) ||
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
402
403
404
405
406
407
408
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

409
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
410
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
411
412
}

413
void
414
releaseCapability (Capability* cap USED_IF_THREADS)
415
416
{
    ACQUIRE_LOCK(&cap->lock);
417
418
419
420
421
422
423
424
425
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
426
427
428
429
    RELEASE_LOCK(&cap->lock);
}

static void
430
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

451
    releaseCapability_(cap,rtsFalse);
452
453
454
455

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
456

457
/* ----------------------------------------------------------------------------
458
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
459
460
 *
 * Purpose:  when an OS thread returns from an external call,
461
462
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
463
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
464
465
 * made it.
 *
466
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
467
void
468
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
469
{
470
#if !defined(THREADED_RTS)
471

472
473
474
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
475

476
#else
477
478
479
480
481
482
483
484
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
485
            cap = NULL;
486
	    for (i = 0; i < n_capabilities; i++) {
487
488
		if (!capabilities[i].running_task) {
                    cap = &capabilities[i];
489
490
491
		    break;
		}
	    }
492
493
494
495
            if (cap == NULL) {
                // Can't find a free one, use last_free_capability.
                cap = last_free_capability;
            }
496
497
498
499
500
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

501
    } else {
502
	ASSERT(task->cap == cap);
503
504
    }

505
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
506

Simon Marlow's avatar
Simon Marlow committed
507
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

543
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
544

Simon Marlow's avatar
Simon Marlow committed
545
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
546
547
548
549
550
551

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
552
/* ----------------------------------------------------------------------------
553
 * yieldCapability
554
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
555

sof's avatar
sof committed
556
void
557
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
558
{
559
560
    Capability *cap = *pCap;

561
562
563
564
565
566
    if (waiting_for_gc == PENDING_GC_PAR) {
	debugTrace(DEBUG_sched, "capability %d: becoming a GC thread", cap->no);
        gcWorkerThread(cap);
        return;
    }

Simon Marlow's avatar
Simon Marlow committed
567
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
568
569

	// We must now release the capability and wait to be woken up
570
	// again.
571
	task->wakeup = rtsFalse;
572
573
574
575
576
577
578
579
580
581
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
582
583
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

584
585
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
586
587
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
609
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
610
	ASSERT(cap->running_task == task);
611

612
    *pCap = cap;
613

614
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
615

616
    return;
sof's avatar
sof committed
617
618
}

619
620
621
622
623
624
625
626
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
627
628
629
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
630
{
631
    ACQUIRE_LOCK(&other_cap->lock);
632

633
634
635
636
637
638
639
640
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
641

642
    if (other_cap->running_task == NULL) {
643
644
645
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

646
647
648
649
650
651
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

	trace(TRACE_sched, "resuming capability %d", other_cap->no);
652
	releaseCapability_(other_cap,rtsFalse);
653
    } else {
654
	appendToWakeupQueue(my_cap,other_cap,tso);
655
        other_cap->context_switch = 1;
656
657
658
659
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
660

661
    RELEASE_LOCK(&other_cap->lock);
662
663
}

664
/* ----------------------------------------------------------------------------
665
 * prodCapability
666
 *
667
668
 * If a Capability is currently idle, wake up a Task on it.  Used to 
 * get every Capability into the GC.
669
 * ------------------------------------------------------------------------- */
670

671
void
672
prodCapability (Capability *cap, Task *task)
673
{
674
675
676
677
678
679
    ACQUIRE_LOCK(&cap->lock);
    if (!cap->running_task) {
        cap->running_task = task;
        releaseCapability_(cap,rtsTrue);
    }
    RELEASE_LOCK(&cap->lock);
680
}
681
682
683
684
685
686
687
688
689
690
691
692
693

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
694
 *
695
 * ------------------------------------------------------------------------- */
696
697

void
698
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
699
{
700
701
702
703
    nat i;

    task->cap = cap;

704
705
706
707
708
709
710
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
711
712
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

Simon Marlow's avatar
Simon Marlow committed
713
714
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
715
716
717
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
718
	    debugTrace(DEBUG_sched, "not owner, yielding");
719
720
	    yieldThread();
	    continue;
721
	}
722
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
723
724
725
726
727
728
729
730
731
732
733
734
735

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
736
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
737
738
739
740
741
742
743
744
745
746
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

747
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
748
749
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
750
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
751
752
753
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
754
	}
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
771
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
772
773
	RELEASE_LOCK(&cap->lock);
	break;
774
    }
775
776
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
777

778
779
780
781
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
782
}
783

784
785
786
787
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
788
 *
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


807
#endif /* THREADED_RTS */
808

809
810
811
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
812
813
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
814
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
815
816
#endif
}
817

818
819
820
821
822
823
824
825
826
827
828
829
830
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

831
832
833
834
835
836
837
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
838
839
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta, 
                      rtsBool prune_sparks USED_IF_THREADS)
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
864
865

#if defined(THREADED_RTS)
866
867
868
869
870
        if (prune_sparks) {
            pruneSparkQueue (evac, user, cap);
        } else {
            traverseSparkQueue (evac, user, cap);
        }
871
#endif
872
    }
873

874
875
876
877
878
879
880
881
882
883
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

void
markCapabilities (evac_fn evac, void *user)
{
884
    markSomeCapabilities(evac, user, 0, 1, rtsFalse);
885
}