Simplify.lhs 66.3 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

11
import CmdLineOpts	( dopt, DynFlag(Opt_D_dump_inlinings),
12
			  SimplifierSwitch(..)
sof's avatar
sof committed
13
			)
14
import SimplMonad
15 16
import SimplEnv	
import SimplUtils	( mkCase, mkLam, prepareAlts,
17
			  SimplCont(..), DupFlag(..), LetRhsFlag(..), 
18
			  mkRhsStop, mkBoringStop,  pushContArgs,
19
			  contResultType, countArgs, contIsDupable, contIsRhsOrArg,
20 21 22
			  getContArgs, interestingCallContext, interestingArg, isStrictType,
			  preInlineUnconditionally, postInlineUnconditionally, 
			  inlineMode, activeInline, activeRule
23
			)
24
import Id		( Id, idType, idInfo, idArity, isDataConWorkId, 
25
			  setIdUnfolding, isDeadBinder,
26
			  idNewDemandInfo, setIdInfo, 
27
			  setIdOccInfo, zapLamIdInfo, setOneShotLambda, 
28
			)
29 30
import MkId		( eRROR_ID )
import Literal		( mkStringLit )
31
import OccName		( encodeFS )
32
import IdInfo		( OccInfo(..), isLoopBreaker,
33
			  setArityInfo, zapDemandInfo,
34
			  setUnfoldingInfo, 
35
			  occInfo
36
			)
37
import NewDemand	( isStrictDmd )
38
import Unify		( coreRefineTys )
39
import DataCon		( dataConTyCon, dataConRepStrictness, isVanillaDataCon, dataConResTy )
40
import TyCon		( tyConArity )
41
import CoreSyn
42
import PprCore		( pprParendExpr, pprCoreExpr )
43
import CoreUnfold	( mkOtherCon, mkUnfolding, callSiteInline )
44
import CoreUtils	( exprIsDupable, exprIsTrivial, needsCaseBinding,
45
			  exprIsConApp_maybe, mkPiTypes, findAlt, 
46
			  exprType, exprIsValue, 
47
			  exprOkForSpeculation, exprArity, 
48
			  mkCoerce, mkCoerce2, mkSCC, mkInlineMe, applyTypeToArg
49
			)
50
import Rules		( lookupRule )
51
import BasicTypes	( isMarkedStrict )
52
import CostCentre	( currentCCS )
53
import Type		( TvSubstEnv, isUnLiftedType, seqType, tyConAppArgs, funArgTy,
54
			  splitFunTy_maybe, splitFunTy, coreEqType, mkTyVarTys
55
			)
56
import VarEnv		( elemVarEnv )
57
import TysPrim		( realWorldStatePrimTy )
58
import PrelInfo		( realWorldPrimId )
59
import BasicTypes	( TopLevelFlag(..), isTopLevel, 
60 61
			  RecFlag(..), isNonRec
			)
62
import OrdList
63
import Maybe		( Maybe )
64
import Maybes		( orElse )
65
import Outputable
66
import Util             ( notNull )
67 68 69
\end{code}


70 71
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
72 73


74 75 76 77 78 79 80 81
-----------------------------------------
	*** IMPORTANT NOTE ***
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
-----------------------------------------
	*** IMPORTANT NOTE ***
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
	ORGANISATION OF FUNCTIONS
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

	
	------------------------------
simplExpr (applied lambda)	==> simplNonRecBind
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

	------------------------------
simplRecBind	[binders already simplfied]
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
	    top-level non-recursive bindings
  Returns: 
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
	    beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a 
	"thing-inside" and returns an expression

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
	simplStrictArg
	mkAtomicArgs
	completeNonRecX
    else
	simplLazyBind
	addFloats

simplNonRecX:	[given a *simplified* RHS, but an *unsimplified* binder]
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
 
	------------------------------
simplLazyBind:	[binder already simplified, RHS not]
  Used for: recursive bindings (top level and nested)
	    top-level non-recursive bindings
	    non-top-level, but *lazy* non-recursive bindings
	[must not be strict or unboxed]
  Returns floats + an augmented environment, not an expression
  - substituteIdInfo and add result to in-scope 
	[so that rules are available in rec rhs]
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
  - completeLazyBind


completeNonRecX:	[binder and rhs both simplified]
  - if the the thing needs case binding (unlifted and not ok-for-spec)
	build a Case
   else
	completeLazyBind
	addFloats

completeLazyBind: 	[given a simplified RHS]
	[used for both rec and non-rec bindings, top level and not]
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In many ways we want to treat 
	(a) the right hand side of a let(rec), and 
	(b) a function argument
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
	
	f (g x, h x)	
	g (+ x)

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

	f (let { a = g x; b = h x } in (a,b))
	g (\y. + x y)

On the other hand if we see the let-defns

	p = (g x, h x)
	q = + x

then we *do* want to ANF-ise and eta-expand, so that p and q
can be safely inlined.   

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

	r = let x = e in (x,x)

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

	case e of (a,b) -> \x -> case a of (p,q) -> \y -> r

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
221 222


223 224 225 226 227 228 229
%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

\begin{code}
230
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
231

232
simplTopBinds env binds
233 234 235 236
  = 	-- Put all the top-level binders into scope at the start
	-- so that if a transformation rule has unexpectedly brought
	-- anything into scope, then we don't get a complaint about that.
	-- It's rather as if the top-level binders were imported.
237
    simplLetBndrs env (bindersOfBinds binds)	`thenSmpl` \ (env, bndrs') -> 
238 239 240
    simpl_binds env binds bndrs'		`thenSmpl` \ (floats, _) ->
    freeTick SimplifierDone			`thenSmpl_`
    returnSmpl (floatBinds floats)
241
  where
242 243
	-- We need to track the zapped top-level binders, because
	-- they should have their fragile IdInfo zapped (notably occurrence info)
244 245 246 247 248 249 250 251 252 253
	-- That's why we run down binds and bndrs' simultaneously.
    simpl_binds :: SimplEnv -> [InBind] -> [OutId] -> SimplM (FloatsWith ())
    simpl_binds env []		 bs = ASSERT( null bs ) returnSmpl (emptyFloats env, ())
    simpl_binds env (bind:binds) bs = simpl_bind env bind bs 		`thenSmpl` \ (floats,env) ->
				      addFloats env floats		$ \env -> 
				      simpl_binds env binds (drop_bs bind bs)

    drop_bs (NonRec _ _) (_ : bs) = bs
    drop_bs (Rec prs)    bs	  = drop (length prs) bs

254 255 256 257 258 259 260 261 262
    simpl_bind env bind bs 
      = getDOptsSmpl				`thenSmpl` \ dflags ->
        if dopt Opt_D_dump_inlinings dflags then
	   pprTrace "SimplBind" (ppr (bindersOf bind)) $ simpl_bind1 env bind bs
	else
	   simpl_bind1 env bind bs

    simpl_bind1 env (NonRec b r) (b':_) = simplRecOrTopPair env TopLevel b b' r
    simpl_bind1 env (Rec pairs)  bs'    = simplRecBind      env TopLevel pairs bs'
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
\end{code}


%************************************************************************
%*									*
\subsection{simplNonRec}
%*									*
%************************************************************************

simplNonRecBind is used for
  * non-top-level non-recursive lets in expressions
  * beta reduction

It takes 
  * An unsimplified (binder, rhs) pair
  * The env for the RHS.  It may not be the same as the
	current env because the bind might occur via (\x.E) arg

It uses the CPS form because the binding might be strict, in which
case we might discard the continuation:
	let x* = error "foo" in (...x...)

It needs to turn unlifted bindings into a @case@.  They can arise
from, say: 	(\x -> e) (4# + 3#)

\begin{code}
simplNonRecBind :: SimplEnv
		-> InId 				-- Binder
	  	-> InExpr -> SimplEnv			-- Arg, with its subst-env
	  	-> OutType				-- Type of thing computed by the context
	  	-> (SimplEnv -> SimplM FloatsWithExpr)	-- The body
	  	-> SimplM FloatsWithExpr
#ifdef DEBUG
simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
  | isTyVar bndr
  = pprPanic "simplNonRecBind" (ppr bndr <+> ppr rhs)
#endif

simplNonRecBind env bndr rhs rhs_se cont_ty thing_inside
  | preInlineUnconditionally env NotTopLevel bndr
  = tick (PreInlineUnconditionally bndr)		`thenSmpl_`
304
    thing_inside (extendIdSubst env bndr (mkContEx rhs_se rhs))
305 306 307 308


  | isStrictDmd (idNewDemandInfo bndr) || isStrictType (idType bndr)	-- A strict let
  =  	-- Don't use simplBinder because that doesn't keep 
309
	-- fragile occurrence info in the substitution
310 311 312 313
    simplLetBndr env bndr					`thenSmpl` \ (env, bndr1) ->
    simplStrictArg AnRhs env rhs rhs_se (idType bndr1) cont_ty	$ \ env1 rhs1 ->

	-- Now complete the binding and simplify the body
314 315 316
    let
	-- simplLetBndr doesn't deal with the IdInfo, so we must
	-- do so here (c.f. simplLazyBind)
317
	bndr2  = bndr1 `setIdInfo` simplIdInfo env (idInfo bndr)
318
	env2   = modifyInScope env1 bndr2 bndr2
319
    in
320
    completeNonRecX env2 True {- strict -} bndr bndr2 rhs1 thing_inside
321 322 323

  | otherwise							-- Normal, lazy case
  =  	-- Don't use simplBinder because that doesn't keep 
324
	-- fragile occurrence info in the substitution
325
    simplLetBndr env bndr				`thenSmpl` \ (env, bndr') ->
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    simplLazyBind env NotTopLevel NonRecursive
		  bndr bndr' rhs rhs_se 		`thenSmpl` \ (floats, env) ->
    addFloats env floats thing_inside
\end{code}

A specialised variant of simplNonRec used when the RHS is already simplified, notably
in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
	     -> InId 		-- Old binder
	     -> OutExpr		-- Simplified RHS
	     -> (SimplEnv -> SimplM FloatsWithExpr)
	     -> SimplM FloatsWithExpr

simplNonRecX env bndr new_rhs thing_inside
342 343 344 345 346 347 348 349 350 351
  | needsCaseBinding (idType bndr) new_rhs
	-- Make this test *before* the preInlineUnconditionally
	-- Consider 	case I# (quotInt# x y) of 
	--		  I# v -> let w = J# v in ...
	-- If we gaily inline (quotInt# x y) for v, we end up building an
	-- extra thunk:
	--		  let w = J# (quotInt# x y) in ...
	-- because quotInt# can fail.
  = simplBinder env bndr	`thenSmpl` \ (env, bndr') ->
    thing_inside env 		`thenSmpl` \ (floats, body) ->
352 353
    let body' = wrapFloats floats body in 
    returnSmpl (emptyFloats env, Case new_rhs bndr' (exprType body') [(DEFAULT, [], body')])
354

355 356 357 358 359 360 361 362 363
  | preInlineUnconditionally env NotTopLevel  bndr
  	-- This happens; for example, the case_bndr during case of
	-- known constructor:  case (a,b) of x { (p,q) -> ... }
	-- Here x isn't mentioned in the RHS, so we don't want to
	-- create the (dead) let-binding  let x = (a,b) in ...
	--
	-- Similarly, single occurrences can be inlined vigourously
	-- e.g.  case (f x, g y) of (a,b) -> ....
	-- If a,b occur once we can avoid constructing the let binding for them.
364
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
365 366 367

  | otherwise
  = simplBinder env bndr	`thenSmpl` \ (env, bndr') ->
368 369
    completeNonRecX env False {- Non-strict; pessimistic -} 
		    bndr bndr' new_rhs thing_inside
370

371 372 373 374 375 376 377
completeNonRecX env is_strict old_bndr new_bndr new_rhs thing_inside
  = mkAtomicArgs is_strict 
		 True {- OK to float unlifted -} 
		 new_rhs			`thenSmpl` \ (aux_binds, rhs2) ->

	-- Make the arguments atomic if necessary, 
	-- adding suitable bindings
378
    addAtomicBindsE env (fromOL aux_binds)	$ \ env ->
379 380
    completeLazyBind env NotTopLevel
		     old_bndr new_bndr rhs2	`thenSmpl` \ (floats, env) ->
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    addFloats env floats thing_inside
\end{code}


%************************************************************************
%*									*
\subsection{Lazy bindings}
%*									*
%************************************************************************

simplRecBind is used for
	* recursive bindings only

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
	     -> [(InId, InExpr)] -> [OutId]
	     -> SimplM (FloatsWith SimplEnv)
simplRecBind env top_lvl pairs bndrs'
  = go env pairs bndrs'		`thenSmpl` \ (floats, env) ->
    returnSmpl (flattenFloats floats, env)
401
  where
402
    go env [] _ = returnSmpl (emptyFloats env, env)
403
	
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    go env ((bndr, rhs) : pairs) (bndr' : bndrs')
	= simplRecOrTopPair env top_lvl bndr bndr' rhs 	`thenSmpl` \ (floats, env) ->
	  addFloats env floats (\env -> go env pairs bndrs')
\end{code}


simplRecOrTopPair is used for
	* recursive bindings (whether top level or not)
	* top-level non-recursive bindings

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
	     	  -> TopLevelFlag
	     	  -> InId -> OutId		-- Binder, both pre-and post simpl
	     	  -> InExpr 			-- The RHS and its environment
	     	  -> SimplM (FloatsWith SimplEnv)

simplRecOrTopPair env top_lvl bndr bndr' rhs
  | preInlineUnconditionally env top_lvl bndr  	-- Check for unconditional inline
  = tick (PreInlineUnconditionally bndr)	`thenSmpl_`
426
    returnSmpl (emptyFloats env, extendIdSubst env bndr (mkContEx env rhs))
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  | otherwise
  = simplLazyBind env top_lvl Recursive bndr bndr' rhs env
	-- May not actually be recursive, but it doesn't matter
\end{code}


simplLazyBind is used for
	* recursive bindings (whether top level or not)
	* top-level non-recursive bindings
	* non-top-level *lazy* non-recursive bindings

[Thus it deals with the lazy cases from simplNonRecBind, and all cases
from SimplRecOrTopBind]

Nota bene:
    1. It assumes that the binder is *already* simplified, 
       and is in scope, but not its IdInfo

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
	      -> TopLevelFlag -> RecFlag
	      -> InId -> OutId		-- Binder, both pre-and post simpl
	      -> InExpr -> SimplEnv 	-- The RHS and its environment
	      -> SimplM (FloatsWith SimplEnv)

458
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
459 460 461 462 463 464 465
  = let	-- Transfer the IdInfo of the original binder to the new binder
	-- This is crucial: we must preserve
	--	strictness
	--	rules
	--	worker info
	-- etc.  To do this we must apply the current substitution, 
	-- which incorporates earlier substitutions in this very letrec group.
466
	--
467 468
	-- NB 1.  We do this *before* processing the RHS of the binder, so that
	-- its substituted rules are visible in its own RHS.
469 470
	-- This is important.  Manuel found cases where he really, really
	-- wanted a RULE for a recursive function to apply in that function's
471
 	-- own right-hand side.
472
	--
473 474
	-- NB 2: We do not transfer the arity (see Subst.substIdInfo)
	-- The arity of an Id should not be visible
475 476 477 478 479 480
	-- in its own RHS, else we eta-reduce
	--	f = \x -> f x
	-- to
	--	f = f
	-- which isn't sound.  And it makes the arity in f's IdInfo greater than
	-- the manifest arity, which isn't good.
481 482 483 484 485 486 487 488
	-- The arity will get added later.
	--
	-- NB 3: It's important that we *do* transer the loop-breaker OccInfo,
	-- because that's what stops the Id getting inlined infinitely, in the body
	-- of the letrec.

	-- NB 4: does no harm for non-recursive bindings

489
	bndr2  	  	  = bndr1 `setIdInfo` simplIdInfo env (idInfo bndr)
490
	env1	     	  = modifyInScope env bndr2 bndr2
491
	rhs_env      	  = setInScope rhs_se env1
492
 	is_top_level	  = isTopLevel top_lvl
493
	ok_float_unlifted = not is_top_level && isNonRec is_rec
494
	rhs_cont	  = mkRhsStop (idType bndr1)
495
    in
496
  	-- Simplify the RHS; note the mkRhsStop, which tells 
497 498 499 500 501 502
	-- the simplifier that this is the RHS of a let.
    simplExprF rhs_env rhs rhs_cont		`thenSmpl` \ (floats, rhs1) ->

	-- If any of the floats can't be floated, give up now
	-- (The allLifted predicate says True for empty floats.)
    if (not ok_float_unlifted && not (allLifted floats)) then
503
	completeLazyBind env1 top_lvl bndr bndr2
504 505 506 507 508 509 510 511 512
			 (wrapFloats floats rhs1)
    else	

	-- ANF-ise a constructor or PAP rhs
    mkAtomicArgs False {- Not strict -} 
		 ok_float_unlifted rhs1 		`thenSmpl` \ (aux_binds, rhs2) ->

	-- If the result is a PAP, float the floats out, else wrap them
	-- By this time it's already been ANF-ised (if necessary)
513
    if isEmptyFloats floats && isNilOL aux_binds then	-- Shortcut a common case
514
	completeLazyBind env1 top_lvl bndr bndr2 rhs2
515

516 517 518 519 520 521
    else if is_top_level || exprIsTrivial rhs2 || exprIsValue rhs2 then
	-- 	WARNING: long dodgy argument coming up
	--	WANTED: a better way to do this
	--		
	-- We can't use "exprIsCheap" instead of exprIsValue, 
	-- because that causes a strictness bug.
522 523 524 525 526
	--     	   x = let y* = E in case (scc y) of { T -> F; F -> T}
	-- The case expression is 'cheap', but it's wrong to transform to
	-- 	   y* = E; x = case (scc y) of {...}
 	-- Either we must be careful not to float demanded non-values, or
	-- we must use exprIsValue for the test, which ensures that the
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	-- thing is non-strict.  So exprIsValue => bindings are non-strict
	-- I think.  The WARN below tests for this.
	--
	-- We use exprIsTrivial here because we want to reveal lone variables.  
	-- E.g.  let { x = letrec { y = E } in y } in ...
	-- Here we definitely want to float the y=E defn. 
	-- exprIsValue definitely isn't right for that.
	--
	-- Again, the floated binding can't be strict; if it's recursive it'll
	-- be non-strict; if it's non-recursive it'd be inlined.
	--
	-- Note [SCC-and-exprIsTrivial]
	-- If we have
	--	y = let { x* = E } in scc "foo" x
	-- then we do *not* want to float out the x binding, because
	-- it's strict!  Fortunately, exprIsTrivial replies False to
	-- (scc "foo" x).
544

545 546 547
		-- There's a subtlety here.  There may be a binding (x* = e) in the
		-- floats, where the '*' means 'will be demanded'.  So is it safe
		-- to float it out?  Answer no, but it won't matter because
548
		-- we only float if (a) arg' is a WHNF, or (b) it's going to top level
549
		-- and so there can't be any 'will be demanded' bindings in the floats.
550
		-- Hence the warning
551 552
        ASSERT2( is_top_level || not (any demanded_float (floatBinds floats)), 
	         ppr (filter demanded_float (floatBinds floats)) )
553 554 555

	tick LetFloatFromLet			`thenSmpl_` (
	addFloats env1 floats			$ \ env2 ->
556
	addAtomicBinds env2 (fromOL aux_binds)	$ \ env3 ->
557
	completeLazyBind env3 top_lvl bndr bndr2 rhs2)
558 559

    else
560
	completeLazyBind env1 top_lvl bndr bndr2 (wrapFloats floats rhs1)
561 562 563 564 565 566

#ifdef DEBUG
demanded_float (NonRec b r) = isStrictDmd (idNewDemandInfo b) && not (isUnLiftedType (idType b))
		-- Unlifted-type (cheap-eagerness) lets may well have a demanded flag on them
demanded_float (Rec _)	    = False
#endif
567
\end{code}
568 569


570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
%************************************************************************
%*									*
\subsection{Completing a lazy binding}
%*									*
%************************************************************************

completeLazyBind
	* deals only with Ids, not TyVars
	* takes an already-simplified binder and RHS
	* is used for both recursive and non-recursive bindings
	* is used for both top-level and non-top-level bindings

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
	- top-level bindings (when let-to-case is impossible) 
	- many situations where the "rhs" is known to be a WHNF
		(so let-to-case is inappropriate).

\begin{code}
completeLazyBind :: SimplEnv
		 -> TopLevelFlag	-- Flag stuck into unfolding
		 -> InId 		-- Old binder
		 -> OutId		-- New binder
	         -> OutExpr		-- Simplified RHS
	   	 -> SimplM (FloatsWith SimplEnv)
-- We return a new SimplEnv, because completeLazyBind may choose to do its work
-- by extending the substitution (e.g. let x = y in ...)
-- The new binding (if any) is returned as part of the floats.
-- NB: the returned SimplEnv has the right SubstEnv, but you should
--     (as usual) use the in-scope-env from the floats

completeLazyBind env top_lvl old_bndr new_bndr new_rhs
607
  | postInlineUnconditionally env new_bndr occ_info new_rhs
608 609
  = 		-- Drop the binding
    tick (PostInlineUnconditionally old_bndr)	`thenSmpl_`
610
    returnSmpl (emptyFloats env, extendIdSubst env old_bndr (DoneEx new_rhs))
611 612 613 614 615 616 617 618
		-- Use the substitution to make quite, quite sure that the substitution
		-- will happen, since we are going to discard the binding

  |  otherwise
  = let
		-- Add arity info
  	new_bndr_info = idInfo new_bndr `setArityInfo` exprArity new_rhs

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
	-- Add the unfolding *only* for non-loop-breakers
	-- Making loop breakers not have an unfolding at all 
	-- means that we can avoid tests in exprIsConApp, for example.
	-- This is important: if exprIsConApp says 'yes' for a recursive
	-- thing, then we can get into an infinite loop

	-- If the unfolding is a value, the demand info may
	-- go pear-shaped, so we nuke it.  Example:
	--	let x = (a,b) in
	--	case x of (p,q) -> h p q x
	-- Here x is certainly demanded. But after we've nuked
	-- the case, we'll get just
	--	let x = (a,b) in h a b x
	-- and now x is not demanded (I'm assuming h is lazy)
	-- This really happens.  Similarly
	--	let f = \x -> e in ...f..f...
	-- After inling f at some of its call sites the original binding may
	-- (for example) be no longer strictly demanded.
	-- The solution here is a bit ad hoc...
	unfolding  = mkUnfolding (isTopLevel top_lvl) new_rhs
 	info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
        final_info | loop_breaker		= new_bndr_info
		   | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
		   | otherwise			= info_w_unf

	final_id = new_bndr `setIdInfo` final_info
645 646 647 648 649 650 651 652 653 654 655 656 657 658
    in
		-- These seqs forces the Id, and hence its IdInfo,
		-- and hence any inner substitutions
    final_id					`seq`
    returnSmpl (unitFloat env final_id new_rhs, env)

  where 
    loop_breaker = isLoopBreaker occ_info
    old_info     = idInfo old_bndr
    occ_info     = occInfo old_info
\end{code}    



659 660 661 662 663 664
%************************************************************************
%*									*
\subsection[Simplify-simplExpr]{The main function: simplExpr}
%*									*
%************************************************************************

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

	let t = f x
	in fst t
==>
	let t = let a = e1
		    b = e2
		in (a,b)
	in fst t
==>
	let a = e1
	    b = e2
	    t = (a,b)
	in
	a	-- Can't inline a this round, cos it appears twice
==>
	e1

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

	let f = g d
	in \x -> ...f...
==>
	let f = let d1 = ..d.. in \y -> e
	in \x -> ...f...
==>
	let d1 = ..d..
	in \x -> ...(\y ->e)...

Only in this second round can the \y be applied, and it 
might do the same again.


703
\begin{code}
704
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
705
simplExpr env expr = simplExprC env expr (mkBoringStop expr_ty')
706
		   where
707
		     expr_ty' = substTy env (exprType expr)
708
	-- The type in the Stop continuation, expr_ty', is usually not used
709
	-- It's only needed when discarding continuations after finding
710 711
	-- a function that returns bottom.
	-- Hence the lazy substitution
712

713

714 715 716 717 718
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
	-- Simplify an expression, given a continuation
simplExprC env expr cont 
  = simplExprF env expr cont	`thenSmpl` \ (floats, expr) ->
    returnSmpl (wrapFloats floats expr)
719

720
simplExprF :: SimplEnv -> InExpr -> SimplCont -> SimplM FloatsWithExpr
721
	-- Simplify an expression, returning floated binds
722

723 724 725 726 727
simplExprF env (Var v)	        cont = simplVar env v cont
simplExprF env (Lit lit)	cont = rebuild env (Lit lit) cont
simplExprF env expr@(Lam _ _)   cont = simplLam env expr cont
simplExprF env (Note note expr) cont = simplNote env note expr cont
simplExprF env (App fun arg)    cont = simplExprF env fun (ApplyTo NoDup arg env cont)
728

729 730 731 732
simplExprF env (Type ty) cont
  = ASSERT( contIsRhsOrArg cont )
    simplType env ty			`thenSmpl` \ ty' ->
    rebuild env (Type ty') cont
733

734
simplExprF env (Case scrut bndr case_ty alts) cont
735 736 737
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
  = 	-- Simplify the scrutinee with a Select continuation
    simplExprF env scrut (Select NoDup bndr alts env cont)
738

739 740
  | otherwise
  = 	-- If case-of-case is off, simply simplify the case expression
741
	-- in a vanilla Stop context, and rebuild the result around it
742 743 744
    simplExprC env scrut case_cont	`thenSmpl` \ case_expr' ->
    rebuild env case_expr' cont
  where
745
    case_cont = Select NoDup bndr alts env (mkBoringStop case_ty')
746
    case_ty'  = substTy env case_ty	-- c.f. defn of simplExpr
747

748
simplExprF env (Let (Rec pairs) body) cont
749
  = simplLetBndrs env (map fst pairs) 		`thenSmpl` \ (env, bndrs') -> 
750 751
	-- NB: bndrs' don't have unfoldings or rules
	-- We add them as we go down
752

753 754 755
    simplRecBind env NotTopLevel pairs bndrs' 	`thenSmpl` \ (floats, env) ->
    addFloats env floats 			$ \ env ->
    simplExprF env body cont
756

757
-- A non-recursive let is dealt with by simplNonRecBind
758 759 760
simplExprF env (Let (NonRec bndr rhs) body) cont
  = simplNonRecBind env bndr rhs env (contResultType cont)	$ \ env ->
    simplExprF env body cont
761 762 763


---------------------------------
764 765 766 767 768
simplType :: SimplEnv -> InType -> SimplM OutType
	-- Kept monadic just so we can do the seqType
simplType env ty
  = seqType new_ty   `seq`   returnSmpl new_ty
  where
769
    new_ty = substTy env ty
770 771 772 773 774 775 776 777
\end{code}


%************************************************************************
%*									*
\subsection{Lambdas}
%*									*
%************************************************************************
778 779

\begin{code}
780 781
simplLam env fun cont
  = go env fun cont
782
  where
783
    zap_it  = mkLamBndrZapper fun (countArgs cont)
784 785 786
    cont_ty = contResultType cont

      	-- Type-beta reduction
787
    go env (Lam bndr body) (ApplyTo _ (Type ty_arg) arg_se body_cont)
788
      =	ASSERT( isTyVar bndr )
789 790
	tick (BetaReduction bndr)			`thenSmpl_`
	simplType (setInScope arg_se env) ty_arg 	`thenSmpl` \ ty_arg' ->
791
	go (extendTvSubst env bndr ty_arg') body body_cont
792 793

	-- Ordinary beta reduction
794 795
    go env (Lam bndr body) cont@(ApplyTo _ arg arg_se body_cont)
      = tick (BetaReduction bndr)				`thenSmpl_`
796
	simplNonRecBind env (zap_it bndr) arg arg_se cont_ty	$ \ env -> 
797
	go env body body_cont
798

799 800
	-- Not enough args, so there are real lambdas left to put in the result
    go env lam@(Lam _ _) cont
801
      = simplLamBndrs env bndrs		`thenSmpl` \ (env, bndrs') ->
802 803 804 805 806 807
	simplExpr env body 		`thenSmpl` \ body' ->
	mkLam env bndrs' body' cont	`thenSmpl` \ (floats, new_lam) ->
	addFloats env floats		$ \ env -> 
	rebuild env new_lam cont
      where
	(bndrs,body) = collectBinders lam
808 809

	-- Exactly enough args
810
    go env expr cont = simplExprF env expr cont
811 812

mkLamBndrZapper :: CoreExpr 	-- Function
813
		-> Int		-- Number of args supplied, *including* type args
814
		-> Id -> Id	-- Use this to zap the binders
815
mkLamBndrZapper fun n_args
816
  | n_args >= n_params fun = \b -> b		-- Enough args
817
  | otherwise		   = \b -> zapLamIdInfo b
818
  where
819 820 821 822 823
	-- NB: we count all the args incl type args
	-- so we must count all the binders (incl type lambdas)
    n_params (Note _ e) = n_params e
    n_params (Lam b e)  = 1 + n_params e
    n_params other	= 0::Int
824 825
\end{code}

826

827 828 829 830 831 832
%************************************************************************
%*									*
\subsection{Notes}
%*									*
%************************************************************************

sof's avatar
sof committed
833
\begin{code}
834 835
simplNote env (Coerce to from) body cont
  = let
836 837 838 839 840 841 842 843 844 845
	addCoerce s1 k1 (CoerceIt t1 cont)
		-- 	coerce T1 S1 (coerce S1 K1 e)
		-- ==>
		--	e, 			if T1=K1
		--	coerce T1 K1 e,		otherwise
		--
		-- For example, in the initial form of a worker
		-- we may find 	(coerce T (coerce S (\x.e))) y
		-- and we'd like it to simplify to e[y/x] in one round 
		-- of simplification
846
	  | t1 `coreEqType` k1  = cont	 	-- The coerces cancel out
847
	  | otherwise       = CoerceIt t1 cont	-- They don't cancel, but 
848 849 850
						-- the inner one is redundant

	addCoerce t1t2 s1s2 (ApplyTo dup arg arg_se cont)
851 852 853
	  | not (isTypeArg arg),	-- This whole case only works for value args
					-- Could upgrade to have equiv thing for type apps too	
 	    Just (s1, s2) <- splitFunTy_maybe s1s2
854 855 856 857
		--	(coerce (T1->T2) (S1->S2) F) E
		-- ===> 
		--	coerce T2 S2 (F (coerce S1 T1 E))
		--
858
		-- t1t2 must be a function type, T1->T2, because it's applied to something
859 860 861 862
		-- but s1s2 might conceivably not be
		--
		-- When we build the ApplyTo we can't mix the out-types
		-- with the InExpr in the argument, so we simply substitute
863 864
		-- to make it all consistent.  It's a bit messy.
		-- But it isn't a common case.
865 866
	  = let 
		(t1,t2) = splitFunTy t1t2
867 868
		new_arg = mkCoerce2 s1 t1 (substExpr arg_env arg)
		arg_env = setInScope arg_se env
869
	    in
870
	    ApplyTo dup new_arg (zapSubstEnv env) (addCoerce t2 s2 cont)
871 872
			
	addCoerce to' _ cont = CoerceIt to' cont
873
    in
874 875 876
    simplType env to		`thenSmpl` \ to' ->
    simplType env from		`thenSmpl` \ from' ->
    simplExprF env body (addCoerce to' from' cont)
877 878 879 880

		
-- Hack: we only distinguish subsumed cost centre stacks for the purposes of
-- inlining.  All other CCCSs are mapped to currentCCS.
881 882 883 884 885 886 887 888 889 890
simplNote env (SCC cc) e cont
  = simplExpr (setEnclosingCC env currentCCS) e 	`thenSmpl` \ e' ->
    rebuild env (mkSCC cc e') cont

simplNote env InlineCall e cont
  = simplExprF env e (InlinePlease cont)

-- See notes with SimplMonad.inlineMode
simplNote env InlineMe e cont
  | contIsRhsOrArg cont		-- Totally boring continuation; see notes above
891
  =				-- Don't inline inside an INLINE expression
892 893
    simplExpr (setMode inlineMode env )  e	`thenSmpl` \ e' ->
    rebuild env (mkInlineMe e') cont
894 895 896 897

  | otherwise  	-- Dissolve the InlineMe note if there's
		-- an interesting context of any kind to combine with
		-- (even a type application -- anything except Stop)
898
  = simplExprF env e cont
899 900 901 902

simplNote env (CoreNote s) e cont
  = simplExpr env e    `thenSmpl` \ e' ->
    rebuild env (Note (CoreNote s) e') cont
903 904 905
\end{code}


906 907
%************************************************************************
%*									*
908
\subsection{Dealing with calls}
909 910
%*									*
%************************************************************************
911

912
\begin{code}
913
simplVar env var cont
914 915 916 917
  = case substId env var of
	DoneEx e	 -> simplExprF (zapSubstEnv env) e cont
	ContEx tvs ids e -> simplExprF (setSubstEnv env tvs ids) e cont
	DoneId var1 occ  -> completeCall (zapSubstEnv env) var1 occ cont
918
		-- Note [zapSubstEnv]
919 920 921 922 923 924 925 926
		-- The template is already simplified, so don't re-substitute.
		-- This is VITAL.  Consider
		--	let x = e in
		--	let y = \z -> ...x... in
		--	\ x -> ...y...
		-- We'll clone the inner \x, adding x->x' in the id_subst
		-- Then when we inline y, we must *not* replace x by x' in
		-- the inlined copy!!
927

928
---------------------------------------------------------
929
--	Dealing with a call site
930

931
completeCall env var occ_info cont
932 933
  =     -- Simplify the arguments
    getDOptsSmpl					`thenSmpl` \ dflags ->
934
    let
935
	chkr			       = getSwitchChecker env
936
	(args, call_cont, inline_call) = getContArgs chkr var cont
937
	fn_ty			       = idType var
938
    in
939
    simplifyArgs env fn_ty args (contResultType call_cont)	$ \ env args ->
940

941
	-- Next, look for rules or specialisations that match
942 943 944 945 946 947 948 949 950
	--
	-- It's important to simplify the args first, because the rule-matcher
	-- doesn't do substitution as it goes.  We don't want to use subst_args
	-- (defined in the 'where') because that throws away useful occurrence info,
	-- and perhaps-very-important specialisations.
	--
	-- Some functions have specialisations *and* are strict; in this case,
	-- we don't want to inline the wrapper of the non-specialised thing; better
	-- to call the specialised thing instead.
951 952 953
	-- We used to use the black-listing mechanism to ensure that inlining of 
	-- the wrapper didn't occur for things that have specialisations till a 
	-- later phase, so but now we just try RULES first
954
	--
955 956 957 958 959 960 961 962 963 964 965
	-- You might think that we shouldn't apply rules for a loop breaker: 
	-- doing so might give rise to an infinite loop, because a RULE is
	-- rather like an extra equation for the function:
	--	RULE:		f (g x) y = x+y
	--	Eqn:		f a     y = a-y
	--
	-- But it's too drastic to disable rules for loop breakers.  
	-- Even the foldr/build rule would be disabled, because foldr 
	-- is recursive, and hence a loop breaker:
	--	foldr k z (build g) = g k z
	-- So it's up to the programmer: rules can cause divergence
966 967

    let
968
	in_scope   = getInScope env
969
	rules	   = getRules env
970 971
	maybe_rule = case activeRule env of
			Nothing     -> Nothing	-- No rules apply
972
			Just act_fn -> lookupRule act_fn in_scope rules var args 
973 974
    in
    case maybe_rule of {
975
	Just (rule_name, rule_rhs) -> 
976
		tick (RuleFired rule_name)			`thenSmpl_`
977 978
		(if dopt Opt_D_dump_inlinings dflags then
		   pprTrace "Rule fired" (vcat [
979
			text "Rule:" <+> ftext rule_name,
980
			text "Before:" <+> ppr var <+> sep (map pprParendExpr args),
981 982
			text "After: " <+> pprCoreExpr rule_rhs,
			text "Cont:  " <+> ppr call_cont])
983 984
		 else
			id)		$
985
		simplExprF env rule_rhs call_cont ;
986
	
987
	Nothing -> 		-- No rules
988

989 990 991 992
	-- Next, look for an inlining
    let
	arg_infos = [ interestingArg arg | arg <- args, isValArg arg]

sof's avatar
sof committed
993 994
	interesting_cont = interestingCallContext (notNull args)
						  (notNull arg_infos)
995 996
						  call_cont

997
    	active_inline = activeInline env var occ_info
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	maybe_inline  = callSiteInline dflags active_inline inline_call occ_info
				       var arg_infos interesting_cont
    in
    case maybe_inline of {
	Just unfolding  	-- There is an inlining!
	  ->  tick (UnfoldingDone var)		`thenSmpl_`
	      makeThatCall env var unfolding args call_cont

	;
	Nothing -> 		-- No inlining!

1009
	-- Done
1010
    rebuild env (mkApps (Var var) args) call_cont
1011
    }}
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

makeThatCall :: SimplEnv
	     -> Id
	     -> InExpr		-- Inlined function rhs 
	     -> [OutExpr]	-- Arguments, already simplified
	     -> SimplCont	-- After the call
	     -> SimplM FloatsWithExpr
-- Similar to simplLam, but this time 
-- the arguments are already simplified
makeThatCall orig_env var fun@(Lam _ _) args cont
  = go orig_env fun args
  where
    zap_it = mkLamBndrZapper fun (length args)

      	-- Type-beta reduction
    go env (Lam bndr body) (Type ty_arg : args)
      =	ASSERT( isTyVar bndr )
	tick (BetaReduction bndr)			`thenSmpl_`
1030
	go (extendTvSubst env bndr ty_arg) body args
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	-- Ordinary beta reduction
    go env (Lam bndr body) (arg : args)
      = tick (BetaReduction bndr)			`thenSmpl_`
	simplNonRecX env (zap_it bndr) arg 		$ \ env -> 
	go env body args

	-- Not enough args, so there are real lambdas left to put in the result
    go env fun args
      = simplExprF env fun (pushContArgs orig_env args cont)
	-- NB: orig_env; the correct environment to capture with
	-- the arguments.... env has been augmented with substitutions 
	-- from the beta reductions.

makeThatCall env var fun args cont
  = simplExprF env fun (pushContArgs env args cont)
1047
\end{code}		   
1048 1049


1050 1051 1052 1053 1054 1055 1056
%************************************************************************
%*									*
\subsection{Arguments}
%*									*
%************************************************************************

\begin{code}
1057
---------------------------------------------------------
1058 1059
--	Simplifying the arguments of a call

1060
simplifyArgs :: SimplEnv 
1061
	     -> OutType				-- Type of the function
1062
	     -> [(InExpr, SimplEnv, Bool)]	-- Details of the arguments
1063
	     -> OutType				-- Type of the continuation
1064 1065 1066 1067
	     -> (SimplEnv -> [OutExpr] -> SimplM FloatsWithExpr)
	     -> SimplM FloatsWithExpr

-- [CPS-like because of strict arguments]
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

-- Simplify the arguments to a call.
-- This part of the simplifier may break the no-shadowing invariant
-- Consider
--	f (...(\a -> e)...) (case y of (a,b) -> e')
-- where f is strict in its second arg
-- If we simplify the innermost one first we get (...(\a -> e)...)
-- Simplifying the second arg makes us float the case out, so we end up with
--	case y of (a,b) -> f (...(\a -> e)...) e'
-- So the output does not have the no-shadowing invariant.  However, there is
-- no danger of getting name-capture, because when the first arg was simplified
-- we used an in-scope set that at least mentioned all the variables free in its
-- static environment, and that is enough.
--
-- We can't just do innermost first, or we'd end up with a dual problem:
--	case x of (a,b) -> f e (...(\a -> e')...)
--
-- I spent hours trying to recover the no-shadowing invariant, but I just could
-- not think of an elegant way to do it.  The simplifier is already knee-deep in
-- continuations.  We have to keep the right in-scope set around; AND we have
-- to get the effect that finding (error "foo") in a strict arg position will
-- discard the entire application and replace it with (error "foo").  Getting
-- all this at once is TOO HARD!

1092 1093
simplifyArgs env fn_ty args cont_ty thing_inside
  = go env fn_ty args thing_inside
1094
  where
1095 1096 1097 1098
    go env fn_ty []	    thing_inside = thing_inside env []
    go env fn_ty (arg:args) thing_inside = simplifyArg env fn_ty arg cont_ty 		$ \ env arg' ->
					   go env (applyTypeToArg fn_ty arg') args 	$ \ env args' ->
					   thing_inside env (arg':args')
1099

1100
simplifyArg env fn_ty (Type ty_arg, se, _) cont_ty thing_inside
1101 1102
  = simplType (setInScope se env) ty_arg 	`thenSmpl` \ new_ty_arg ->
    thing_inside env (Type new_ty_arg)
1103

1104
simplifyArg env fn_ty (val_arg, arg_se, is_strict) cont_ty thing_inside 
1105
  | is_strict 
1106
  = simplStrictArg AnArg env val_arg arg_se arg_ty cont_ty thing_inside
1107

1108 1109 1110 1111 1112 1113
  | otherwise	-- Lazy argument
		-- DO NOT float anything outside, hence simplExprC
		-- There is no benefit (unlike in a let-binding), and we'd
		-- have to be very careful about bogus strictness through 
		-- floating a demanded let.
  = simplExprC (setInScope arg_se env) val_arg
1114
	       (mkBoringStop arg_ty)		`thenSmpl` \ arg1 ->
1115
   thing_inside env arg1
1116 1117
  where
    arg_ty = funArgTy fn_ty
1118 1119


1120 1121 1122 1123
simplStrictArg ::  LetRhsFlag
	        -> SimplEnv		-- The env of the call
		-> InExpr -> SimplEnv	-- The arg plus its env
		-> OutType		-- arg_ty: type of the argument
1124 1125 1126 1127 1128 1129 1130 1131
	        -> OutType		-- cont_ty: Type of thing computed by the context
	        -> (SimplEnv -> OutExpr -> SimplM FloatsWithExpr)	
	 			 	-- Takes an expression of type rhs_ty, 
		 			-- returns an expression of type cont_ty
					-- The env passed to this continuation is the
					-- env of the call, plus any new in-scope variables
	        -> SimplM FloatsWithExpr	-- An expression of type cont_ty

1132
simplStrictArg is_rhs call_env arg arg_env arg_ty cont_ty thing_inside
1133
  = simplExprF (setInScope arg_env call_env) arg
1134
	       (ArgOf is_rhs arg_ty cont_ty (\ new_env -> thing_inside (setInScope call_env new_env)))
1135 1136 1137
  -- Notice the way we use arg_env (augmented with in-scope vars from call_env) 
  --	to simplify the argument
  -- and call-env (augmented with in-scope vars from the arg) to pass to the continuation
1138
\end{code}
1139

1140

1141 1142
%************************************************************************
%*									*
1143
\subsection{mkAtomicArgs}
1144 1145
%*									*
%************************************************************************
1146

1147 1148 1149 1150 1151 1152 1153 1154
mkAtomicArgs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the 
resulting thing can be inlined more easily.  Thus
	x = (f a, g b)
becomes
	t1 = f a
	t2 = g b
	x = (t1,t2)
sof's avatar
sof committed
1155

1156 1157
There are three sorts of binding context, specified by the two
boolean arguments
sof's avatar
sof committed
1158

1159 1160
Strict
   OK-unlifted
1161

1162
N  N	Top-level or recursive			Only bind args of lifted type
1163

1164 1165
N  Y	Non-top-level and non-recursive,	Bind args of lifted type, or
		but lazy			unlifted-and-ok-for-speculation
1166

1167 1168 1169
Y  Y	Non-top-level, non-recursive,		Bind all args
		 and strict (demanded)
	
sof's avatar
sof committed
1170

1171
For example, given
sof's avatar
sof committed
1172

1173
	x = MkC (y div# z)