TcBinds.lhs 43.4 KB
Newer Older
1
%
2
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3 4 5 6
%
\section[TcBinds]{TcBinds}

\begin{code}
7 8
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
9 10
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
11
		 badBootDeclErr ) where
12

13
#include "HsVersions.h"
14

ross's avatar
ross committed
15
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
16
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
17

18 19
import DynFlags		( dopt, DynFlags,
			  DynFlag(Opt_MonomorphismRestriction, Opt_MonoPatBinds, Opt_GlasgowExts) )
20 21 22 23 24
import HsSyn		( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
			  HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
			  LSig, Match(..), IPBind(..), Prag(..),
			  HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
			  isVanillaLSig, sigName, placeHolderNames, isPragLSig,
25
			  LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
26
			  collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
27
			)
28
import TcHsSyn		( zonkId )
29

30
import TcRnMonad
31
import Inst		( newDictsAtLoc, newIPDict, instToId )
32
import TcEnv		( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
33
			  pprBinders, tcLookupLocalId_maybe, tcLookupId,
34
			  tcGetGlobalTyVars )
35
import TcUnify		( tcInfer, tcSubExp, unifyTheta, 
36
			  bleatEscapedTvs, sigCtxt )
37 38
import TcSimplify	( tcSimplifyInfer, tcSimplifyInferCheck, 
			  tcSimplifyRestricted, tcSimplifyIPs )
39
import TcHsType		( tcHsSigType, UserTypeCtxt(..) )
40
import TcPat		( tcPat, PatCtxt(..) )
41
import TcSimplify	( bindInstsOfLocalFuns )
42 43 44 45 46
import TcMType		( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
			  tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
			  zonkTcType, zonkTcTypes, zonkTcTyVars )
import TcType		( TcType, TcTyVar, TcThetaType, 
			  SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
47
			  TcTauType, TcSigmaType, isUnboxedTupleType,
48
			  mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
49
			  mkForAllTy, isUnLiftedType, tcGetTyVar, 
50
			  mkTyVarTys, tidyOpenTyVar )
51
import Kind		( argTypeKind )
52 53
import VarEnv		( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
import TysWiredIn	( unitTy )
54
import TysPrim		( alphaTyVar )
55
import Id		( Id, mkLocalId, mkVanillaGlobal )
56
import IdInfo		( vanillaIdInfo )
57
import Var		( TyVar, idType, idName )
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
58
import Name		( Name )
59
import NameSet
60
import NameEnv
61
import VarSet
62
import SrcLoc		( Located(..), unLoc, getLoc )
63
import Bag
64
import ErrUtils		( Message )
65
import Digraph		( SCC(..), stronglyConnComp )
66
import Maybes		( expectJust, isJust, isNothing, orElse )
67 68
import Util		( singleton )
import BasicTypes	( TopLevelFlag(..), isTopLevel, isNotTopLevel,
69
			  RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
70
import Outputable
71
\end{code}
72

73

74 75 76 77 78 79
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

80
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
81 82 83 84 85 86 87 88 89 90
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

91
The real work is done by @tcBindWithSigsAndThen@.
92 93 94 95 96 97 98 99 100 101

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

102 103 104
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

105
\begin{code}
106
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
107 108 109
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
110
tcTopBinds binds
111
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
112
	; return (foldr (unionBags . snd) emptyBag prs, env) }
113
	-- The top level bindings are flattened into a giant 
114
	-- implicitly-mutually-recursive LHsBinds
115

116
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
117 118
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
119 120
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
121
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
122
  where
123
    tc_boot_sig (TypeSig (L _ name) ty)
124
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
125 126
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
127
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
128

129 130 131
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

132 133 134
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
135

136 137 138
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
139

140 141 142
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
143

144 145 146
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
147 148 149

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
150 151
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
152 153 154 155
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
156
    tc_ip_bind (IPBind ip expr)
157
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
158
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
159
  	tcMonoExpr expr ty			`thenM` \ expr' ->
160 161
  	returnM (ip_inst, (IPBind ip' expr'))

162 163 164 165 166
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

167 168 169
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

170
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
171
  = do 	{   	-- Typecheck the signature
172
	; let { prag_fn = mkPragFun sigs
173
	      ; ty_sigs = filter isVanillaLSig sigs
174
	      ; sig_fn  = mkTcSigFun ty_sigs }
175 176

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
177 178 179 180 181
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
182

183 184
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
185
	; gla_exts     <- doptM Opt_GlasgowExts
186
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
187
			     tc_val_binds gla_exts top_lvl sig_fn prag_fn 
188
					  binds thing_inside
189

190
	; return (ValBindsOut binds' sigs, thing) }
191

192
------------------------
193
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
194
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
195 196 197 198
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

199
tc_val_binds gla_exts top_lvl sig_fn prag_fn [] thing_inside
200 201 202
  = do	{ thing <- thing_inside
	; return ([], thing) }

203
tc_val_binds gla_exts top_lvl sig_fn prag_fn (group : groups) thing_inside
204
  = do	{ (group', (groups', thing))
205 206
		<- tc_group gla_exts top_lvl sig_fn prag_fn group $ 
		   tc_val_binds gla_exts top_lvl sig_fn prag_fn groups thing_inside
207
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
208

209
------------------------
210
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
211
	 -> (RecFlag, LHsBinds Name) -> TcM thing
212 213 214 215 216 217
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

218 219
tc_group gla_exts top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
    	-- A single non-recursive binding
220 221
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
222
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
223 224
	; return ([(NonRecursive, b) | b <- binds], thing) }

225 226 227 228 229 230 231
tc_group gla_exts top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not gla_exts	-- Recursive group, normal Haskell 98 route
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
232
	-- strongly-connected-component analysis, this time omitting 
233
	-- any references to variables with type signatures.
234
	--
235 236
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
237
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
238 239 240
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
241 242
		-- Rec them all together
  where
243 244 245 246 247
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
248

249 250
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
251

252
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
  	-- For the top level don't bother will all this bindInstsOfLocalFuns stuff. 
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
272 273 274 275 276 277 278 279

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
280 281
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
282 283 284 285 286 287 288 289 290 291 292 293 294
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
295 296
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
297

298
------------------------
299
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
300
	    -> RecFlag			-- Whether the group is really recursive
301 302
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
303
	    -> LHsBinds Name
304
	    -> TcM ([LHsBinds TcId], [TcId])
305 306 307 308 309

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
310 311 312
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
313
-- 
314 315
-- Knows nothing about the scope of the bindings

316
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
317
  = let 
318
	bind_list    = bagToList binds
319 320
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
321 322 323
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
324
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
325
    setSrcSpan loc				$
326
    recoverM (recoveryCode binder_names)	$ do 
327

328 329
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
330 331

   	-- TYPECHECK THE BINDINGS
332
  ; ((binds', mono_bind_infos), lie_req) 
333
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
334

335 336 337 338
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
339 340 341 342 343
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
344 345
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
346
			-- ToDo: prags for unlifted bindings
347

348 349
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
350 351

    else do	-- The normal lifted case: GENERALISE
352
  { dflags <- getDOpts 
353
  ; (tyvars_to_gen, dict_binds, dict_ids)
354
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
355
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
356 357 358 359 360 361

	-- FINALISE THE QUANTIFIED TYPE VARIABLES
	-- The quantified type variables often include meta type variables
	-- we want to freeze them into ordinary type variables, and
	-- default their kind (e.g. from OpenTypeKind to TypeKind)
  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
362 363

	-- BUILD THE POLYMORPHIC RESULT IDs
364 365
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
		    mono_bind_infos
sof's avatar
sof committed
366

367 368
	-- ZONK THE poly_ids, because they are used to extend the type 
	-- environment; see the invariant on TcEnv.tcExtendIdEnv 
369
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
370 371
  ; zonked_poly_ids <- mappM zonkId poly_ids

372
  ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
373 374 375 376 377 378 379 380 381 382 383 384 385

  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

  ; return ([unitBag abs_bind], zonked_poly_ids)
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  = case mb_sig of
      Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
		     ; return (inferred_tvs, poly_id, mono_id, prags) }
	  where
	    poly_id = mkLocalId poly_name poly_ty
	    poly_ty = mkForAllTys inferred_tvs
				       $ mkFunTys dict_tys 
				       $ idType mono_id

      Just sig -> do { let poly_id = sig_id sig
		     ; prags <- tcPrags poly_id (prag_fn poly_name)
		     ; sig_tys <- zonkTcTyVars (sig_tvs sig)
		     ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
		     ; return (sig_tvs', poly_id, mono_id, prags) }
		-- We zonk the sig_tvs here so that the export triple
		-- always has zonked type variables; 
		-- a convenient invariant

404 405 406 407 408 409 410

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
411 412
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
413 414 415 416 417 418 419 420 421 422 423 424 425
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
426 427 428
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
429

430

431 432
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
433
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
434
	; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
435 436
	; extendLIEs lie
	; let const_dicts = map instToId lie
437
	; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
438 439
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
440 441
  
--------------
442 443 444
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
445
recoveryCode binder_names
446
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
447
	; poly_ids <- mapM mk_dummy binder_names
448
	; return ([], poly_ids) }
449
  where
450 451 452 453 454 455 456 457
    mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
			; case mb_id of
    		     	      Just id -> return id		-- Had signature, was in envt
	    		      Nothing -> return (mkLocalId name forall_a_a) }    -- No signature

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

458

459 460 461
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
462 463
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464 465 466 467 468
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
469
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
470
	  	  (strictBindErr "Top-level" unlifted mbind)
471
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
472
	  	  (strictBindErr "Recursive" unlifted mbind)
473
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
474 475 476 477 478
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
479
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
480 481
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
482
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
483
					 (badStrictSig unlifted sig)
484
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
485 486

strictBindErr flavour unlifted mbind
487 488
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
489 490 491 492 493 494 495 496 497 498
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
499 500
\end{code}

501

502 503
%************************************************************************
%*									*
504
\subsection{tcMonoBind}
505 506 507
%*									*
%************************************************************************

508
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
509 510
The signatures have been dealt with already.

511
\begin{code}
512 513
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
514 515 516
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
517 518
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

519 520
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
521
	    sig_fn 		-- Single function binding,
522
	    NonRecursive	-- binder isn't mentioned in RHS,
523
  | Nothing <- sig_fn name	-- ...with no type signature
524 525 526 527 528 529
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
530
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
531

532 533 534 535 536 537 538 539
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
540

541
	; mono_name <- newLocalName name
542
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
543 544 545
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
					      fun_co_fn = co_fn })),
546 547
		  [(name, Nothing, mono_id)]) }

548 549 550 551
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
552
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
553 554 555 556
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
557
    do	{ tc_sig <- tcInstSig True name scoped_tvs
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
		    	       tcMatchesFun mono_name matches mono_ty

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn }
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

573 574
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
575

576
	-- Bring the monomorphic Ids, into scope for the RHSs
577
	; let mono_info  = getMonoBindInfo tc_binds
578 579 580
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
581

582
	; binds' <- tcExtendIdEnv2    rhs_id_env $
583 584 585 586
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

608 609 610 611 612 613 614 615 616 617
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

618
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
619
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
620
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
621 622 623 624 625 626
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
627 628 629
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
630
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
631 632 633 634 635 636 637 638 639
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
640

641
	; let nm_sig_prs  = names `zip` mb_sigs
642 643 644 645
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
646
	      sig_tau_fn  = lookupNameEnv tau_sig_env
647

648 649 650 651 652 653 654 655 656 657 658 659
	      tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
			      mapM lookup_info nm_sig_prs
		-- The unitTy is a bit bogus; it's the "result type" for lookup_info.  

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
660

661 662 663 664 665
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


666
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
667 668
	-- AbsBind, VarBind impossible

669 670
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
671
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
672 673 674 675
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
				    	    (idType mono_id)
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
676 677 678

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
679 680 681
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
682 683 684


---------------------
685
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
686
getMonoBindInfo tc_binds
687
  = foldr (get_info . unLoc) [] tc_binds
688 689 690 691 692 693 694 695
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
696
		Generalisation
697 698 699 700
%*									*
%************************************************************************

\begin{code}
701 702
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
703
	   -> [MonoBindInfo] -> [Inst]
704
	   -> TcM ([TcTyVar], TcDictBinds, [TcId])
705 706 707 708 709
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
  = do { extendLIEs lie_req; return ([], emptyBag, []) }

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
710 711
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
712
	  	  (restrictedBindCtxtErr bndrs)
713

714 715
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
716
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
717
						tau_tvs lie_req
718

719
   	-- Check that signature type variables are OK
720
	; final_qtvs <- checkSigsTyVars qtvs sigs
721

722
	; return (final_qtvs, binds, []) }
723

724 725 726 727
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
728
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty
729 730
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
731
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
732 733
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
734

735 736
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
737
	; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
738 739
	
   	-- Check that signature type variables are OK
740
	; final_qtvs <- checkSigsTyVars forall_tvs sigs
741

742
	; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
743
  where
744 745
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
746 747 748
    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
		-- NB: exactTyVarsOfType; see Note [Silly type synonym] 
		--     near defn of TcType.exactTyVarsOfType
749
    is_mono_sig sig = null (sig_theta sig)
750
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
751

752
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
753 754 755
		            sig_theta = theta, sig_loc = loc }) mono_id
      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
\end{code}
756

757 758 759
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
760

761 762 763 764 765 766 767 768 769
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
770 771 772 773 774 775 776 777 778 779 780 781
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
	; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
	= setSrcSpan (instLocSrcSpan (sig_loc sig)) 	$
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

782 783
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
784 785 786 787 788 789 790 791 792 793 794 795 796 797
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
798
  where
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
819
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
820 821 822 823 824 825 826 827
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
828
		Just sig_tv' -> bomb_out sig_tv sig_tv'
829 830 831

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

832
    bomb_out sig_tv1 sig_tv2
833 834 835 836 837 838 839
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
840 841 842
       where
\end{code}    

843

844
@getTyVarsToGen@ decides what type variables to generalise over.
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

860 861 862 863
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

864 865 866 867 868 869 870 871
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
872 873
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
874

875 876 877 878 879 880 881 882
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

883 884 885
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
886

887 888 889
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
890

891 892
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
924 925 926 927

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

928 929 930 931 932 933
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
934

935 936 937 938 939 940 941 942
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


943 944 945

%************************************************************************
%*									*
946
		Signatures
947 948 949
%*									*
%************************************************************************

950
Type signatures are tricky.  See Note [Signature skolems] in TcType
951

952 953 954 955 956 957 958 959 960
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

961
\begin{code}
962 963 964 965
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
966

967
mkTcSigFun :: [LSig Name] -> TcSigFun
968 969 970
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
971
mkTcSigFun sigs = lookupNameEnv env
972
  where
973 974 975 976 977 978 979
    env = mkNameEnv [(name, scoped_tyvars hs_ty)
		    | L span (TypeSig (L _ name) (L _ hs_ty)) <- sigs]
    scoped_tyvars (HsForAllTy Explicit tvs _ _) = hsLTyVarNames tvs
    scoped_tyvars other				= []
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

---------------
data TcSigInfo
  = TcSigInfo {
	sig_id     :: TcId,		--  *Polymorphic* binder for this value...

	sig_scoped :: [Name],		-- Names for any scoped type variables
					-- Invariant: correspond 1-1 with an initial
					-- segment of sig_tvs (see Note [Scoped])

	sig_tvs    :: [TcTyVar],	-- Instantiated type variables
					-- See Note [Instantiate sig]

	sig_theta  :: TcThetaType,	-- Instantiated theta
	sig_tau    :: TcTauType,	-- Instantiated tau
	sig_loc    :: InstLoc	 	-- The location of the signature
    }

-- 	Note [Scoped]
-- There may be more instantiated type variables than scoped 
-- ones.  For example:
--	type T a = forall b. b -> (a,b)
--	f :: forall c. T c
-- Here, the signature for f will have one scoped type variable, c,
-- but two instantiated type variables, c' and b'.  
--
-- We assume that the scoped ones are at the *front* of sig_tvs,
-- and remember the names from the original HsForAllTy in sig_scoped

-- 	Note [Instantiate sig]
-- It's vital to instantiate a type signature with fresh variable.
-- For example:
--	type S = forall a. a->a
--	f,g :: S
--	f = ...
--	g = ...
-- Here, we must use distinct type variables when checking f,g's right hand sides.
-- (Instantiation is only necessary because of type synonyms.  Otherwise,
-- it's all cool; each signature has distinct type variables from the renamer.)

instance Outputable TcSigInfo where
    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
	= ppr id <+> ptext SLIT("::") <+> ppr tyvars <+> ppr theta <+> ptext SLIT("=>") <+> ppr tau
\end{code}

\begin{code}
tcTySig :: LSig Name -> TcM TcId
1027
tcTySig (L span (TypeSig (L _ name) ty))
1028
  = setSrcSpan span		$
1029
    do	{ sigma_ty <- tcHsSigType (FunSigCtxt name) ty
1030 1031 1032
	; return (mkLocalId name sigma_ty) }

-------------------