Capability.c 26.6 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

34
nat n_capabilities;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
41
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
42

43
44
45
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

46
#if defined(THREADED_RTS)
47
48
49
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
50
    return blackholes_need_checking
51
	|| sched_state >= SCHED_INTERRUPTING
52
53
	;
}
54
#endif
55

56
#if defined(THREADED_RTS)
57
StgClosure *
58
findSpark (Capability *cap)
59
{
60
61
62
63
64
65
  /* use the normal Sparks.h interface (internally modified to enable
     concurrent stealing) 
     and immediately turn the spark into a thread when successful
  */
  Capability *robbed;
  StgClosurePtr spark;
66
  rtsBool retry;
67
68
  nat i = 0;

69
70
71
72
73
74
75
76
77
78
79
80
81
82
  // first try to get a spark from our own pool.
  // We should be using reclaimSpark(), because it works without
  // needing any atomic instructions:
  //   spark = reclaimSpark(cap->sparks);
  // However, measurements show that this makes at least one benchmark
  // slower (prsa) and doesn't affect the others.
  spark = tryStealSpark(cap);
  if (spark != NULL) {
      cap->sparks_converted++;
      return spark;
  }

  if (n_capabilities == 1) { return NULL; } // makes no sense...

83
84
85
86
  debugTrace(DEBUG_sched,
	     "cap %d: Trying to steal work from other capabilities", 
	     cap->no);

87
88
  do {
      retry = rtsFalse;
89

90
91
92
93
94
95
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
96

97
98
99
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

100
          spark = tryStealSpark(robbed);
101
102
103
104
105
106
107
108
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
              debugTrace(DEBUG_sched,
109
		 "cap %d: Stole a spark from capability %d",
110
                         cap->no, robbed->no);
111
              cap->sparks_converted++;
112
              return spark;
113
114
115
116
          }
          // otherwise: no success, try next one
      }
  } while (retry);
117

118
  debugTrace(DEBUG_sched, "No sparks stolen");
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
rtsBool
anySparks (void)
{
    nat i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(&capabilities[i])) {
            return rtsTrue;
        }
    }
    return rtsFalse;
137
}
138
#endif
139
140
141

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
142
 *
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
159
160
}

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

177
/* ----------------------------------------------------------------------------
178
179
180
181
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
182
183

static void
184
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
185
{
186
    nat g;
187

188
189
190
191
192
193
194
195
196
197
198
199
200
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
201
202
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
203
204
205
    cap->sparks_created     = 0;
    cap->sparks_converted   = 0;
    cap->sparks_pruned      = 0;
206
207
#endif

sof's avatar
sof committed
208
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
209
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
210

211
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
212
213
				     RtsFlags.GcFlags.generations,
				     "initCapability");
214
215
216

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
217
    }
218

tharris@microsoft.com's avatar
tharris@microsoft.com committed
219
220
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
221
222
223
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
224
    cap->context_switch = 0;
sof's avatar
sof committed
225
226
}

227
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
228
229
 * Function:  initCapabilities()
 *
230
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
231
 *            we keep a table of them, the size of which is
232
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
233
 *
234
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
235
void
236
initCapabilities( void )
sof's avatar
sof committed
237
{
238
239
#if defined(THREADED_RTS)
    nat i;
240

241
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
242
243
244
245
246
247
248
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

249
250
251
252
253
254
255
256
257
258
259
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
260

261
    for (i = 0; i < n_capabilities; i++) {
262
	initCapability(&capabilities[i], i);
263
    }
264

Simon Marlow's avatar
Simon Marlow committed
265
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
266
267
268

#else /* !THREADED_RTS */

269
    n_capabilities = 1;
270
    capabilities = &MainCapability;
271
    initCapability(&MainCapability, 0);
272

273
274
#endif

275
276
277
278
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
279
280
}

281
282
283
284
285
286
287
288
289
290
291
292
293
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
  nat i;
  for (i=0; i < n_capabilities; i++) {
    capabilities[i].context_switch = 1;
  }
}

294
/* ----------------------------------------------------------------------------
295
296
297
298
299
300
301
302
303
304
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
305
306
 *
 * ------------------------------------------------------------------------- */
307
308
309

#if defined(THREADED_RTS)
STATIC_INLINE void
310
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
311
{
312
313
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
314
315
316
317
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
318
319
320
321
322
323
324
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
325
}
326
#endif
327

328
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
329
330
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
331
332
333
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
334
335
 * ------------------------------------------------------------------------- */

336
#if defined(THREADED_RTS)
337
void
338
339
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
340
{
341
342
343
344
    Task *task;

    task = cap->running_task;

345
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
346
347

    cap->running_task = NULL;
348

349
350
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
351
352
353
354
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
355
    }
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    /* if waiting_for_gc was the reason to release the cap: thread
       comes from yieldCap->releaseAndQueueWorker. Unconditionally set
       cap. free and return (see default after the if-protected other
       special cases). Thread will wait on cond.var and re-acquire the
       same cap after GC (GC-triggering cap. calls releaseCap and
       enters the spare_workers case)
    */
    if (waiting_for_gc) {
      last_free_capability = cap; // needed?
      trace(TRACE_sched | DEBUG_sched, 
	    "GC pending, set capability %d free", cap->no);
      return;
    } 


372
373
374
375
376
377
378
379
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
380
    }
381

382
    if (!cap->spare_workers) {
383
384
385
386
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
387
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
388
389
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
390
391
392
	    startWorkerTask(cap, workerStart);
	    return;
	}
393
    }
394

395
396
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
397
398
399
    if (always_wakeup || 
        !emptyRunQueue(cap) || !emptyWakeupQueue(cap) ||
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
400
401
402
403
404
405
406
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

407
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
408
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
409
410
}

411
void
412
releaseCapability (Capability* cap USED_IF_THREADS)
413
414
{
    ACQUIRE_LOCK(&cap->lock);
415
416
417
418
419
420
421
422
423
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
424
425
426
427
    RELEASE_LOCK(&cap->lock);
}

static void
428
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

449
    releaseCapability_(cap,rtsFalse);
450
451
452
453

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
454

455
/* ----------------------------------------------------------------------------
456
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
457
458
 *
 * Purpose:  when an OS thread returns from an external call,
459
460
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
461
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
462
463
 * made it.
 *
464
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
465
void
466
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
467
{
468
#if !defined(THREADED_RTS)
469

470
471
472
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
473

474
#else
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
	    for (i = 0; i < n_capabilities; i++) {
		cap = &capabilities[i];
		if (!cap->running_task) {
		    break;
		}
	    }
	    // Can't find a free one, use last_free_capability.
	    cap = last_free_capability;
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

496
    } else {
497
	ASSERT(task->cap == cap);
498
499
    }

500
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
501

Simon Marlow's avatar
Simon Marlow committed
502
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

538
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
539

Simon Marlow's avatar
Simon Marlow committed
540
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
541
542
543
544
545
546

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
547
/* ----------------------------------------------------------------------------
548
 * yieldCapability
549
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
550

sof's avatar
sof committed
551
void
552
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
553
{
554
555
    Capability *cap = *pCap;

Simon Marlow's avatar
Simon Marlow committed
556
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
557
558

	// We must now release the capability and wait to be woken up
559
	// again.
560
	task->wakeup = rtsFalse;
561
562
563
564
565
566
567
568
569
570
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
571
572
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

573
574
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
575
576
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
598
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
599
	ASSERT(cap->running_task == task);
600

601
    *pCap = cap;
602

603
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
604

605
    return;
sof's avatar
sof committed
606
607
}

608
609
610
611
612
613
614
615
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
616
617
618
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
619
{
620
    ACQUIRE_LOCK(&other_cap->lock);
621

622
623
624
625
626
627
628
629
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
630

631
    if (other_cap->running_task == NULL) {
632
633
634
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

635
636
637
638
639
640
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

	trace(TRACE_sched, "resuming capability %d", other_cap->no);
641
	releaseCapability_(other_cap,rtsFalse);
642
    } else {
643
	appendToWakeupQueue(my_cap,other_cap,tso);
644
        other_cap->context_switch = 1;
645
646
647
648
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
649

650
    RELEASE_LOCK(&other_cap->lock);
651
652
}

653
/* ----------------------------------------------------------------------------
654
 * prodCapabilities
sof's avatar
sof committed
655
 *
656
657
658
 * Used to indicate that the interrupted flag is now set, or some
 * other global condition that might require waking up a Task on each
 * Capability.
659
660
 * ------------------------------------------------------------------------- */

661
662
663
664
665
666
static void
prodCapabilities(rtsBool all)
{
    nat i;
    Capability *cap;
    Task *task;
667

668
669
670
671
672
    for (i=0; i < n_capabilities; i++) {
	cap = &capabilities[i];
	ACQUIRE_LOCK(&cap->lock);
	if (!cap->running_task) {
	    if (cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
673
		trace(TRACE_sched, "resuming capability %d", cap->no);
674
675
676
677
678
679
680
681
		task = cap->spare_workers;
		ASSERT(!task->stopped);
		giveCapabilityToTask(cap,task);
		if (!all) {
		    RELEASE_LOCK(&cap->lock);
		    return;
		}
	    }
682
	}
683
	RELEASE_LOCK(&cap->lock);
684
    }
685
    return;
sof's avatar
sof committed
686
}
687

688
689
690
691
692
void
prodAllCapabilities (void)
{
    prodCapabilities(rtsTrue);
}
sof's avatar
sof committed
693

694
/* ----------------------------------------------------------------------------
695
696
697
698
699
700
 * prodOneCapability
 *
 * Like prodAllCapabilities, but we only require a single Task to wake
 * up in order to service some global event, such as checking for
 * deadlock after some idle time has passed.
 * ------------------------------------------------------------------------- */
701

702
703
704
705
void
prodOneCapability (void)
{
    prodCapabilities(rtsFalse);
706
}
707
708
709
710
711
712
713
714
715
716
717
718
719

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
720
 *
721
 * ------------------------------------------------------------------------- */
722
723

void
724
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
725
{
726
727
728
729
    nat i;

    task->cap = cap;

730
731
732
733
734
735
736
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
737
738
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

Simon Marlow's avatar
Simon Marlow committed
739
740
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
741
742
743
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
744
	    debugTrace(DEBUG_sched, "not owner, yielding");
745
746
	    yieldThread();
	    continue;
747
	}
748
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
749
750
751
752
753
754
755
756
757
758
759
760
761

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
762
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
763
764
765
766
767
768
769
770
771
772
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

773
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
774
775
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
776
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
777
778
779
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
780
	}
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
797
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
798
799
	RELEASE_LOCK(&cap->lock);
	break;
800
    }
801
802
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
803

804
805
806
807
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
808
}
809

810
811
812
813
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
814
 *
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


833
#endif /* THREADED_RTS */
834

835
836
837
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
838
839
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
840
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
841
842
#endif
}
843

844
845
846
847
848
849
850
851
852
853
854
855
856
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

857
858
859
860
861
862
863
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
864
865
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta, 
                      rtsBool prune_sparks USED_IF_THREADS)
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
890
891

#if defined(THREADED_RTS)
892
893
894
895
896
        if (prune_sparks) {
            pruneSparkQueue (evac, user, cap);
        } else {
            traverseSparkQueue (evac, user, cap);
        }
897
#endif
898
    }
899

900
901
902
903
904
905
906
907
908
909
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

void
markCapabilities (evac_fn evac, void *user)
{
910
    markSomeCapabilities(evac, user, 0, 1, rtsFalse);
911
}