Simplify.lhs 84.1 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
Ian Lynagh's avatar
Ian Lynagh committed
13 14
import Type hiding      ( substTy, extendTvSubst )
import SimplEnv
15
import SimplUtils
16 17
import Literal		( mkStringLit )
import MkId		( rUNTIME_ERROR_ID )
18
import Id
19
import Var
20 21
import IdInfo
import Coercion
Ian Lynagh's avatar
Ian Lynagh committed
22 23
import FamInstEnv       ( topNormaliseType )
import DataCon          ( dataConRepStrictness, dataConUnivTyVars )
24
import CoreSyn
Ian Lynagh's avatar
Ian Lynagh committed
25 26 27
import NewDemand        ( isStrictDmd )
import PprCore          ( pprParendExpr, pprCoreExpr )
import CoreUnfold       ( mkUnfolding, callSiteInline, CallCtxt(..) )
28
import CoreUtils
Ian Lynagh's avatar
Ian Lynagh committed
29 30 31 32 33 34 35 36 37
import Rules            ( lookupRule )
import BasicTypes       ( isMarkedStrict )
import CostCentre       ( currentCCS )
import TysPrim          ( realWorldStatePrimTy )
import PrelInfo         ( realWorldPrimId )
import BasicTypes       ( TopLevelFlag(..), isTopLevel,
                          RecFlag(..), isNonRuleLoopBreaker )
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
38
import Outputable
39
import FastString
40 41 42
\end{code}


43 44
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
45 46


47
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
48
        *** IMPORTANT NOTE ***
49 50 51 52 53 54
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


55
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
56
        *** IMPORTANT NOTE ***
57 58 59 60 61 62 63 64 65 66
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
67
        ORGANISATION OF FUNCTIONS
68 69 70 71 72 73
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
74 75 76

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
77 78 79
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
80 81
        ------------------------------
simplRecBind    [binders already simplfied]
82 83 84 85
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
86 87
            top-level non-recursive bindings
  Returns:
88 89 90 91 92
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
93 94 95
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
96 97 98 99

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
100 101 102
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
103
    else
Ian Lynagh's avatar
Ian Lynagh committed
104 105
        simplLazyBind
        addFloats
106

Ian Lynagh's avatar
Ian Lynagh committed
107
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
108 109 110 111
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
112 113 114

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
115
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
116 117 118
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
119
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
120 121
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
122 123 124
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
125
  - completeBind
126 127


Ian Lynagh's avatar
Ian Lynagh committed
128
completeNonRecX:        [binder and rhs both simplified]
129
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
130
        build a Case
131
   else
Ian Lynagh's avatar
Ian Lynagh committed
132 133
        completeBind
        addFloats
134

Ian Lynagh's avatar
Ian Lynagh committed
135 136
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
137 138 139 140 141 142 143 144
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
145 146 147
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
148 149 150
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
151 152 153

        f (g x, h x)
        g (+ x)
154 155 156 157

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
158 159
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
160 161 162

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
163 164
        p = (g x, h x)
        q = + x
165 166

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
167
can be safely inlined.
168 169 170 171 172

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
173
        r = let x = e in (x,x)
174 175 176 177 178 179 180 181 182 183 184 185 186 187

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
188
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
189 190 191 192 193

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
194 195


196
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
197
%*                                                                      *
198
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
199
%*                                                                      *
200 201 202
%************************************************************************

\begin{code}
203
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
204

Ian Lynagh's avatar
Ian Lynagh committed
205
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
206 207 208 209
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
210
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
211 212 213
        ; dflags <- getDOptsSmpl
        ; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
                          dopt Opt_D_dump_rule_firings dflags
Ian Lynagh's avatar
Ian Lynagh committed
214
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
215
        ; freeTick SimplifierDone
Ian Lynagh's avatar
Ian Lynagh committed
216
        ; return (getFloats env2) }
217
  where
Ian Lynagh's avatar
Ian Lynagh committed
218 219 220 221 222 223
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
224
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
225 226
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
227 228
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
229

Ian Lynagh's avatar
Ian Lynagh committed
230 231
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
232

233 234
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
235 236
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
237 238 239 240
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
241
%*                                                                      *
242
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
243
%*                                                                      *
244 245 246
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
247
        * recursive bindings only
248 249 250

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
251 252
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
253 254 255 256 257 258
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
        -- *and* updates env0 with the in-scope set from env1
259
  where
260
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
261
        -- Add the (substituted) rules to the binder
262
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
263 264
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
265

266
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
267

268
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
269 270
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
271 272
\end{code}

273
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
274 275
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
276 277 278 279 280

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
281 282 283
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
284

285
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
286 287 288
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
289 290

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
291 292
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
293 294 295 296
\end{code}


simplLazyBind is used for
297 298
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
299
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
300 301

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
302
    1. It assumes that the binder is *already* simplified,
303
       and is in scope, and its IdInfo too, except unfolding
304 305 306 307 308 309 310 311

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
312 313 314 315 316
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
317

318
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
319
  = do  { let   rhs_env     = rhs_se `setInScope` env
320 321 322 323 324 325 326 327 328 329
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
330
        ; (body_env, tvs') <- simplBinders rhs_env tvs
331
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
332

333 334
        -- Simplify the RHS
        ; (body_env1, body1) <- simplExprF body_env body mkBoringStop
Ian Lynagh's avatar
Ian Lynagh committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        -- ANF-ise a constructor or PAP rhs
        ; (body_env2, body2) <- prepareRhs body_env1 body1

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
                then                            -- No floating, just wrap up!
                     do { rhs' <- mkLam tvs' (wrapFloats body_env2 body2)
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
                        ; rhs' <- mkLam tvs' body3
353
                        ; let env' = foldl (addPolyBind top_lvl) env poly_binds
354
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
355 356

        ; completeBind env' top_lvl bndr bndr1 rhs' }
357
\end{code}
358

Ian Lynagh's avatar
Ian Lynagh committed
359
A specialised variant of simplNonRec used when the RHS is already simplified,
360 361 362 363
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
364 365 366
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
367 368

simplNonRecX env bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
369
  = do  { (env', bndr') <- simplBinder env bndr
370
        ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
371 372

completeNonRecX :: SimplEnv
373
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
374 375 376 377
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
378

379
completeNonRecX env is_strict old_bndr new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
380 381
  = do  { (env1, rhs1) <- prepareRhs (zapFloats env) new_rhs
        ; (env2, rhs2) <-
382
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
383 384 385 386
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
387 388 389 390
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
391
   In the cases described by the folowing commment, postInlineUnconditionally will
392
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
393 394 395 396 397 398 399 400
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
401

402
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
403 404 405 406 407 408
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
409

410 411 412 413
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

414
----------------------------------
415
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
416
constructor application and, if so, converts it to ANF, so that the
417
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
418
        x = (f a, g b)
419
becomes
Ian Lynagh's avatar
Ian Lynagh committed
420 421 422
        t1 = f a
        t2 = g b
        x = (t1,t2)
423

424
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
425
        v = (f e1 `cast` co) e2
426
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
427
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
428 429
That's what the 'go' loop in prepareRhs does

430 431 432
\begin{code}
prepareRhs :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Adds new floats to the env iff that allows us to return a good RHS
Ian Lynagh's avatar
Ian Lynagh committed
433
prepareRhs env (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
434
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
435 436 437
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
  = do  { (env', rhs') <- makeTrivial env rhs
        ; return (env', Cast rhs' co) }
438

Ian Lynagh's avatar
Ian Lynagh committed
439 440 441
prepareRhs env0 rhs0
  = do  { (_is_val, env1, rhs1) <- go 0 env0 rhs0
        ; return (env1, rhs1) }
442
  where
443
    go n_val_args env (Cast rhs co)
Ian Lynagh's avatar
Ian Lynagh committed
444 445
        = do { (is_val, env', rhs') <- go n_val_args env rhs
             ; return (is_val, env', Cast rhs' co) }
446
    go n_val_args env (App fun (Type ty))
Ian Lynagh's avatar
Ian Lynagh committed
447 448
        = do { (is_val, env', rhs') <- go n_val_args env fun
             ; return (is_val, env', App rhs' (Type ty)) }
449
    go n_val_args env (App fun arg)
Ian Lynagh's avatar
Ian Lynagh committed
450 451 452 453 454
        = do { (is_val, env', fun') <- go (n_val_args+1) env fun
             ; case is_val of
                True -> do { (env'', arg') <- makeTrivial env' arg
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
455
    go n_val_args env (Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
456 457 458 459 460
        = return (is_val, env, Var fun)
        where
          is_val = n_val_args > 0       -- There is at least one arg
                                        -- ...and the fun a constructor or PAP
                 && (isDataConWorkId fun || n_val_args < idArity fun)
Ian Lynagh's avatar
Ian Lynagh committed
461
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
462
        = return (False, env, other)
463 464
\end{code}

465

466 467 468
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
469
        x = e `cast` co
470
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
471 472
        x' = e
        x = x `cast` co         -- A trivial binding
473 474 475 476 477 478 479 480 481 482 483 484 485
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
486
                -- This case should optimise
487

488 489
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
490
BUT don't do [Float coercions] if 'e' has an unlifted type.
491 492
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
493 494
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
495 496 497

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
498
But 'v' isn't in scope!
499 500

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
501 502
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
503

504 505 506 507 508 509 510

\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial env expr
  | exprIsTrivial expr
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
511
  | otherwise           -- See Note [Take care] below
Ian Lynagh's avatar
Ian Lynagh committed
512
  = do  { var <- newId (fsLit "a") (exprType expr)
513
        ; env' <- completeNonRecX env False var var expr
Ian Lynagh's avatar
Ian Lynagh committed
514
        ; return (env', substExpr env' (Var var)) }
515
\end{code}
516 517


518
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
519
%*                                                                      *
520
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
521
%*                                                                      *
522 523
%************************************************************************

524 525 526 527 528
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
529 530 531 532 533 534 535 536

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
537
  - top-level bindings (when let-to-case is impossible)
538
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
539
                (so let-to-case is inappropriate).
540

541 542
Nor does it do the atomic-argument thing

543
\begin{code}
544
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
545 546 547 548 549 550 551
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
552 553

completeBind env top_lvl old_bndr new_bndr new_rhs
554
  | postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
Ian Lynagh's avatar
Ian Lynagh committed
555 556 557 558 559 560
                -- Inline and discard the binding
  = do  { tick (PostInlineUnconditionally old_bndr)
        ; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $
          return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
        -- Use the substitution to make quite, quite sure that the
        -- substitution will happen, since we are going to discard the binding
561

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
  | otherwise
  = return (addNonRecWithUnf env new_bndr new_rhs unfolding wkr)
  where
    unfolding | omit_unfolding = NoUnfolding
	      | otherwise      = mkUnfolding  (isTopLevel top_lvl) new_rhs
    old_info    = idInfo old_bndr
    occ_info    = occInfo old_info
    wkr		= substWorker env (workerInfo old_info)
    omit_unfolding = isNonRuleLoopBreaker occ_info || not (activeInline env old_bndr)

-----------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
  = addNonRecWithUnf env poly_id rhs unfolding NoWorker
  where
    unfolding | not (activeInline env poly_id) = NoUnfolding
	      | otherwise		       = mkUnfolding (isTopLevel top_lvl) rhs
		-- addNonRecWithInfo adds the new binding in the
		-- proper way (ie complete with unfolding etc),
		-- and extends the in-scope set

addPolyBind _ env bind@(Rec _) = extendFloats env bind
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

-----------------
addNonRecWithUnf :: SimplEnv
             	  -> OutId -> OutExpr        -- New binder and RHS
		  -> Unfolding -> WorkerInfo -- and unfolding
             	  -> SimplEnv
-- Add suitable IdInfo to the Id, add the binding to the floats, and extend the in-scope set
addNonRecWithUnf env new_bndr rhs unfolding wkr
  = final_id `seq`      -- This seq forces the Id, and hence its IdInfo,
	                -- and hence any inner substitutions
    addNonRec env final_id rhs
	-- The addNonRec adds it to the in-scope set too
  where
Ian Lynagh's avatar
Ian Lynagh committed
611
        --      Arity info
612
        new_bndr_info = idInfo new_bndr `setArityInfo` exprArity rhs
Ian Lynagh's avatar
Ian Lynagh committed
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

        --      Unfolding info
        -- Add the unfolding *only* for non-loop-breakers
        -- Making loop breakers not have an unfolding at all
        -- means that we can avoid tests in exprIsConApp, for example.
        -- This is important: if exprIsConApp says 'yes' for a recursive
        -- thing, then we can get into an infinite loop

        --      Demand info
        -- If the unfolding is a value, the demand info may
        -- go pear-shaped, so we nuke it.  Example:
        --      let x = (a,b) in
        --      case x of (p,q) -> h p q x
        -- Here x is certainly demanded. But after we've nuked
        -- the case, we'll get just
        --      let x = (a,b) in h a b x
        -- and now x is not demanded (I'm assuming h is lazy)
        -- This really happens.  Similarly
        --      let f = \x -> e in ...f..f...
        -- After inlining f at some of its call sites the original binding may
        -- (for example) be no longer strictly demanded.
        -- The solution here is a bit ad hoc...
        info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
636
				   `setWorkerInfo`    wkr
Ian Lynagh's avatar
Ian Lynagh committed
637

638
        final_info | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
Ian Lynagh's avatar
Ian Lynagh committed
639
                   | otherwise                  = info_w_unf
640
	
Ian Lynagh's avatar
Ian Lynagh committed
641
        final_id = new_bndr `setIdInfo` final_info
SamB's avatar
SamB committed
642
\end{code}
643 644 645



646
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
647
%*                                                                      *
648
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
649
%*                                                                      *
650 651
%************************************************************************

652 653 654 655 656 657
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
658 659
        let t = f x
        in fst t
660
==>
Ian Lynagh's avatar
Ian Lynagh committed
661 662 663 664
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
665
==>
Ian Lynagh's avatar
Ian Lynagh committed
666 667 668 669 670
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
671
==>
Ian Lynagh's avatar
Ian Lynagh committed
672
        e1
673 674 675 676

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
677 678
        let f = g d
        in \x -> ...f...
679
==>
Ian Lynagh's avatar
Ian Lynagh committed
680 681
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
682
==>
Ian Lynagh's avatar
Ian Lynagh committed
683 684
        let d1 = ..d..
        in \x -> ...(\y ->e)...
685

Ian Lynagh's avatar
Ian Lynagh committed
686
Only in this second round can the \y be applied, and it
687 688 689
might do the same again.


690
\begin{code}
691
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
692
simplExpr env expr = simplExprC env expr mkBoringStop
693

694
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
695 696
        -- Simplify an expression, given a continuation
simplExprC env expr cont
697
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
698 699 700 701
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
702 703 704 705
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
706
           -> SimplM (SimplEnv, OutExpr)
707

Ian Lynagh's avatar
Ian Lynagh committed
708
simplExprF env e cont
709 710
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
711

Ian Lynagh's avatar
Ian Lynagh committed
712 713
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
714
simplExprF' env (Var v)        cont = simplVar env v cont
715 716 717 718
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
719
                                      ApplyTo NoDup arg env cont
720

Ian Lynagh's avatar
Ian Lynagh committed
721
simplExprF' env expr@(Lam _ _) cont
722
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
723 724 725 726 727 728
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
729 730 731 732
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
733 734 735 736 737
    zap | n_args >= n_params = \b -> b
        | otherwise          = \b -> if isTyVar b then b
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
738

739
simplExprF' env (Type ty) cont
740
  = ASSERT( contIsRhsOrArg cont )
Ian Lynagh's avatar
Ian Lynagh committed
741 742
    do  { ty' <- simplType env ty
        ; rebuild env (Type ty') cont }
743

744
simplExprF' env (Case scrut bndr _ alts) cont
745
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
746
  =     -- Simplify the scrutinee with a Select continuation
747
    simplExprF env scrut (Select NoDup bndr alts env cont)
748

749
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
750 751 752 753
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
754
  where
755
    case_cont = Select NoDup bndr alts env mkBoringStop
756

757
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
758
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
759 760
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
761

Ian Lynagh's avatar
Ian Lynagh committed
762 763
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
764

765 766
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
767 768

---------------------------------
769
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
770
        -- Kept monadic just so we can do the seqType
771
simplType env ty
772
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
773
    seqType new_ty   `seq`   return new_ty
774
  where
775
    new_ty = substTy env ty
776 777 778
\end{code}


779
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
780
%*                                                                      *
781
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
782
%*                                                                      *
783 784 785 786 787 788
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
789 790 791
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
792 793
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
794
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
795
      StrictArg fun _ info cont    -> rebuildCall env (fun `App` expr) info cont
796
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
797 798 799
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
800 801 802
\end{code}


803
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
804
%*                                                                      *
805
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
806
%*                                                                      *
807 808 809
%************************************************************************

\begin{code}
810
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
811
          -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
812 813 814
simplCast env body co0 cont0
  = do  { co1 <- simplType env co0
        ; simplExprF env body (addCoerce co1 cont0) }
815
  where
816 817
       addCoerce co cont = add_coerce co (coercionKind co) cont

Ian Lynagh's avatar
Ian Lynagh committed
818
       add_coerce _co (s1, k1) cont     -- co :: ty~ty
Ian Lynagh's avatar
Ian Lynagh committed
819
         | s1 `coreEqType` k1 = cont    -- is a no-op
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
820

Ian Lynagh's avatar
Ian Lynagh committed
821 822
       add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
         | (_l1, t1) <- coercionKind co2
Ian Lynagh's avatar
Ian Lynagh committed
823 824 825 826 827 828 829 830 831 832
                --      coerce T1 S1 (coerce S1 K1 e)
                -- ==>
                --      e,                      if T1=K1
                --      coerce T1 K1 e,         otherwise
                --
                -- For example, in the initial form of a worker
                -- we may find  (coerce T (coerce S (\x.e))) y
                -- and we'd like it to simplify to e[y/x] in one round
                -- of simplification
         , s1 `coreEqType` t1  = cont            -- The coerces cancel out
833
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
Ian Lynagh's avatar
Ian Lynagh committed
834

Ian Lynagh's avatar
Ian Lynagh committed
835
       add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
Ian Lynagh's avatar
Ian Lynagh committed
836 837 838 839 840 841
                -- (f `cast` g) ty  --->   (f ty) `cast` (g @ ty)
                -- This implements the PushT rule from the paper
         | Just (tyvar,_) <- splitForAllTy_maybe s1s2
         , not (isCoVar tyvar)
         = ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
         where
842
           ty' = substTy (arg_se `setInScope` env) arg_ty
843

Ian Lynagh's avatar
Ian Lynagh committed
844
        -- ToDo: the PushC rule is not implemented at all
845

Ian Lynagh's avatar
Ian Lynagh committed
846
       add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
847
         | not (isTypeArg arg)  -- This implements the Push rule from the paper
Ian Lynagh's avatar
Ian Lynagh committed
848
         , isFunTy s1s2   -- t1t2 must be a function type, becuase it's applied
849
                -- co : s1s2 :=: t1t2
Ian Lynagh's avatar
Ian Lynagh committed
850 851 852 853 854 855 856 857 858 859 860 861 862
                --      (coerce (T1->T2) (S1->S2) F) E
                -- ===>
                --      coerce T2 S2 (F (coerce S1 T1 E))
                --
                -- t1t2 must be a function type, T1->T2, because it's applied
                -- to something but s1s2 might conceivably not be
                --
                -- When we build the ApplyTo we can't mix the out-types
                -- with the InExpr in the argument, so we simply substitute
                -- to make it all consistent.  It's a bit messy.
                -- But it isn't a common case.
                --
                -- Example of use: Trac #995
863
         = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)
864
         where
Ian Lynagh's avatar
Ian Lynagh committed
865 866
           -- we split coercion t1->t2 :=: s1->s2 into t1 :=: s1 and
           -- t2 :=: s2 with left and right on the curried form:
867 868
           --    (->) t1 t2 :=: (->) s1 s2
           [co1, co2] = decomposeCo 2 co
869
           new_arg    = mkCoerce (mkSymCoercion co1) arg'
870
           arg'       = substExpr (arg_se `setInScope` env) arg
871

872
       add_coerce co _ cont = CoerceIt co cont
873 874
\end{code}

875

876
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
877
%*                                                                      *
878
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
879
%*                                                                      *
880
%************************************************************************
881 882

\begin{code}
883
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
884
         -> SimplM (SimplEnv, OutExpr)
885 886

simplLam env [] body cont = simplExprF env body cont
887

888
        -- Beta reduction
889
simplLam env (bndr:bndrs) body (ApplyTo _ arg arg_se cont)
Ian Lynagh's avatar
Ian Lynagh committed
890 891
  = do  { tick (BetaReduction bndr)
        ; simplNonRecE env bndr (arg, arg_se) (bndrs, body) cont }
892

Ian Lynagh's avatar
Ian Lynagh committed
893
        -- Not enough args, so there are real lambdas left to put in the result
894
simplLam env bndrs body cont
Ian Lynagh's avatar
Ian Lynagh committed
895 896
  = do  { (env', bndrs') <- simplLamBndrs env bndrs
        ; body' <- simplExpr env' body
Ian Lynagh's avatar
Ian Lynagh committed
897
        ; new_lam <- mkLam bndrs' body'
Ian Lynagh's avatar
Ian Lynagh committed
898
        ; rebuild env' new_lam cont }
899 900

------------------
Ian Lynagh's avatar
Ian Lynagh committed
901 902 903
simplNonRecE :: SimplEnv
             -> InId                    -- The binder
             -> (InExpr, SimplEnv)      -- Rhs of binding (or arg of lambda)
904
             -> ([InBndr], InExpr)      -- Body of the let/lambda
Ian Lynagh's avatar
Ian Lynagh committed
905 906 907
                                        --      \xs.e
             -> SimplCont
             -> SimplM (SimplEnv, OutExpr)
908 909 910 911 912 913 914 915 916 917

-- simplNonRecE is used for
--  * non-top-level non-recursive lets in expressions
--  * beta reduction
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
Ian Lynagh's avatar
Ian Lynagh committed
918 919
-- Why?  Because of the binder-occ-info-zapping done before
--       the call to simplLam in simplExprF (Lam ...)
920

921 922
	-- First deal with type applications and type lets
	--   (/\a. e) (Type ty)   and   (let a = Type ty in e)
923
simplNonRecE env bndr (Type ty_arg, rhs_se) (bndrs, body) cont
924 925
  = ASSERT( isTyVar bndr )
    do	{ ty_arg' <- simplType (rhs_se `setInScope` env) ty_arg
926 927
	; simplLam (extendTvSubst env bndr ty_arg') bndrs body cont }

928 929
simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont
  | preInlineUnconditionally env NotTopLevel bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
930 931
  = do  { tick (PreInlineUnconditionally bndr)
        ; simplLam (extendIdSubst env bndr (mkContEx rhs_se rhs)) bndrs body cont }
932

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
933
  | isStrictId bndr
Ian Lynagh's avatar
Ian Lynagh committed
934 935
  = do  { simplExprF (rhs_se `setFloats` env) rhs
                     (StrictBind bndr bndrs body env cont) }
936 937

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
938 939 940 941
  = do  { (env1, bndr1) <- simplNonRecBndr env bndr
        ; let (env2, bndr2) = addBndrRules env1 bndr bndr1
        ; env3 <- simplLazyBind env2 NotTopLevel NonRecursive bndr bndr2 rhs rhs_se
        ; simplLam env3 bndrs body cont }
942 943
\end{code}

944

945
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
946
%*                                                                      *
947
\subsection{Notes}
Ian Lynagh's avatar
Ian Lynagh committed
948
%*                                                                      *
949 950
%************************************************************************

sof's avatar
sof committed
951
\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
952
-- Hack alert: we only distinguish subsumed cost centre stacks for the
953
-- purposes of inlining.  All other CCCSs are mapped to currentCCS.
Ian Lynagh's avatar
Ian Lynagh committed
954 955
simplNote :: SimplEnv -> Note -> CoreExpr -> SimplCont
          -> SimplM (SimplEnv, OutExpr)
956
simplNote env (SCC cc) e cont
Ian Lynagh's avatar
Ian Lynagh committed
957 958
  = do  { e' <- simplExpr (setEnclosingCC env currentCCS) e
        ; rebuild env (mkSCC cc e') cont }
959 960 961

-- See notes with SimplMonad.inlineMode
simplNote env InlineMe e cont
962
  | Just (inside, outside) <- splitInlineCont cont  -- Boring boring continuation; see notes above
Ian Lynagh's avatar
Ian Lynagh committed
963 964 965
  = do  {                       -- Don't inline inside an INLINE expression
          e' <- simplExprC (setMode inlineMode env) e inside
        ; rebuild env (mkInlineMe e') outside }
966

Ian Lynagh's avatar
Ian Lynagh committed
967 968 969