TcBinds.lhs 44.2 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 5 6 7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9 10 11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13 14
-- for details

15 16
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
17 18
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
19
		 badBootDeclErr ) where
20

21
#include "HsVersions.h"
22

ross's avatar
ross committed
23
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
24
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
25

Simon Marlow's avatar
Simon Marlow committed
26 27 28
import DynFlags
import HsSyn
import TcHsSyn
29

30
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
31 32 33 34 35 36 37 38 39
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
40
import Coercion
Simon Marlow's avatar
Simon Marlow committed
41 42 43 44
import VarEnv
import TysPrim
import Id
import IdInfo
45
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
46
import Name
47
import NameSet
48
import NameEnv
49
import VarSet
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
Simon Marlow's avatar
Simon Marlow committed
52 53 54
import ErrUtils
import Digraph
import Maybes
55
import List
Simon Marlow's avatar
Simon Marlow committed
56 57
import Util
import BasicTypes
58
import Outputable
59
\end{code}
60

61

62 63 64 65 66 67
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

68
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
69 70 71 72 73 74 75 76 77 78
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

79
The real work is done by @tcBindWithSigsAndThen@.
80 81 82 83 84 85 86 87 88 89

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

90 91 92
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

93
\begin{code}
94
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
95 96 97
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
98
tcTopBinds binds
99
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
100
	; return (foldr (unionBags . snd) emptyBag prs, env) }
101
	-- The top level bindings are flattened into a giant 
102
	-- implicitly-mutually-recursive LHsBinds
103

104
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
105 106
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
107 108
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
109
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
110
  where
111
    tc_boot_sig (TypeSig (L _ name) ty)
112
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
113 114
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
115
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
116

117 118 119
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

120 121 122
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
123

124 125 126
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
127

128 129 130
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
131

132 133 134
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
135 136 137

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
138 139
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
140 141 142 143
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
144
    tc_ip_bind (IPBind ip expr)
145
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
146
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
147
  	tcMonoExpr expr ty			`thenM` \ expr' ->
148 149
  	returnM (ip_inst, (IPBind ip' expr'))

150 151 152 153 154
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

155 156 157
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

158
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
159
  = do 	{   	-- Typecheck the signature
160
	; let { prag_fn = mkPragFun sigs
161
	      ; ty_sigs = filter isVanillaLSig sigs
162
	      ; sig_fn  = mkTcSigFun ty_sigs }
163 164

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
165 166 167 168 169
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
170

171 172
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
173
	; poly_rec <- doptM Opt_RelaxedPolyRec
174
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
175
			     tc_val_binds poly_rec top_lvl sig_fn prag_fn 
176
					  binds thing_inside
177

178
	; return (ValBindsOut binds' sigs, thing) }
179

180
------------------------
181
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
182
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
183 184 185 186
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

187
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
188 189 190
  = do	{ thing <- thing_inside
	; return ([], thing) }

191
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
192
  = do	{ (group', (groups', thing))
193 194
		<- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
		   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
195
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
196

197
------------------------
198
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
199
	 -> (RecFlag, LHsBinds Name) -> TcM thing
200 201 202 203 204 205
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

206
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
207
    	-- A single non-recursive binding
208 209
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
210
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
211 212
	; return ([(NonRecursive, b) | b <- binds], thing) }

213 214
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not poly_rec	-- Recursive group, normal Haskell 98 route
215 216 217 218 219
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
220
	-- strongly-connected-component analysis, this time omitting 
221
	-- any references to variables with type signatures.
222
	--
223 224
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
225
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
226 227 228
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
229 230
		-- Rec them all together
  where
231 232 233 234 235
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
236

237 238
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
239

240
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
241

242 243 244 245 246 247 248 249 250 251
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
252
  	-- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
253 254 255 256 257 258 259
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
260 261 262 263 264 265 266 267

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
268 269
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
270 271 272 273 274 275 276 277 278 279 280 281 282
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
283 284
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
285

286
------------------------
287
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
288
	    -> RecFlag			-- Whether the group is really recursive
289 290
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
291
	    -> LHsBinds Name
292
	    -> TcM ([LHsBinds TcId], [TcId])
293 294 295 296 297

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
298 299 300
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
301
-- 
302 303
-- Knows nothing about the scope of the bindings

304
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
305
  = let 
306
	bind_list    = bagToList binds
307 308
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
309 310 311
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
312
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
313
    setSrcSpan loc				$
314
    recoverM (recoveryCode binder_names sig_fn)	$ do 
315

316 317
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
318 319

   	-- TYPECHECK THE BINDINGS
320
  ; ((binds', mono_bind_infos), lie_req) 
321
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
322
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
323

324 325 326 327
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
328 329 330 331 332
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
333 334
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
335
			-- ToDo: prags for unlifted bindings
336

337 338
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
339 340

    else do	-- The normal lifted case: GENERALISE
341
  { dflags <- getDOpts 
342
  ; (tyvars_to_gen, dicts, dict_binds)
343
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
344
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
345

346
	-- BUILD THE POLYMORPHIC RESULT IDs
347 348
  ; let dict_vars = map instToVar dicts	-- May include equality constraints
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
349
		    mono_bind_infos
sof's avatar
sof committed
350

351
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
352
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
353

354
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
355
	 		            dict_vars exports
356 357
	 		    	    (dict_binds `unionBags` binds')

358
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
359 360 361 362
  } }


--------------
363 364
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
	 -> MonoBindInfo
365
	 -> TcM ([TyVar], Id, Id, [LPrag])
366 367 368 369 370 371 372 373 374 375 376
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

377 378 379 380
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ warn_missing_sigs <- doptM Opt_WarnMissingSigs
	; let warn = isTopLevel top_lvl && warn_missing_sigs
	; (tvs, poly_id) <- mk_poly_id warn mb_sig
381
		-- poly_id has a zonked type
382

383
	; prags <- tcPrags poly_id (prag_fn poly_name)
384 385
		-- tcPrags requires a zonked poly_id

386
	; return (tvs, poly_id, mono_id, prags) }
387 388 389
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

390 391 392
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
				    ; missingSigWarn warn poly_name poly_ty'
				    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
393 394
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			            ; return (tvs,  sig_id sig) }
395

396
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
397 398 399 400 401 402 403

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
404 405
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
406 407 408
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

409 410
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
411
  where
412 413
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
		   tcPrag poly_id prag
414 415 416 417

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
418 419
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
420 421 422
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
423

424

425 426
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
427 428 429
  = do	{ let name = idName poly_id
	; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
	; (co_fn, lie) <- getLIE (tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty)
430 431
	; extendLIEs lie
	; let const_dicts = map instToId lie
432
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
433 434
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
435 436
  
--------------
437 438 439
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
440
recoveryCode binder_names sig_fn
441
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
442
	; poly_ids <- mapM mk_dummy binder_names
443
	; return ([], poly_ids) }
444
  where
445 446 447
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
448 449 450 451

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

452

453 454 455
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
456 457
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
458 459 460 461 462
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
463
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
	  	  (strictBindErr "Top-level" unlifted mbind)
465
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
466
	  	  (strictBindErr "Recursive" unlifted mbind)
467
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
468 469 470 471 472
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
473
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
474 475
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
476
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
477
					 (badStrictSig unlifted sig)
478
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
479 480

strictBindErr flavour unlifted mbind
481 482
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
483 484 485 486 487 488 489 490 491 492
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
493 494
\end{code}

495

496 497
%************************************************************************
%*									*
498
\subsection{tcMonoBind}
499 500 501
%*									*
%************************************************************************

502
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
503 504
The signatures have been dealt with already.

505
\begin{code}
506 507
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
508 509 510
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
511 512
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

513 514
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
515
	    sig_fn 		-- Single function binding,
516
	    NonRecursive	-- binder isn't mentioned in RHS,
517
  | Nothing <- sig_fn name	-- ...with no type signature
518 519 520 521 522 523
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
524
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)
525

526 527 528 529 530 531 532 533
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
534

535
	; mono_name <- newLocalName name
536
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
537 538
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
539
					      fun_co_fn = co_fn, fun_tick = Nothing })),
540 541
		  [(name, Nothing, mono_id)]) }

542 543 544 545
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
546
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
547 548 549 550
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
551
    do	{ tc_sig <- tcInstSig True name scoped_tvs
552 553 554 555 556 557 558
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
559
		    	       tcMatchesFun mono_name inf matches mono_ty
560 561 562

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
563 564
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
565 566 567
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

568 569
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
570

571
	-- Bring the monomorphic Ids, into scope for the RHSs
572
	; let mono_info  = getMonoBindInfo tc_binds
573 574 575
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
576

577
	; binds' <- tcExtendIdEnv2    rhs_id_env $
578 579 580 581
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

603 604 605 606 607 608 609 610 611 612
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

613
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
614
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
615
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
616 617 618 619 620 621
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
622 623 624
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
625
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
626 627 628 629 630 631 632 633 634
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
635

636
	; let nm_sig_prs  = names `zip` mb_sigs
637 638 639 640
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
641
	      sig_tau_fn  = lookupNameEnv tau_sig_env
642

643
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
644 645 646 647 648 649 650 651 652 653
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
654

655 656 657 658 659
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


660
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
661 662
	-- AbsBind, VarBind impossible

663 664
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
665
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
666 667
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
				    	    matches (idType mono_id)
668
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
669 670
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
671 672 673

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
674 675 676
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
677 678 679


---------------------
680
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
681
getMonoBindInfo tc_binds
682
  = foldr (get_info . unLoc) [] tc_binds
683 684 685 686 687 688 689 690
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
691
		Generalisation
692 693 694 695
%*									*
%************************************************************************

\begin{code}
696 697
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
698
	   -> [MonoBindInfo] -> [Inst]
699 700 701
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

702 703
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
704 705
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
706 707

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
708 709
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
710
	  	  (restrictedBindCtxtErr bndrs)
711

712 713
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
714
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
715
						tau_tvs lie_req
716

717
   	-- Check that signature type variables are OK
718
	; final_qtvs <- checkSigsTyVars qtvs sigs
719

720
	; return (final_qtvs, [], binds) }
721

722 723 724 725
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
726
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
727 728
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
729
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
730 731
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
732
		loc = sig_loc (head sigs)
733

734 735
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
736
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
737 738
	
   	-- Check that signature type variables are OK
739
	; final_qtvs <- checkSigsTyVars qtvs sigs
740

741
	; returnM (final_qtvs, sig_lie, binds) }
742
  where
743 744
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
745 746 747
    get_tvs | isTopLevel top_lvl = tyVarsOfType	 -- See Note [Silly type synonym] in TcType
	    | otherwise		 = exactTyVarsOfType
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
748
    is_mono_sig sig = null (sig_theta sig)
749
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
750

751
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
752
		            sig_theta = theta, sig_loc = loc }) mono_id
753 754
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
755
\end{code}
756

757 758 759
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
760

761 762 763 764 765 766 767 768 769
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
770
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
771
-- Post-condition: the returned Insts are full zonked
772 773
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
774 775
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
776 777 778 779
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
780
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
781
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
782 783 784 785 786 787 788 789 790 791 792
	  do { cois <- unifyTheta theta1 theta
	     ; -- Check whether all coercions are identity coercions
	       -- That can happen if we have, say
	       -- 	  f :: C [a]   => ...
	       -- 	  g :: C (F a) => ...
	       -- where F is a type function and (F a ~ [a])
	       -- Then unification might succeed with a coercion.  But it's much
	       -- much simpler to require that such signatures have identical contexts
	       checkTc (all isIdentityCoercion cois)
		       (ptext SLIT("Mutually dependent functions have syntactically distinct contexts"))
	     }
793

794 795
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
796 797 798 799 800 801 802 803 804 805 806 807 808 809
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
810
  where
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
831
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
832 833 834 835 836 837 838 839
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
840
		Just sig_tv' -> bomb_out sig_tv sig_tv'
841 842 843

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

844
    bomb_out sig_tv1 sig_tv2
845 846 847 848 849 850 851
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
852
       where
SamB's avatar
SamB committed
853
\end{code}
854

855

856
@getTyVarsToGen@ decides what type variables to generalise over.
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

872 873 874 875
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

876 877 878 879 880 881 882 883
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
884 885
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
886

887 888 889 890 891 892 893 894
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

895 896 897
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
898

899 900 901
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
902

903 904
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
936 937 938 939

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

940 941 942 943 944 945
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
946

947 948 949 950 951 952 953 954
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


955 956 957

%************************************************************************
%*									*
958
		Signatures
959 960 961
%*									*
%************************************************************************

962
Type signatures are tricky.  See Note [Signature skolems] in TcType
963

964 965 966 967 968 969 970 971 972
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

973
\begin{code}
974 975 976 977
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
978

979
mkTcSigFun :: [LSig Name] -> TcSigFun
980 981 982
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
983
mkTcSigFun sigs = lookupNameEnv env
984
  where
985 986
    env = mkNameEnv [(name, hsExplicitTvs lhs_ty)
		    | L span (TypeSig (L _ name) lhs_ty) <- sigs]
987 988 989
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
990
	-- See Note [Only scoped tyvars are in the TyVarEnv]
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

---------------
data TcSigInfo
  = TcSigInfo {
	sig_id     :: TcId,		--  *Polymorphic* binder for this value...

	sig_scoped :: [Name],		-- Names for any scoped type variables
					-- Invariant: correspond 1-1 with an initial
					-- segment of sig_tvs (see Note [Scoped])

	sig_tvs    :: [TcTyVar],	-- Instantiated type variables
					-- See Note [Instantiate sig]

	sig_theta  :: TcThetaType,	-- Instantiated theta
	sig_tau    :: TcTauType,	-- Instantiated tau
	sig_loc    :: InstLoc	 	-- The location of the signature
    }

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

--	Note [Only scoped tyvars are in the TyVarEnv]
-- We are careful to keep only the *lexically scoped* type variables in
-- the type environment.  Why?  After all, the renamer has ensured
-- that only legal occurrences occur, so we could put all type variables
-- into the type env.
--
-- But we want to check that two distinct lexically scoped type variables
-- do not map to the same internal type variable.  So we need to know which
-- the lexically-scoped ones are... and at the moment we do that by putting
-- only the lexically scoped ones into the environment.


1022 1023 1024 1025 1026 1027 1028 1029