List.lhs 27.1 KB
Newer Older
1
\begin{code}
2
{-# LANGUAGE Trustworthy #-}
Joachim Breitner's avatar
Joachim Breitner committed
3
{-# LANGUAGE CPP, NoImplicitPrelude, ScopedTypeVariables, MagicHash #-}
4
{-# OPTIONS_HADDOCK hide #-}
5

6 7 8 9 10
-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.List
-- Copyright   :  (c) The University of Glasgow 1994-2002
-- License     :  see libraries/base/LICENSE
Jan Stolarek's avatar
Jan Stolarek committed
11
--
12 13 14 15 16 17 18
-- Maintainer  :  cvs-ghc@haskell.org
-- Stability   :  internal
-- Portability :  non-portable (GHC Extensions)
--
-- The List data type and its operations
--
-----------------------------------------------------------------------------
19 20

module GHC.List (
21
   -- [] (..),          -- built-in syntax; can't be used in export list
22 23

   map, (++), filter, concat,
David Feuer's avatar
David Feuer committed
24
   head, last, tail, init, uncons, null, length, (!!),
25
   foldl, scanl, scanl1, foldr, foldr1, scanr, scanr1,
26 27 28 29
   iterate, repeat, replicate, cycle,
   take, drop, splitAt, takeWhile, dropWhile, span, break,
   reverse, and, or,
   any, all, elem, notElem, lookup,
30
   concatMap,
31
   zip, zip3, zipWith, zipWith3, unzip, unzip3,
32
   errorEmptyList,
33

34
#ifndef USE_REPORT_PRELUDE
35 36 37 38 39 40 41
   -- non-standard, but hidden when creating the Prelude
   -- export list.
   takeUInt_append
#endif

 ) where

42
import Data.Maybe
43 44 45 46 47 48 49
import GHC.Base

infixl 9  !!
infix  4 `elem`, `notElem`
\end{code}

%*********************************************************
Don Stewart's avatar
Don Stewart committed
50
%*                                                      *
51
\subsection{List-manipulation functions}
Don Stewart's avatar
Don Stewart committed
52
%*                                                      *
53 54 55
%*********************************************************

\begin{code}
ross's avatar
ross committed
56
-- | Extract the first element of a list, which must be non-empty.
57 58 59
head                    :: [a] -> a
head (x:_)              =  x
head []                 =  badHead
60
{-# NOINLINE [1] head #-}
61

Ian Lynagh's avatar
Ian Lynagh committed
62
badHead :: a
63 64
badHead = errorEmptyList "head"

Jan Stolarek's avatar
Jan Stolarek committed
65
-- This rule is useful in cases like
Don Stewart's avatar
Don Stewart committed
66
--      head [y | (x,y) <- ps, x==t]
67
{-# RULES
Don Stewart's avatar
Don Stewart committed
68 69
"head/build"    forall (g::forall b.(a->b->b)->b->b) .
                head (build g) = g (\x _ -> x) badHead
Jan Stolarek's avatar
Jan Stolarek committed
70
"head/augment"  forall xs (g::forall b. (a->b->b) -> b -> b) .
Don Stewart's avatar
Don Stewart committed
71
                head (augment g xs) = g (\x _ -> x) (head xs)
72 73
 #-}

David Feuer's avatar
David Feuer committed
74 75 76
-- | Decompose a list into its head and tail. If the list is empty,
-- returns 'Nothing'. If the list is non-empty, returns @'Just' (x, xs)@,
-- where @x@ is the head of the list and @xs@ its tail.
77 78
--
-- /Since: 4.8.0.0/
David Feuer's avatar
David Feuer committed
79 80 81 82
uncons                  :: [a] -> Maybe (a, [a])
uncons []               = Nothing
uncons (x:xs)           = Just (x, xs)

ross's avatar
ross committed
83
-- | Extract the elements after the head of a list, which must be non-empty.
84 85 86 87
tail                    :: [a] -> [a]
tail (_:xs)             =  xs
tail []                 =  errorEmptyList "tail"

ross's avatar
ross committed
88
-- | Extract the last element of a list, which must be finite and non-empty.
89 90 91 92 93 94
last                    :: [a] -> a
#ifdef USE_REPORT_PRELUDE
last [x]                =  x
last (_:xs)             =  last xs
last []                 =  errorEmptyList "last"
#else
Joachim Breitner's avatar
Joachim Breitner committed
95 96
-- use foldl to allow fusion
last = foldl (\_ x -> x) (errorEmptyList "last")
97 98
#endif

ross's avatar
ross committed
99
-- | Return all the elements of a list except the last one.
100
-- The list must be non-empty.
101 102 103 104 105 106 107 108 109 110
init                    :: [a] -> [a]
#ifdef USE_REPORT_PRELUDE
init [x]                =  []
init (x:xs)             =  x : init xs
init []                 =  errorEmptyList "init"
#else
-- eliminate repeated cases
init []                 =  errorEmptyList "init"
init (x:xs)             =  init' x xs
  where init' _ []     = []
Don Stewart's avatar
Don Stewart committed
111
        init' y (z:zs) = y : init' z zs
112 113
#endif

ross's avatar
ross committed
114
-- | Test whether a list is empty.
115 116 117 118
null                    :: [a] -> Bool
null []                 =  True
null (_:_)              =  False

119
-- | /O(n)/. 'length' returns the length of a finite list as an 'Int'.
ross's avatar
ross committed
120 121
-- It is an instance of the more general 'Data.List.genericLength',
-- the result type of which may be any kind of number.
122
{-# NOINLINE [1] length #-}
123
length                  :: [a] -> Int
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
length l                =  lenAcc l 0#

lenAcc :: [a] -> Int# -> Int
lenAcc []     a# = I# a#
lenAcc (_:xs) a# = lenAcc xs (a# +# 1#)

incLen :: a -> (Int# -> Int) -> Int# -> Int
incLen _ g x = g (x +# 1#)

-- These rules make length into a good consumer
-- Note that we use a higher-order-style use of foldr, so that
-- the accumulating parameter can be evaluated strictly
-- See Trac #876 for what goes wrong otherwise
{-# RULES
"length"     [~1] forall xs. length xs = foldr incLen I# xs 0#
"lengthList" [1]  foldr incLen I# = lenAcc
 #-}
141

ross's avatar
ross committed
142 143 144 145 146
-- | 'filter', applied to a predicate and a list, returns the list of
-- those elements that satisfy the predicate; i.e.,
--
-- > filter p xs = [ x | x <- xs, p x]

147
{-# NOINLINE [1] filter #-}
148
filter :: (a -> Bool) -> [a] -> [a]
149 150 151
filter _pred []    = []
filter pred (x:xs)
  | pred x         = x : filter pred xs
Don Stewart's avatar
Don Stewart committed
152
  | otherwise      = filter pred xs
153

154
{-# NOINLINE [0] filterFB #-}
Ian Lynagh's avatar
Ian Lynagh committed
155
filterFB :: (a -> b -> b) -> (a -> Bool) -> a -> b -> b
156
filterFB c p x r | p x       = x `c` r
Don Stewart's avatar
Don Stewart committed
157
                 | otherwise = r
158 159

{-# RULES
160
"filter"     [~1] forall p xs.  filter p xs = build (\c n -> foldr (filterFB c p) n xs)
Don Stewart's avatar
Don Stewart committed
161 162
"filterList" [1]  forall p.     foldr (filterFB (:) p) [] = filter p
"filterFB"        forall c p q. filterFB (filterFB c p) q = filterFB c (\x -> q x && p x)
163 164 165 166 167 168 169 170 171 172 173 174
 #-}

-- Note the filterFB rule, which has p and q the "wrong way round" in the RHS.
--     filterFB (filterFB c p) q a b
--   = if q a then filterFB c p a b else b
--   = if q a then (if p a then c a b else b) else b
--   = if q a && p a then c a b else b
--   = filterFB c (\x -> q x && p x) a b
-- I originally wrote (\x -> p x && q x), which is wrong, and actually
-- gave rise to a live bug report.  SLPJ.


ross's avatar
ross committed
175 176 177 178 179 180 181
-- | 'foldl', applied to a binary operator, a starting value (typically
-- the left-identity of the operator), and a list, reduces the list
-- using the binary operator, from left to right:
--
-- > foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
--
-- The list must be finite.
182 183 184 185 186

-- We write foldl as a non-recursive thing, so that it
-- can be inlined, and then (often) strictness-analysed,
-- and hence the classic space leak on foldl (+) 0 xs

Joachim Breitner's avatar
Joachim Breitner committed
187 188 189 190 191 192
foldl :: forall a b. (b -> a -> b) -> b -> [a] -> b
{-# INLINE foldl #-}
foldl k z0 xs = foldr (\(v::a) (fn::b->b) (z::b) -> fn (k z v)) (id :: b -> b) xs z0
-- Implementing foldl via foldr is only a good idea if the compiler can optimize
-- the resulting code (eta-expand the recursive "go"), so this needs -fcall-arity!
-- Also see #7994
193

ross's avatar
ross committed
194 195 196 197 198 199 200 201 202
-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left:
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
--
-- Note that
--
-- > last (scanl f z xs) == foldl f z xs.

203
scanl                   :: (b -> a -> b) -> b -> [a] -> [b]
204 205 206 207
scanl f q ls            =  q : (case ls of
                                []   -> []
                                x:xs -> scanl f (f q x) xs)

ross's avatar
ross committed
208 209 210 211
-- | 'scanl1' is a variant of 'scanl' that has no starting value argument:
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]

Don Stewart's avatar
Don Stewart committed
212 213 214
scanl1                  :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs)         =  scanl f x xs
scanl1 _ []             =  []
215 216 217 218

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.

ross's avatar
ross committed
219 220 221
-- | 'foldr1' is a variant of 'foldr' that has no starting value argument,
-- and thus must be applied to non-empty lists.

222 223 224 225 226
foldr1                  :: (a -> a -> a) -> [a] -> a
foldr1 _ [x]            =  x
foldr1 f (x:xs)         =  f x (foldr1 f xs)
foldr1 _ []             =  errorEmptyList "foldr1"

ross's avatar
ross committed
227 228 229 230 231
-- | 'scanr' is the right-to-left dual of 'scanl'.
-- Note that
--
-- > head (scanr f z xs) == foldr f z xs.

232
{-# NOINLINE [1] scanr #-}
233 234 235
scanr                   :: (a -> b -> b) -> b -> [a] -> [b]
scanr _ q0 []           =  [q0]
scanr f q0 (x:xs)       =  f x q : qs
Jan Stolarek's avatar
Jan Stolarek committed
236
                           where qs@(q:_) = scanr f q0 xs
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
{-# INLINE [0] strictUncurryScanr #-}
strictUncurryScanr :: (a -> b -> c) -> (a, b) -> c
strictUncurryScanr f pair = case pair of
                              (x, y) -> f x y

{-# INLINE [0] scanrFB #-}
scanrFB :: (a -> b -> b) -> (b -> c -> c) -> a -> (b, c) -> (b, c)
scanrFB f c = \x (r, est) -> (f x r, r `c` est)

{-# RULES
"scanr" [~1] forall f q0 ls . scanr f q0 ls =
  build (\c n -> strictUncurryScanr c (foldr (scanrFB f c) (q0,n) ls))
"scanrList" [1] forall f q0 ls .
               strictUncurryScanr (:) (foldr (scanrFB f (:)) (q0,[]) ls) =
                 scanr f q0 ls
 #-}

ross's avatar
ross committed
255 256
-- | 'scanr1' is a variant of 'scanr' that has no starting value argument.

257
scanr1                  :: (a -> a -> a) -> [a] -> [a]
Ian Lynagh's avatar
Ian Lynagh committed
258 259
scanr1 _ []             =  []
scanr1 _ [x]            =  [x]
Don Stewart's avatar
Don Stewart committed
260
scanr1 f (x:xs)         =  f x q : qs
Jan Stolarek's avatar
Jan Stolarek committed
261
                           where qs@(q:_) = scanr1 f xs
262

ross's avatar
ross committed
263 264 265 266 267
-- | 'iterate' @f x@ returns an infinite list of repeated applications
-- of @f@ to @x@:
--
-- > iterate f x == [x, f x, f (f x), ...]

268
{-# NOINLINE [1] iterate #-}
269
iterate :: (a -> a) -> a -> [a]
270
iterate f x =  x : iterate f (f x)
271

272
{-# NOINLINE [0] iterateFB #-}
Ian Lynagh's avatar
Ian Lynagh committed
273
iterateFB :: (a -> b -> b) -> (a -> a) -> a -> b
274 275 276
iterateFB c f x = x `c` iterateFB c f (f x)

{-# RULES
Don Stewart's avatar
Don Stewart committed
277 278
"iterate"    [~1] forall f x.   iterate f x = build (\c _n -> iterateFB c f x)
"iterateFB"  [1]                iterateFB (:) = iterate
279 280 281
 #-}


ross's avatar
ross committed
282
-- | 'repeat' @x@ is an infinite list, with @x@ the value of every element.
283
repeat :: a -> [a]
284 285 286
{-# INLINE [0] repeat #-}
-- The pragma just gives the rules more chance to fire
repeat x = xs where xs = x : xs
287

Don Stewart's avatar
Don Stewart committed
288
{-# INLINE [0] repeatFB #-}     -- ditto
Ian Lynagh's avatar
Ian Lynagh committed
289
repeatFB :: (a -> b -> b) -> a -> b
290
repeatFB c x = xs where xs = x `c` xs
291

292 293

{-# RULES
294
"repeat"    [~1] forall x. repeat x = build (\c _n -> repeatFB c x)
Don Stewart's avatar
Don Stewart committed
295
"repeatFB"  [1]  repeatFB (:)       = repeat
296 297
 #-}

ross's avatar
ross committed
298 299 300 301
-- | 'replicate' @n x@ is a list of length @n@ with @x@ the value of
-- every element.
-- It is an instance of the more general 'Data.List.genericReplicate',
-- in which @n@ may be of any integral type.
302
{-# INLINE replicate #-}
303 304 305
replicate               :: Int -> a -> [a]
replicate n x           =  take n (repeat x)

ross's avatar
ross committed
306
-- | 'cycle' ties a finite list into a circular one, or equivalently,
307 308 309 310
-- the infinite repetition of the original list.  It is the identity
-- on infinite lists.

cycle                   :: [a] -> [a]
Don Stewart's avatar
Don Stewart committed
311 312
cycle []                = error "Prelude.cycle: empty list"
cycle xs                = xs' where xs' = xs ++ xs'
313

ross's avatar
ross committed
314
-- | 'takeWhile', applied to a predicate @p@ and a list @xs@, returns the
315 316 317 318 319 320
-- longest prefix (possibly empty) of @xs@ of elements that satisfy @p@:
--
-- > takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
-- > takeWhile (< 9) [1,2,3] == [1,2,3]
-- > takeWhile (< 0) [1,2,3] == []
--
321 322 323

takeWhile               :: (a -> Bool) -> [a] -> [a]
takeWhile _ []          =  []
Jan Stolarek's avatar
Jan Stolarek committed
324
takeWhile p (x:xs)
325 326 327
            | p x       =  x : takeWhile p xs
            | otherwise =  []

328 329 330 331 332 333
-- | 'dropWhile' @p xs@ returns the suffix remaining after 'takeWhile' @p xs@:
--
-- > dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
-- > dropWhile (< 9) [1,2,3] == []
-- > dropWhile (< 0) [1,2,3] == [1,2,3]
--
ross's avatar
ross committed
334

335 336 337 338 339 340
dropWhile               :: (a -> Bool) -> [a] -> [a]
dropWhile _ []          =  []
dropWhile p xs@(x:xs')
            | p x       =  dropWhile p xs'
            | otherwise =  xs

ross's avatar
ross committed
341
-- | 'take' @n@, applied to a list @xs@, returns the prefix of @xs@
342 343 344 345 346 347 348 349 350
-- of length @n@, or @xs@ itself if @n > 'length' xs@:
--
-- > take 5 "Hello World!" == "Hello"
-- > take 3 [1,2,3,4,5] == [1,2,3]
-- > take 3 [1,2] == [1,2]
-- > take 3 [] == []
-- > take (-1) [1,2] == []
-- > take 0 [1,2] == []
--
ross's avatar
ross committed
351 352
-- It is an instance of the more general 'Data.List.genericTake',
-- in which @n@ may be of any integral type.
353
take                   :: Int -> [a] -> [a]
ross's avatar
ross committed
354 355

-- | 'drop' @n xs@ returns the suffix of @xs@
356 357 358 359 360 361 362 363 364
-- after the first @n@ elements, or @[]@ if @n > 'length' xs@:
--
-- > drop 6 "Hello World!" == "World!"
-- > drop 3 [1,2,3,4,5] == [4,5]
-- > drop 3 [1,2] == []
-- > drop 3 [] == []
-- > drop (-1) [1,2] == [1,2]
-- > drop 0 [1,2] == [1,2]
--
ross's avatar
ross committed
365 366 367 368
-- It is an instance of the more general 'Data.List.genericDrop',
-- in which @n@ may be of any integral type.
drop                   :: Int -> [a] -> [a]

369 370 371 372 373 374 375 376 377 378 379
-- | 'splitAt' @n xs@ returns a tuple where first element is @xs@ prefix of
-- length @n@ and second element is the remainder of the list:
--
-- > splitAt 6 "Hello World!" == ("Hello ","World!")
-- > splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
-- > splitAt 1 [1,2,3] == ([1],[2,3])
-- > splitAt 3 [1,2,3] == ([1,2,3],[])
-- > splitAt 4 [1,2,3] == ([1,2,3],[])
-- > splitAt 0 [1,2,3] == ([],[1,2,3])
-- > splitAt (-1) [1,2,3] == ([],[1,2,3])
--
380 381
-- It is equivalent to @('take' n xs, 'drop' n xs)@ when @n@ is not @_|_@
-- (@splitAt _|_ xs = _|_@).
382
-- 'splitAt' is an instance of the more general 'Data.List.genericSplitAt',
ross's avatar
ross committed
383 384 385 386
-- in which @n@ may be of any integral type.
splitAt                :: Int -> [a] -> ([a],[a])

#ifdef USE_REPORT_PRELUDE
387
take n _      | n <= 0 =  []
388
take _ []              =  []
389
take n (x:xs)          =  x : take (n-1) xs
390

391
drop n xs     | n <= 0 =  xs
392
drop _ []              =  []
393
drop n (_:xs)          =  drop (n-1) xs
394

ross's avatar
ross committed
395
splitAt n xs           =  (take n xs, drop n xs)
396 397

#else /* hack away */
398
{-# RULES
399
"take"     [~1] forall n xs . take n xs = takeFoldr n xs
400 401 402
"takeList"  [1] forall n xs . foldr (takeFB (:) []) (takeConst []) xs n = takeUInt n xs
 #-}

403 404 405
{-# INLINE takeFoldr #-}
takeFoldr :: Int -> [a] -> [a]
takeFoldr (I# n#) xs
406
  = build (\c nil -> if isTrue# (n# <=# 0#) then nil else
407 408
                     foldr (takeFB c nil) (takeConst nil) xs n#)

409 410 411 412 413 414
{-# NOINLINE [0] takeConst #-}
-- just a version of const that doesn't get inlined too early, so we
-- can spot it in rules.  Also we need a type sig due to the unboxed Int#.
takeConst :: a -> Int# -> a
takeConst x _ = x

415
{-# INLINE [0] takeFB #-}
416
takeFB :: (a -> b -> b) -> b -> a -> (Int# -> b) -> Int# -> b
417 418 419 420 421 422 423 424 425
-- The \m accounts for the fact that takeFB is used in a higher-order
-- way by takeFoldr, so it's better to inline.  A good example is
--     take n (repeat x)
-- for which we get excellent code... but only if we inline takeFB
-- when given four arguments
takeFB c n x xs
  = \ m -> if isTrue# (m <=# 1#)
           then x `c` n
           else x `c` xs (m -# 1#)
426 427

{-# INLINE [0] take #-}
428 429 430 431 432 433 434 435
take (I# n#) xs = takeUInt n# xs

-- The general code for take, below, checks n <= maxInt
-- No need to check for maxInt overflow when specialised
-- at type Int or Int# since the Int must be <= maxInt

takeUInt :: Int# -> [b] -> [b]
takeUInt n xs
436 437
  | isTrue# (n >=# 0#) = take_unsafe_UInt n xs
  | otherwise          = []
438 439 440 441 442 443 444 445 446 447

take_unsafe_UInt :: Int# -> [b] -> [b]
take_unsafe_UInt 0#  _  = []
take_unsafe_UInt m   ls =
  case ls of
    []     -> []
    (x:xs) -> x : take_unsafe_UInt (m -# 1#) xs

takeUInt_append :: Int# -> [b] -> [b] -> [b]
takeUInt_append n xs rs
448 449
  | isTrue# (n >=# 0#) = take_unsafe_UInt_append n xs rs
  | otherwise          = []
450

Don Stewart's avatar
Don Stewart committed
451 452 453
take_unsafe_UInt_append :: Int# -> [b] -> [b] -> [b]
take_unsafe_UInt_append 0#  _ rs  = rs
take_unsafe_UInt_append m  ls rs  =
454 455 456 457 458
  case ls of
    []     -> rs
    (x:xs) -> x : take_unsafe_UInt_append (m -# 1#) xs rs

drop (I# n#) ls
459 460
  | isTrue# (n# <# 0#) = ls
  | otherwise          = drop# n# ls
461
    where
Don Stewart's avatar
Don Stewart committed
462 463 464 465
        drop# :: Int# -> [a] -> [a]
        drop# 0# xs      = xs
        drop# _  xs@[]   = xs
        drop# m# (_:xs)  = drop# (m# -# 1#) xs
466 467

splitAt (I# n#) ls
468 469
  | isTrue# (n# <# 0#) = ([], ls)
  | otherwise          = splitAt# n# ls
470
    where
Don Stewart's avatar
Don Stewart committed
471 472 473 474 475 476
        splitAt# :: Int# -> [a] -> ([a], [a])
        splitAt# 0# xs     = ([], xs)
        splitAt# _  xs@[]  = (xs, xs)
        splitAt# m# (x:xs) = (x:xs', xs'')
          where
            (xs', xs'') = splitAt# (m# -# 1#) xs
477 478 479

#endif /* USE_REPORT_PRELUDE */

480 481 482
-- | 'span', applied to a predicate @p@ and a list @xs@, returns a tuple where
-- first element is longest prefix (possibly empty) of @xs@ of elements that
-- satisfy @p@ and second element is the remainder of the list:
Jan Stolarek's avatar
Jan Stolarek committed
483
--
484 485 486
-- > span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
-- > span (< 9) [1,2,3] == ([1,2,3],[])
-- > span (< 0) [1,2,3] == ([],[1,2,3])
Jan Stolarek's avatar
Jan Stolarek committed
487
--
488
-- 'span' @p xs@ is equivalent to @('takeWhile' p xs, 'dropWhile' p xs)@
ross's avatar
ross committed
489 490

span                    :: (a -> Bool) -> [a] -> ([a],[a])
491 492 493 494 495
span _ xs@[]            =  (xs, xs)
span p xs@(x:xs')
         | p x          =  let (ys,zs) = span p xs' in (x:ys,zs)
         | otherwise    =  ([],xs)

496 497 498
-- | 'break', applied to a predicate @p@ and a list @xs@, returns a tuple where
-- first element is longest prefix (possibly empty) of @xs@ of elements that
-- /do not satisfy/ @p@ and second element is the remainder of the list:
Jan Stolarek's avatar
Jan Stolarek committed
499
--
500 501 502 503 504
-- > break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
-- > break (< 9) [1,2,3] == ([],[1,2,3])
-- > break (> 9) [1,2,3] == ([1,2,3],[])
--
-- 'break' @p@ is equivalent to @'span' ('not' . p)@.
ross's avatar
ross committed
505 506

break                   :: (a -> Bool) -> [a] -> ([a],[a])
507 508 509 510
#ifdef USE_REPORT_PRELUDE
break p                 =  span (not . p)
#else
-- HBC version (stolen)
Don Stewart's avatar
Don Stewart committed
511
break _ xs@[]           =  (xs, xs)
512
break p xs@(x:xs')
Don Stewart's avatar
Don Stewart committed
513 514
           | p x        =  ([],xs)
           | otherwise  =  let (ys,zs) = break p xs' in (x:ys,zs)
515 516
#endif

ross's avatar
ross committed
517 518
-- | 'reverse' @xs@ returns the elements of @xs@ in reverse order.
-- @xs@ must be finite.
519 520 521 522 523 524 525 526 527 528
reverse                 :: [a] -> [a]
#ifdef USE_REPORT_PRELUDE
reverse                 =  foldl (flip (:)) []
#else
reverse l =  rev l []
  where
    rev []     a = a
    rev (x:xs) a = rev xs (x:a)
#endif

ross's avatar
ross committed
529 530 531 532 533 534 535 536 537
-- | 'and' returns the conjunction of a Boolean list.  For the result to be
-- 'True', the list must be finite; 'False', however, results from a 'False'
-- value at a finite index of a finite or infinite list.
and                     :: [Bool] -> Bool

-- | 'or' returns the disjunction of a Boolean list.  For the result to be
-- 'False', the list must be finite; 'True', however, results from a 'True'
-- value at a finite index of a finite or infinite list.
or                      :: [Bool] -> Bool
538 539 540 541
#ifdef USE_REPORT_PRELUDE
and                     =  foldr (&&) True
or                      =  foldr (||) False
#else
Don Stewart's avatar
Don Stewart committed
542 543 544 545
and []          =  True
and (x:xs)      =  x && and xs
or []           =  False
or (x:xs)       =  x || or xs
546

547 548 549
{-# NOINLINE [1] and #-}
{-# NOINLINE [1] or #-}

550
{-# RULES
Jan Stolarek's avatar
Jan Stolarek committed
551
"and/build"     forall (g::forall b.(Bool->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
552
                and (build g) = g (&&) True
Jan Stolarek's avatar
Jan Stolarek committed
553
"or/build"      forall (g::forall b.(Bool->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
554
                or (build g) = g (||) False
555 556 557
 #-}
#endif

ross's avatar
ross committed
558
-- | Applied to a predicate and a list, 'any' determines if any element
559 560 561
-- of the list satisfies the predicate.  For the result to be
-- 'False', the list must be finite; 'True', however, results from a 'True'
-- value for the predicate applied to an element at a finite index of a finite or infinite list.
ross's avatar
ross committed
562 563 564
any                     :: (a -> Bool) -> [a] -> Bool

-- | Applied to a predicate and a list, 'all' determines if all elements
565 566 567
-- of the list satisfy the predicate. For the result to be
-- 'True', the list must be finite; 'False', however, results from a 'False'
-- value for the predicate applied to an element at a finite index of a finite or infinite list.
ross's avatar
ross committed
568
all                     :: (a -> Bool) -> [a] -> Bool
569 570 571 572
#ifdef USE_REPORT_PRELUDE
any p                   =  or . map p
all p                   =  and . map p
#else
Don Stewart's avatar
Don Stewart committed
573 574
any _ []        = False
any p (x:xs)    = p x || any p xs
575

Don Stewart's avatar
Don Stewart committed
576 577
all _ []        =  True
all p (x:xs)    =  p x && all p xs
578 579 580 581

{-# NOINLINE [1] any #-}
{-# NOINLINE [1] all #-}

582
{-# RULES
Jan Stolarek's avatar
Jan Stolarek committed
583
"any/build"     forall p (g::forall b.(a->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
584
                any p (build g) = g ((||) . p) False
Jan Stolarek's avatar
Jan Stolarek committed
585
"all/build"     forall p (g::forall b.(a->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
586
                all p (build g) = g ((&&) . p) True
587 588 589
 #-}
#endif

ross's avatar
ross committed
590
-- | 'elem' is the list membership predicate, usually written in infix form,
591 592
-- e.g., @x \`elem\` xs@.  For the result to be
-- 'False', the list must be finite; 'True', however, results from an element equal to @x@ found at a finite index of a finite or infinite list.
ross's avatar
ross committed
593 594 595 596
elem                    :: (Eq a) => a -> [a] -> Bool

-- | 'notElem' is the negation of 'elem'.
notElem                 :: (Eq a) => a -> [a] -> Bool
597 598 599 600
#ifdef USE_REPORT_PRELUDE
elem x                  =  any (== x)
notElem x               =  all (/= x)
#else
Don Stewart's avatar
Don Stewart committed
601 602
elem _ []       = False
elem x (y:ys)   = x==y || elem x ys
603

Don Stewart's avatar
Don Stewart committed
604
notElem _ []    =  True
605 606 607
notElem x (y:ys)=  x /= y && notElem x ys
#endif

ross's avatar
ross committed
608
-- | 'lookup' @key assocs@ looks up a key in an association list.
609 610 611 612 613 614
lookup                  :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup _key []          =  Nothing
lookup  key ((x,y):xys)
    | key == x          =  Just y
    | otherwise         =  lookup key xys

ross's avatar
ross committed
615
-- | Map a function over a list and concatenate the results.
616 617 618
concatMap               :: (a -> [b]) -> [a] -> [b]
concatMap f             =  foldr ((++) . f) []

ross's avatar
ross committed
619
-- | Concatenate a list of lists.
620 621 622
concat :: [[a]] -> [a]
concat = foldr (++) []

623 624
{-# NOINLINE [1] concat #-}

625 626
{-# RULES
  "concat" forall xs. concat xs = build (\c n -> foldr (\x y -> foldr c y x) n xs)
627
-- We don't bother to turn non-fusible applications of concat back into concat
628
 #-}
629

630 631 632 633
\end{code}


\begin{code}
ross's avatar
ross committed
634 635 636
-- | List index (subscript) operator, starting from 0.
-- It is an instance of the more general 'Data.List.genericIndex',
-- which takes an index of any integral type.
637 638
(!!)                    :: [a] -> Int -> a
#ifdef USE_REPORT_PRELUDE
639 640 641 642
xs     !! n | n < 0 =  error "Prelude.!!: negative index"
[]     !! _         =  error "Prelude.!!: index too large"
(x:_)  !! 0         =  x
(_:xs) !! n         =  xs !! (n-1)
643 644
#else
-- HBC version (stolen), then unboxified
645 646
xs !! (I# n0) | isTrue# (n0 <# 0#) =  error "Prelude.(!!): negative index\n"
              | otherwise          =  sub xs n0
647
                         where
Don Stewart's avatar
Don Stewart committed
648
                            sub :: [a] -> Int# -> a
649
                            sub []     _ = error "Prelude.(!!): index too large\n"
650
                            sub (y:ys) n = if isTrue# (n ==# 0#)
Don Stewart's avatar
Don Stewart committed
651 652
                                           then y
                                           else sub ys (n -# 1#)
653 654 655 656 657
#endif
\end{code}


%*********************************************************
Don Stewart's avatar
Don Stewart committed
658
%*                                                      *
659
\subsection{The zip family}
Don Stewart's avatar
Don Stewart committed
660
%*                                                      *
661 662 663
%*********************************************************

\begin{code}
Ian Lynagh's avatar
Ian Lynagh committed
664
foldr2 :: (a -> b -> c -> c) -> c -> [a] -> [b] -> c
Joachim Breitner's avatar
Joachim Breitner committed
665 666
foldr2 k z = go
  where
David Feuer's avatar
David Feuer committed
667
        go []    ys      = ys `seq` z -- see #9495 for the seq
668 669
        go _xs   []      = z
        go (x:xs) (y:ys) = k x y (go xs ys)
Joachim Breitner's avatar
Joachim Breitner committed
670
{-# INLINE [0] foldr2 #-}
671

Ian Lynagh's avatar
Ian Lynagh committed
672
foldr2_left :: (a -> b -> c -> d) -> d -> a -> ([b] -> c) -> [b] -> d
673 674 675
foldr2_left _k  z _x _r []     = z
foldr2_left  k _z  x  r (y:ys) = k x y (r ys)

Ian Lynagh's avatar
Ian Lynagh committed
676
foldr2_right :: (a -> b -> c -> d) -> d -> b -> ([a] -> c) -> [a] -> d
677 678 679 680 681 682
foldr2_right _k z  _y _r []     = z
foldr2_right  k _z  y  r (x:xs) = k x y (r xs)

-- foldr2 k z xs ys = foldr (foldr2_left k z)  (\_ -> z) xs ys
-- foldr2 k z xs ys = foldr (foldr2_right k z) (\_ -> z) ys xs
{-# RULES
Jan Stolarek's avatar
Jan Stolarek committed
683
"foldr2/left"   forall k z ys (g::forall b.(a->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
684
                  foldr2 k z (build g) ys = g (foldr2_left  k z) (\_ -> z) ys
685

Jan Stolarek's avatar
Jan Stolarek committed
686
"foldr2/right"  forall k z xs (g::forall b.(a->b->b)->b->b) .
Don Stewart's avatar
Don Stewart committed
687
                  foldr2 k z xs (build g) = g (foldr2_right k z) (\_ -> z) xs
688 689 690
 #-}
\end{code}

ross's avatar
ross committed
691
Zips for larger tuples are in the List module.
692 693 694

\begin{code}
----------------------------------------------
ross's avatar
ross committed
695 696 697
-- | 'zip' takes two lists and returns a list of corresponding pairs.
-- If one input list is short, excess elements of the longer list are
-- discarded.
David Feuer's avatar
David Feuer committed
698 699 700 701 702 703 704 705 706 707 708
--
-- NOTE: GHC's implementation of @zip@ deviates slightly from the
-- standard. In particular, Haskell 98 and Haskell 2010 require that
-- @zip [x1,x2,...,xn] (y1:y2:...:yn:_|_) = [(x1,y1),(x2,y2),...,(xn,yn)]@
-- In GHC, however,
-- @zip [x1,x2,...,xn] (y1:y2:...:yn:_|_) = (x1,y1):(x2,y2):...:(xn,yn):_|_@
-- That is, you cannot use termination of the left list to avoid hitting
-- bottom in the right list.

-- This deviation is necessary to make fusion with 'build' in the right
-- list preserve semantics.
709
{-# NOINLINE [1] zip #-}
710
zip :: [a] -> [b] -> [(a,b)]
David Feuer's avatar
David Feuer committed
711 712
zip []     bs     = bs `seq` [] -- see #9495 for the seq
zip _as    []     = []
713
zip (a:as) (b:bs) = (a,b) : zip as bs
714

715
{-# INLINE [0] zipFB #-}
Ian Lynagh's avatar
Ian Lynagh committed
716
zipFB :: ((a, b) -> c -> d) -> a -> b -> c -> d
717
zipFB c = \x y r -> (x,y) `c` r
718 719

{-# RULES
Don Stewart's avatar
Don Stewart committed
720 721
"zip"      [~1] forall xs ys. zip xs ys = build (\c n -> foldr2 (zipFB c) n xs ys)
"zipList"  [1]  foldr2 (zipFB (:)) []   = zip
722 723 724 725 726
 #-}
\end{code}

\begin{code}
----------------------------------------------
ross's avatar
ross committed
727 728
-- | 'zip3' takes three lists and returns a list of triples, analogous to
-- 'zip'.
729 730 731 732 733 734 735 736 737 738 739 740 741
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
-- Specification
-- zip3 =  zipWith3 (,,)
zip3 (a:as) (b:bs) (c:cs) = (a,b,c) : zip3 as bs cs
zip3 _      _      _      = []
\end{code}


-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.

\begin{code}
----------------------------------------------
ross's avatar
ross committed
742 743 744 745
-- | 'zipWith' generalises 'zip' by zipping with the function given
-- as the first argument, instead of a tupling function.
-- For example, @'zipWith' (+)@ is applied to two lists to produce the
-- list of corresponding sums.
David Feuer's avatar
David Feuer committed
746 747 748 749 750 751 752 753 754 755 756 757
--
-- NOTE: GHC's implementation of @zipWith@ deviates slightly from the
-- standard. In particular, Haskell 98 and Haskell 2010 require that
-- @zipWith (,) [x1,x2,...,xn] (y1:y2:...:yn:_|_) = [(x1,y1),(x2,y2),...,(xn,yn)]@
-- In GHC, however,
-- @zipWith (,) [x1,x2,...,xn] (y1:y2:...:yn:_|_) = (x1,y1):(x2,y2):...:(xn,yn):_|_@
-- That is, you cannot use termination of the left list to avoid hitting
-- bottom in the right list.

-- This deviation is necessary to make fusion with 'build' in the right
-- list preserve semantics.

758
{-# NOINLINE [1] zipWith #-}
759
zipWith :: (a->b->c) -> [a]->[b]->[c]
David Feuer's avatar
David Feuer committed
760 761 762
zipWith _f []     bs     = bs `seq` [] -- see #9495 for the seq
zipWith _f _as    []     = []
zipWith f  (a:as) (b:bs) = f a b : zipWith f as bs
763

764 765
-- zipWithFB must have arity 2 since it gets two arguments in the "zipWith"
-- rule; it might not get inlined otherwise
766
{-# INLINE [0] zipWithFB #-}
Ian Lynagh's avatar
Ian Lynagh committed
767
zipWithFB :: (a -> b -> c) -> (d -> e -> a) -> d -> e -> b -> c
768
zipWithFB c f = \x y r -> (x `f` y) `c` r
769 770

{-# RULES
Don Stewart's avatar
Don Stewart committed
771 772
"zipWith"       [~1] forall f xs ys.    zipWith f xs ys = build (\c n -> foldr2 (zipWithFB c f) n xs ys)
"zipWithList"   [1]  forall f.  foldr2 (zipWithFB (:) f) [] = zipWith f
773 774 775 776
  #-}
\end{code}

\begin{code}
ross's avatar
ross committed
777 778 779
-- | The 'zipWith3' function takes a function which combines three
-- elements, as well as three lists and returns a list of their point-wise
-- combination, analogous to 'zipWith'.
780 781 782 783 784
zipWith3                :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
                        =  z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _        =  []

ross's avatar
ross committed
785 786
-- | 'unzip' transforms a list of pairs into a list of first components
-- and a list of second components.
787 788 789 790
unzip    :: [(a,b)] -> ([a],[b])
{-# INLINE unzip #-}
unzip    =  foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

ross's avatar
ross committed
791 792
-- | The 'unzip3' function takes a list of triples and returns three
-- lists, analogous to 'unzip'.
793 794 795 796 797 798 799 800
unzip3   :: [(a,b,c)] -> ([a],[b],[c])
{-# INLINE unzip3 #-}
unzip3   =  foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))
                  ([],[],[])
\end{code}


%*********************************************************
Don Stewart's avatar
Don Stewart committed
801
%*                                                      *
802
\subsection{Error code}
Don Stewart's avatar
Don Stewart committed
803
%*                                                      *
804 805 806 807 808 809 810 811 812 813 814 815 816
%*********************************************************

Common up near identical calls to `error' to reduce the number
constant strings created when compiled:

\begin{code}
errorEmptyList :: String -> a
errorEmptyList fun =
  error (prel_list_str ++ fun ++ ": empty list")

prel_list_str :: String
prel_list_str = "Prelude."
\end{code}