Capability.c 26.8 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

34
nat n_capabilities;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
41
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
42

43
44
45
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

46
#if defined(THREADED_RTS)
47
48
49
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
50
    return blackholes_need_checking
51
	|| sched_state >= SCHED_INTERRUPTING
52
53
	;
}
54
#endif
55

56
#if defined(THREADED_RTS)
57
StgClosure *
58
findSpark (Capability *cap)
59
{
60
61
  Capability *robbed;
  StgClosurePtr spark;
62
  rtsBool retry;
63
64
  nat i = 0;

65
66
67
68
69
70
71
  if (!emptyRunQueue(cap)) {
      // If there are other threads, don't try to run any new
      // sparks: sparks might be speculative, we don't want to take
      // resources away from the main computation.
      return 0;
  }

72
73
74
75
76
77
78
79
80
81
82
83
84
85
  // first try to get a spark from our own pool.
  // We should be using reclaimSpark(), because it works without
  // needing any atomic instructions:
  //   spark = reclaimSpark(cap->sparks);
  // However, measurements show that this makes at least one benchmark
  // slower (prsa) and doesn't affect the others.
  spark = tryStealSpark(cap);
  if (spark != NULL) {
      cap->sparks_converted++;
      return spark;
  }

  if (n_capabilities == 1) { return NULL; } // makes no sense...

86
87
88
89
  debugTrace(DEBUG_sched,
	     "cap %d: Trying to steal work from other capabilities", 
	     cap->no);

90
91
  do {
      retry = rtsFalse;
92

93
94
95
96
97
98
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
99

100
101
102
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

103
          spark = tryStealSpark(robbed);
104
105
106
107
108
109
110
111
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
              debugTrace(DEBUG_sched,
112
		 "cap %d: Stole a spark from capability %d",
113
                         cap->no, robbed->no);
114
              cap->sparks_converted++;
115
              return spark;
116
117
118
119
          }
          // otherwise: no success, try next one
      }
  } while (retry);
120

121
  debugTrace(DEBUG_sched, "No sparks stolen");
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
rtsBool
anySparks (void)
{
    nat i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(&capabilities[i])) {
            return rtsTrue;
        }
    }
    return rtsFalse;
140
}
141
#endif
142
143
144

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
145
 *
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
162
163
}

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

180
/* ----------------------------------------------------------------------------
181
182
183
184
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
185
186

static void
187
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
188
{
189
    nat g;
190

191
192
193
194
195
196
197
198
199
200
201
202
203
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
204
205
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
206
207
208
    cap->sparks_created     = 0;
    cap->sparks_converted   = 0;
    cap->sparks_pruned      = 0;
209
210
#endif

211
    cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
sof's avatar
sof committed
212
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
213
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
214

215
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
216
217
				     RtsFlags.GcFlags.generations,
				     "initCapability");
218
219
220

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
221
    }
222

tharris@microsoft.com's avatar
tharris@microsoft.com committed
223
224
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
225
226
227
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
228
    cap->context_switch = 0;
sof's avatar
sof committed
229
230
}

231
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
232
233
 * Function:  initCapabilities()
 *
234
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
235
 *            we keep a table of them, the size of which is
236
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
237
 *
238
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
239
void
240
initCapabilities( void )
sof's avatar
sof committed
241
{
242
243
#if defined(THREADED_RTS)
    nat i;
244

245
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
246
247
248
249
250
251
252
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

253
254
255
256
257
258
259
260
261
262
263
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
264

265
    for (i = 0; i < n_capabilities; i++) {
266
	initCapability(&capabilities[i], i);
267
    }
268

Simon Marlow's avatar
Simon Marlow committed
269
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
270
271
272

#else /* !THREADED_RTS */

273
    n_capabilities = 1;
274
    capabilities = &MainCapability;
275
    initCapability(&MainCapability, 0);
276

277
278
#endif

279
280
281
282
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
283
284
}

285
286
287
288
289
290
291
292
293
294
295
296
297
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
  nat i;
  for (i=0; i < n_capabilities; i++) {
    capabilities[i].context_switch = 1;
  }
}

298
/* ----------------------------------------------------------------------------
299
300
301
302
303
304
305
306
307
308
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
309
310
 *
 * ------------------------------------------------------------------------- */
311
312
313

#if defined(THREADED_RTS)
STATIC_INLINE void
314
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
315
{
316
317
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
318
319
320
321
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
322
323
324
325
326
327
328
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
329
}
330
#endif
331

332
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
333
334
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
335
336
337
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
338
339
 * ------------------------------------------------------------------------- */

340
#if defined(THREADED_RTS)
341
void
342
343
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
344
{
345
346
347
348
    Task *task;

    task = cap->running_task;

349
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
350
351

    cap->running_task = NULL;
352

353
354
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
355
356
357
358
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
359
    }
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    /* if waiting_for_gc was the reason to release the cap: thread
       comes from yieldCap->releaseAndQueueWorker. Unconditionally set
       cap. free and return (see default after the if-protected other
       special cases). Thread will wait on cond.var and re-acquire the
       same cap after GC (GC-triggering cap. calls releaseCap and
       enters the spare_workers case)
    */
    if (waiting_for_gc) {
      last_free_capability = cap; // needed?
      trace(TRACE_sched | DEBUG_sched, 
	    "GC pending, set capability %d free", cap->no);
      return;
    } 


376
377
378
379
380
381
382
383
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
384
    }
385

386
    if (!cap->spare_workers) {
387
388
389
390
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
391
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
392
393
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
394
395
396
	    startWorkerTask(cap, workerStart);
	    return;
	}
397
    }
398

399
400
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
401
402
403
    if (always_wakeup || 
        !emptyRunQueue(cap) || !emptyWakeupQueue(cap) ||
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
404
405
406
407
408
409
410
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

411
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
412
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
413
414
}

415
void
416
releaseCapability (Capability* cap USED_IF_THREADS)
417
418
{
    ACQUIRE_LOCK(&cap->lock);
419
420
421
422
423
424
425
426
427
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
428
429
430
431
    RELEASE_LOCK(&cap->lock);
}

static void
432
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

453
    releaseCapability_(cap,rtsFalse);
454
455
456
457

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
458

459
/* ----------------------------------------------------------------------------
460
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
461
462
 *
 * Purpose:  when an OS thread returns from an external call,
463
464
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
465
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
466
467
 * made it.
 *
468
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
469
void
470
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
471
{
472
#if !defined(THREADED_RTS)
473

474
475
476
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
477

478
#else
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
	    for (i = 0; i < n_capabilities; i++) {
		cap = &capabilities[i];
		if (!cap->running_task) {
		    break;
		}
	    }
	    // Can't find a free one, use last_free_capability.
	    cap = last_free_capability;
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

500
    } else {
501
	ASSERT(task->cap == cap);
502
503
    }

504
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
505

Simon Marlow's avatar
Simon Marlow committed
506
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

542
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
543

Simon Marlow's avatar
Simon Marlow committed
544
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
545
546
547
548
549
550

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
551
/* ----------------------------------------------------------------------------
552
 * yieldCapability
553
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
554

sof's avatar
sof committed
555
void
556
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
557
{
558
559
    Capability *cap = *pCap;

Simon Marlow's avatar
Simon Marlow committed
560
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
561
562

	// We must now release the capability and wait to be woken up
563
	// again.
564
	task->wakeup = rtsFalse;
565
566
567
568
569
570
571
572
573
574
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
575
576
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

577
578
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
579
580
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
602
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
603
	ASSERT(cap->running_task == task);
604

605
    *pCap = cap;
606

607
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
608

609
    return;
sof's avatar
sof committed
610
611
}

612
613
614
615
616
617
618
619
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
620
621
622
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
623
{
624
    ACQUIRE_LOCK(&other_cap->lock);
625

626
627
628
629
630
631
632
633
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
634

635
    if (other_cap->running_task == NULL) {
636
637
638
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

639
640
641
642
643
644
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

	trace(TRACE_sched, "resuming capability %d", other_cap->no);
645
	releaseCapability_(other_cap,rtsFalse);
646
    } else {
647
	appendToWakeupQueue(my_cap,other_cap,tso);
648
        other_cap->context_switch = 1;
649
650
651
652
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
653

654
    RELEASE_LOCK(&other_cap->lock);
655
656
}

657
/* ----------------------------------------------------------------------------
658
 * prodCapabilities
sof's avatar
sof committed
659
 *
660
661
662
 * Used to indicate that the interrupted flag is now set, or some
 * other global condition that might require waking up a Task on each
 * Capability.
663
664
 * ------------------------------------------------------------------------- */

665
666
667
668
669
670
static void
prodCapabilities(rtsBool all)
{
    nat i;
    Capability *cap;
    Task *task;
671

672
673
674
675
676
    for (i=0; i < n_capabilities; i++) {
	cap = &capabilities[i];
	ACQUIRE_LOCK(&cap->lock);
	if (!cap->running_task) {
	    if (cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
677
		trace(TRACE_sched, "resuming capability %d", cap->no);
678
679
680
681
682
683
684
685
		task = cap->spare_workers;
		ASSERT(!task->stopped);
		giveCapabilityToTask(cap,task);
		if (!all) {
		    RELEASE_LOCK(&cap->lock);
		    return;
		}
	    }
686
	}
687
	RELEASE_LOCK(&cap->lock);
688
    }
689
    return;
sof's avatar
sof committed
690
}
691

692
693
694
695
696
void
prodAllCapabilities (void)
{
    prodCapabilities(rtsTrue);
}
sof's avatar
sof committed
697

698
/* ----------------------------------------------------------------------------
699
700
701
702
703
704
 * prodOneCapability
 *
 * Like prodAllCapabilities, but we only require a single Task to wake
 * up in order to service some global event, such as checking for
 * deadlock after some idle time has passed.
 * ------------------------------------------------------------------------- */
705

706
707
708
709
void
prodOneCapability (void)
{
    prodCapabilities(rtsFalse);
710
}
711
712
713
714
715
716
717
718
719
720
721
722
723

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
724
 *
725
 * ------------------------------------------------------------------------- */
726
727

void
728
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
729
{
730
731
732
733
    nat i;

    task->cap = cap;

734
735
736
737
738
739
740
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
741
742
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

Simon Marlow's avatar
Simon Marlow committed
743
744
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
745
746
747
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
748
	    debugTrace(DEBUG_sched, "not owner, yielding");
749
750
	    yieldThread();
	    continue;
751
	}
752
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
753
754
755
756
757
758
759
760
761
762
763
764
765

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
766
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
767
768
769
770
771
772
773
774
775
776
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

777
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
778
779
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
780
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
781
782
783
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
784
	}
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
801
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
802
803
	RELEASE_LOCK(&cap->lock);
	break;
804
    }
805
806
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
807

808
809
810
811
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
812
}
813

814
815
816
817
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
818
 *
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


837
#endif /* THREADED_RTS */
838

839
840
841
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
842
843
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
844
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
845
846
#endif
}
847

848
849
850
851
852
853
854
855
856
857
858
859
860
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

861
862
863
864
865
866
867
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
868
869
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta, 
                      rtsBool prune_sparks USED_IF_THREADS)
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
894
895

#if defined(THREADED_RTS)
896
897
898
899
900
        if (prune_sparks) {
            pruneSparkQueue (evac, user, cap);
        } else {
            traverseSparkQueue (evac, user, cap);
        }
901
#endif
902
    }
903

904
905
906
907
908
909
910
911
912
913
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

void
markCapabilities (evac_fn evac, void *user)
{
914
    markSomeCapabilities(evac, user, 0, 1, rtsFalse);
915
}