Check.hs 62.8 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1
{-
2
Author: George Karachalias <george.karachalias@cs.kuleuven.be>
Austin Seipp's avatar
Austin Seipp committed
3

4
Pattern Matching Coverage Checking.
Austin Seipp's avatar
Austin Seipp committed
5
-}
sof's avatar
sof committed
6

7
{-# LANGUAGE CPP, GADTs, DataKinds, KindSignatures #-}
8

9 10 11 12
module Check (
        -- Actual check and pretty printing
        checkSingle, checkMatches, dsPmWarn,

13 14 15 16 17 18
        -- Check for exponential explosion due to guards
        computeNoGuards,
        isAnyPmCheckEnabled,
        warnManyGuards,
        maximum_failing_guards,

19 20 21
        -- See Note [Type and Term Equality Propagation]
        genCaseTmCs1, genCaseTmCs2
    ) where
22

Simon Marlow's avatar
Simon Marlow committed
23
#include "HsVersions.h"
sof's avatar
sof committed
24

25 26 27
import TmOracle

import DynFlags
Ian Lynagh's avatar
Ian Lynagh committed
28
import HsSyn
Simon Marlow's avatar
Simon Marlow committed
29 30
import TcHsSyn
import Id
cactus's avatar
cactus committed
31
import ConLike
Simon Marlow's avatar
Simon Marlow committed
32 33
import DataCon
import Name
34
import FamInstEnv
35
import TysWiredIn
Simon Marlow's avatar
Simon Marlow committed
36 37 38
import TyCon
import SrcLoc
import Util
39
import Outputable
40
import FastString
sof's avatar
sof committed
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55
import DsMonad    -- DsM, initTcDsForSolver, getDictsDs
import TcSimplify -- tcCheckSatisfiability
import TcType     -- toTcType, toTcTypeBag
import Bag
import ErrUtils
import MonadUtils -- MonadIO
import Var        -- EvVar
import Type
import UniqSupply
import DsGRHSs    -- isTrueLHsExpr

import Data.List     -- find
import Data.Maybe    -- isNothing, isJust, fromJust
import Control.Monad -- liftM3, forM
56 57
import Coercion
import TcEvidence
sof's avatar
sof committed
58

59 60 61 62 63 64 65
{-
This module checks pattern matches for:
\begin{enumerate}
  \item Equations that are redundant
  \item Equations with inaccessible right-hand-side
  \item Exhaustiveness
\end{enumerate}
sof's avatar
sof committed
66

67
The algorithm used is described in the paper:
68

69 70
  "GADTs Meet Their Match:
     Pattern-matching Warnings That Account for GADTs, Guards, and Laziness"
sof's avatar
sof committed
71

72
    http://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
73

74 75 76 77 78 79
%************************************************************************
%*                                                                      *
                     Pattern Match Check Types
%*                                                                      *
%************************************************************************
-}
80

81 82
type PmM a = DsM a

83
data PmConstraint = TmConstraint PmExpr PmExpr -- ^ Term equalities: e ~ e
84
                    -- See Note [Representation of Term Equalities]
85 86 87
                  | TyConstraint [EvVar]   -- ^ Type equalities
                  | BtConstraint Id        -- ^ Strictness constraints: x ~ _|_

88 89
data PatTy = PAT | VA -- Used only as a kind, to index PmPat

90 91 92
-- The *arity* of a PatVec [p1,..,pn] is
-- the number of p1..pn that are not Guards

93
data PmPat :: PatTy -> * where
94 95 96 97 98 99 100 101 102 103 104 105
  PmCon  :: { pm_con_con     :: DataCon
            , pm_con_arg_tys :: [Type]
            , pm_con_tvs     :: [TyVar]
            , pm_con_dicts   :: [EvVar]
            , pm_con_args    :: [PmPat t] } -> PmPat t
            -- For PmCon arguments' meaning see @ConPatOut@ in hsSyn/HsPat.hs
  PmVar  :: { pm_var_id   :: Id    } -> PmPat t
  PmLit  :: { pm_lit_lit  :: PmLit } -> PmPat t -- See Note [Literals in PmPat]
  PmNLit :: { pm_lit_id :: Id
            , pm_lit_not :: [PmLit] } -> PmPat 'VA
  PmGrd  :: { pm_grd_pv   :: PatVec
            , pm_grd_expr :: PmExpr } -> PmPat 'PAT
106 107 108 109 110

-- data T a where
--     MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p]
-- or  MkT :: forall p q r. (Eq p, Ord q, [p] ~ r) => p -> q -> T r

111 112
type Pattern = PmPat 'PAT -- ^ Patterns
type ValAbs  = PmPat 'VA  -- ^ Value Abstractions
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

type PatVec    = [Pattern] -- Pattern Vectors
type ValVecAbs = [ValAbs]  -- Value Vector Abstractions

data ValSetAbs   -- Reprsents a set of value vector abstractions
                 -- Notionally each value vector abstraction is a triple:
                 --   (Gamma |- us |> Delta)
                 -- where 'us'    is a ValueVec
                 --       'Delta' is a constraint
  -- INVARIANT VsaInvariant: an empty ValSetAbs is always represented by Empty
  -- INVARIANT VsaArity: the number of Cons's in any path to a leaf is the same
  -- The *arity* of a ValSetAbs is the number of Cons's in any path to a leaf
  = Empty                               -- ^ {}
  | Union ValSetAbs ValSetAbs           -- ^ S1 u S2
  | Singleton                           -- ^ { |- empty |> empty }
  | Constraint [PmConstraint] ValSetAbs -- ^ Extend Delta
  | Cons ValAbs ValSetAbs               -- ^ map (ucon u) vs

Ben Gamari's avatar
Ben Gamari committed
131 132 133 134 135 136 137 138
-- | Pattern check result
--
-- * redundant clauses
-- * clauses with inaccessible RHS
-- * missing
type PmResult = ( [[LPat Id]]
                , [[LPat Id]]
                , [([PmExpr], [ComplexEq])] )
139

140 141 142 143 144 145 146
{-
%************************************************************************
%*                                                                      *
       Entry points to the checker: checkSingle and checkMatches
%*                                                                      *
%************************************************************************
-}
147

148 149 150 151
-- | Check a single pattern binding (let)
checkSingle :: Id -> Pat Id -> DsM PmResult
checkSingle var p = do
  let lp = [noLoc p]
152 153
  fam_insts <- dsGetFamInstEnvs
  vec <- liftUs (translatePat fam_insts p)
154
  vsa <- initial_uncovered [var]
155
  (c,d,us') <- patVectProc False (vec,[]) vsa -- no guards
156 157 158 159 160 161 162
  us <- pruneVSA us'
  return $ case (c,d) of
    (True,  _)     -> ([],   [],   us)
    (False, True)  -> ([],   [lp], us)
    (False, False) -> ([lp], [],   us)

-- | Check a matchgroup (case, functions, etc.)
163 164
checkMatches :: Bool -> [Id] -> [LMatch Id (LHsExpr Id)] -> DsM PmResult
checkMatches oversimplify vars matches
165 166 167 168 169
  | null matches = return ([],[],[])
  | otherwise    = do
      missing    <- initial_uncovered vars
      (rs,is,us) <- go matches missing
      return (map hsLMatchPats rs, map hsLMatchPats is, us)
170
  where
171 172 173 174 175
    go [] missing = do
      missing' <- pruneVSA missing
      return ([], [], missing')

    go (m:ms) missing = do
176 177
      fam_insts     <- dsGetFamInstEnvs
      clause        <- liftUs (translateMatch fam_insts m)
178
      (c,  d,  us ) <- patVectProc oversimplify clause missing
179 180 181 182 183 184 185 186 187 188
      (rs, is, us') <- go ms us
      return $ case (c,d) of
        (True,  _)     -> (  rs,   is, us')
        (False, True)  -> (  rs, m:is, us')
        (False, False) -> (m:rs,   is, us')

-- | Generate the initial uncovered set. It initializes the
-- delta with all term and type constraints in scope.
initial_uncovered :: [Id] -> DsM ValSetAbs
initial_uncovered vars = do
189 190 191 192 193 194 195 196 197
  cs <- getCsPmM
  let vsa = foldr Cons Singleton (map PmVar vars)
  return $ if null cs then vsa
                      else mkConstraint cs vsa

-- | Collect all term and type constraints from the local environment
getCsPmM :: DsM [PmConstraint]
getCsPmM = do
  ty_cs <- bagToList <$> getDictsDs
198
  tm_cs <- map simpleToTmCs . bagToList <$> getTmCsDs
199 200 201
  return $ if null ty_cs
    then tm_cs
    else TyConstraint ty_cs : tm_cs
202 203 204
  where
    simpleToTmCs :: (Id, PmExpr) -> PmConstraint
    simpleToTmCs (x,e) = TmConstraint (PmExprVar x) e
205 206 207 208 209 210 211 212 213 214

-- | Total number of guards in a translated match that could fail.
noFailingGuards :: [(PatVec,[PatVec])] -> Int
noFailingGuards clauses = sum [ countPatVecs gvs | (_, gvs) <- clauses ]
  where
    countPatVec  gv  = length [ () | p <- gv, not (cantFailPattern p) ]
    countPatVecs gvs = sum [ countPatVec gv | gv <- gvs ]

computeNoGuards :: [LMatch Id (LHsExpr Id)] -> PmM Int
computeNoGuards matches = do
215 216
  fam_insts <- dsGetFamInstEnvs
  matches' <- mapM (liftUs . translateMatch fam_insts) matches
217 218 219 220 221
  return (noFailingGuards matches')

maximum_failing_guards :: Int
maximum_failing_guards = 20 -- Find a better number

Austin Seipp's avatar
Austin Seipp committed
222
{-
223 224 225 226 227
%************************************************************************
%*                                                                      *
              Transform source syntax to *our* syntax
%*                                                                      *
%************************************************************************
Austin Seipp's avatar
Austin Seipp committed
228
-}
sof's avatar
sof committed
229

230 231 232 233 234
-- -----------------------------------------------------------------------
-- * Utilities

nullaryConPattern :: DataCon -> Pattern
-- Nullary data constructor and nullary type constructor
235
nullaryConPattern con =
236 237 238 239 240 241 242 243
  PmCon { pm_con_con = con, pm_con_arg_tys = []
        , pm_con_tvs = [], pm_con_dicts = [], pm_con_args = [] }

truePattern :: Pattern
truePattern = nullaryConPattern trueDataCon

-- | A fake guard pattern (True <- _) used to represent cases we cannot handle
fake_pat :: Pattern
244 245
fake_pat = PmGrd { pm_grd_pv   = [truePattern]
                 , pm_grd_expr = PmExprOther EWildPat }
246 247 248

vanillaConPattern :: DataCon -> [Type] -> PatVec -> Pattern
-- ADT constructor pattern => no existentials, no local constraints
249
vanillaConPattern con arg_tys args =
250 251 252 253
  PmCon { pm_con_con = con, pm_con_arg_tys = arg_tys
        , pm_con_tvs = [], pm_con_dicts = [], pm_con_args = args }

nilPattern :: Type -> Pattern
254
nilPattern ty =
255 256 257 258 259
  PmCon { pm_con_con = nilDataCon, pm_con_arg_tys = [ty]
        , pm_con_tvs = [], pm_con_dicts = []
        , pm_con_args = [] }

mkListPatVec :: Type -> PatVec -> PatVec -> PatVec
260 261 262 263
mkListPatVec ty xs ys = [PmCon { pm_con_con = consDataCon
                               , pm_con_arg_tys = [ty]
                               , pm_con_tvs = [], pm_con_dicts = []
                               , pm_con_args = xs++ys }]
264 265

mkLitPattern :: HsLit -> Pattern
266
mkLitPattern lit = PmLit { pm_lit_lit = PmSLit lit }
267 268 269 270

-- -----------------------------------------------------------------------
-- * Transform (Pat Id) into of (PmPat Id)

271 272
translatePat :: FamInstEnvs -> Pat Id -> UniqSM PatVec
translatePat fam_insts pat = case pat of
273 274
  WildPat ty  -> mkPmVarsSM [ty]
  VarPat  id  -> return [PmVar (unLoc id)]
275
  ParPat p    -> translatePat fam_insts (unLoc p)
276
  LazyPat _   -> mkPmVarsSM [hsPatType pat] -- like a variable
277 278

  -- ignore strictness annotations for now
279
  BangPat p   -> translatePat fam_insts (unLoc p)
280 281 282

  AsPat lid p -> do
     -- Note [Translating As Patterns]
283
    ps <- translatePat fam_insts (unLoc p)
284
    let [e] = map valAbsToPmExpr (coercePatVec ps)
285
        g   = PmGrd [PmVar (unLoc lid)] e
286 287
    return (ps ++ [g])

288
  SigPatOut p _ty -> translatePat fam_insts (unLoc p)
289

290 291
  -- See Note [Translate CoPats]
  CoPat wrapper p ty
292 293
    | isIdHsWrapper wrapper                   -> translatePat fam_insts p
    | WpCast co <-  wrapper, isReflexiveCo co -> translatePat fam_insts p
294
    | otherwise -> do
295
        ps      <- translatePat fam_insts p
296 297 298
        (xp,xe) <- mkPmId2FormsSM ty
        let g = mkGuard ps (HsWrap wrapper (unLoc xe))
        return [xp,g]
299 300

  -- (n + k)  ===>   x (True <- x >= k) (n <- x-k)
301 302 303 304 305 306
  NPlusKPat (L _ n) k1 k2 ge minus ty -> do
    (xp, xe) <- mkPmId2FormsSM ty
    let ke1 = L (getLoc k1) (HsOverLit (unLoc k1))
        ke2 = L (getLoc k1) (HsOverLit k2)
        g1 = mkGuard [truePattern] (unLoc $ nlHsSyntaxApps ge    [xe, ke1])
        g2 = mkGuard [PmVar n]     (unLoc $ nlHsSyntaxApps minus [xe, ke2])
307 308 309 310
    return [xp, g1, g2]

  -- (fun -> pat)   ===>   x (pat <- fun x)
  ViewPat lexpr lpat arg_ty -> do
311
    ps <- translatePat fam_insts (unLoc lpat)
312 313 314 315 316 317 318
    -- See Note [Guards and Approximation]
    case all cantFailPattern ps of
      True  -> do
        (xp,xe) <- mkPmId2FormsSM arg_ty
        let g = mkGuard ps (HsApp lexpr xe)
        return [xp,g]
      False -> do
319
        var <- mkPmVarSM arg_ty
320 321 322 323
        return [var, fake_pat]

  -- list
  ListPat ps ty Nothing -> do
324
    foldr (mkListPatVec ty) [nilPattern ty] <$> translatePatVec fam_insts (map unLoc ps)
325 326 327

  -- overloaded list
  ListPat lpats elem_ty (Just (pat_ty, _to_list))
328 329 330 331
    | Just e_ty <- splitListTyConApp_maybe pat_ty
    , (_, norm_elem_ty) <- normaliseType fam_insts Nominal elem_ty
         -- elem_ty is frequently something like `Item [Int]`, but we prefer `Int`
    , norm_elem_ty `eqType` e_ty ->
332 333 334
        -- We have to ensure that the element types are exactly the same.
        -- Otherwise, one may give an instance IsList [Int] (more specific than
        -- the default IsList [a]) with a different implementation for `toList'
335
        translatePat fam_insts (ListPat lpats e_ty Nothing)
336 337
    | otherwise -> do
        -- See Note [Guards and Approximation]
338
        var <- mkPmVarSM pat_ty
339 340 341 342 343 344 345 346 347
        return [var, fake_pat]

  ConPatOut { pat_con = L _ (PatSynCon _) } -> do
    -- Pattern synonyms have a "matcher"
    -- (see Note [Pattern synonym representation] in PatSyn.hs
    -- We should be able to transform (P x y)
    -- to   v (Just (x, y) <- matchP v (\x y -> Just (x,y)) Nothing
    -- That is, a combination of a variable pattern and a guard
    -- But there are complications with GADTs etc, and this isn't done yet
348
    var <- mkPmVarSM (hsPatType pat)
349 350 351 352 353 354 355
    return [var,fake_pat]

  ConPatOut { pat_con     = L _ (RealDataCon con)
            , pat_arg_tys = arg_tys
            , pat_tvs     = ex_tvs
            , pat_dicts   = dicts
            , pat_args    = ps } -> do
356
    args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
357 358 359 360 361
    return [PmCon { pm_con_con     = con
                  , pm_con_arg_tys = arg_tys
                  , pm_con_tvs     = ex_tvs
                  , pm_con_dicts   = dicts
                  , pm_con_args    = args }]
362

363
  NPat (L _ ol) mb_neg _eq ty -> translateNPat fam_insts ol mb_neg ty
364 365 366 367 368

  LitPat lit
      -- If it is a string then convert it to a list of characters
    | HsString src s <- lit ->
        foldr (mkListPatVec charTy) [nilPattern charTy] <$>
369
          translatePatVec fam_insts (map (LitPat . HsChar src) (unpackFS s))
370 371 372
    | otherwise -> return [mkLitPattern lit]

  PArrPat ps ty -> do
373
    tidy_ps <- translatePatVec fam_insts (map unLoc ps)
374 375 376 377
    let fake_con = parrFakeCon (length ps)
    return [vanillaConPattern fake_con [ty] (concat tidy_ps)]

  TuplePat ps boxity tys -> do
378
    tidy_ps <- translatePatVec fam_insts (map unLoc ps)
379 380 381 382 383 384 385 386 387 388
    let tuple_con = tupleDataCon boxity (length ps)
    return [vanillaConPattern tuple_con tys (concat tidy_ps)]

  -- --------------------------------------------------------------------------
  -- Not supposed to happen
  ConPatIn  {} -> panic "Check.translatePat: ConPatIn"
  SplicePat {} -> panic "Check.translatePat: SplicePat"
  SigPatIn  {} -> panic "Check.translatePat: SigPatIn"

-- | Translate an overloaded literal (see `tidyNPat' in deSugar/MatchLit.hs)
389 390 391 392 393 394 395 396 397
translateNPat :: FamInstEnvs
              -> HsOverLit Id -> Maybe (SyntaxExpr Id) -> Type -> UniqSM PatVec
translateNPat fam_insts (OverLit val False _ ty) mb_neg outer_ty
  | not type_change, isStringTy ty, HsIsString src s <- val, Nothing <- mb_neg
  = translatePat fam_insts (LitPat (HsString src s))
  | not type_change, isIntTy    ty, HsIntegral src i <- val
  = translatePat fam_insts (mk_num_lit HsInt src i)
  | not type_change, isWordTy   ty, HsIntegral src i <- val
  = translatePat fam_insts (mk_num_lit HsWordPrim src i)
398
  where
399
    type_change = not (outer_ty `eqType` ty)
400 401 402
    mk_num_lit c src i = LitPat $ case mb_neg of
      Nothing -> c src i
      Just _  -> c src (-i)
403
translateNPat _ ol mb_neg _
404
  = return [PmLit { pm_lit_lit = PmOLit (isJust mb_neg) ol }]
405 406 407

-- | Translate a list of patterns (Note: each pattern is translated
-- to a pattern vector but we do not concatenate the results).
408 409
translatePatVec :: FamInstEnvs -> [Pat Id] -> UniqSM [PatVec]
translatePatVec fam_insts pats = mapM (translatePat fam_insts) pats
410

411
translateConPatVec :: FamInstEnvs -> [Type] -> [TyVar]
412
                   -> DataCon -> HsConPatDetails Id -> UniqSM PatVec
413 414 415 416 417
translateConPatVec fam_insts _univ_tys _ex_tvs _ (PrefixCon ps)
  = concat <$> translatePatVec fam_insts (map unLoc ps)
translateConPatVec fam_insts _univ_tys _ex_tvs _ (InfixCon p1 p2)
  = concat <$> translatePatVec fam_insts (map unLoc [p1,p2])
translateConPatVec fam_insts  univ_tys  ex_tvs c (RecCon (HsRecFields fs _))
418
    -- Nothing matched. Make up some fresh term variables
419
  | null fs        = mkPmVarsSM arg_tys
420 421 422
    -- The data constructor was not defined using record syntax. For the
    -- pattern to be in record syntax it should be empty (e.g. Just {}).
    -- So just like the previous case.
423
  | null orig_lbls = ASSERT(null matched_lbls) mkPmVarsSM arg_tys
424 425 426 427
    -- Some of the fields appear, in the original order (there may be holes).
    -- Generate a simple constructor pattern and make up fresh variables for
    -- the rest of the fields
  | matched_lbls `subsetOf` orig_lbls
Ben Gamari's avatar
Ben Gamari committed
428
  = ASSERT(length orig_lbls == length arg_tys)
429
      let translateOne (lbl, ty) = case lookup lbl matched_pats of
430
            Just p  -> translatePat fam_insts p
431
            Nothing -> mkPmVarsSM [ty]
432 433 434 435 436
      in  concatMapM translateOne (zip orig_lbls arg_tys)
    -- The fields that appear are not in the correct order. Make up fresh
    -- variables for all fields and add guards after matching, to force the
    -- evaluation in the correct order.
  | otherwise = do
437
      arg_var_pats    <- mkPmVarsSM arg_tys
438
      translated_pats <- forM matched_pats $ \(x,pat) -> do
439
        pvec <- translatePat fam_insts pat
440 441
        return (x, pvec)

442
      let zipped = zip orig_lbls [ x | PmVar x <- arg_var_pats ]
443
          guards = map (\(name,pvec) -> case lookup name zipped of
444
                            Just x  -> PmGrd pvec (PmExprVar x)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                            Nothing -> panic "translateConPatVec: lookup")
                       translated_pats

      return (arg_var_pats ++ guards)
  where
    -- The actual argument types (instantiated)
    arg_tys = dataConInstOrigArgTys c (univ_tys ++ mkTyVarTys ex_tvs)

    -- Some label information
    orig_lbls    = map flSelector $ dataConFieldLabels c
    matched_pats = [ (getName (unLoc (hsRecFieldId x)), unLoc (hsRecFieldArg x))
                   | L _ x <- fs]
    matched_lbls = [ name | (name, _pat) <- matched_pats ]

    subsetOf :: Eq a => [a] -> [a] -> Bool
    subsetOf []     _  = True
    subsetOf (_:_)  [] = False
    subsetOf (x:xs) (y:ys)
      | x == y    = subsetOf    xs  ys
      | otherwise = subsetOf (x:xs) ys

466 467 468 469
translateMatch :: FamInstEnvs -> LMatch Id (LHsExpr Id) -> UniqSM (PatVec,[PatVec])
translateMatch fam_insts (L _ (Match _ lpats _ grhss)) = do
  pats'   <- concat <$> translatePatVec fam_insts pats
  guards' <- mapM (translateGuards fam_insts) guards
470 471 472 473 474 475 476 477 478 479 480 481
  return (pats', guards')
  where
    extractGuards :: LGRHS Id (LHsExpr Id) -> [GuardStmt Id]
    extractGuards (L _ (GRHS gs _)) = map unLoc gs

    pats   = map unLoc lpats
    guards = map extractGuards (grhssGRHSs grhss)

-- -----------------------------------------------------------------------
-- * Transform source guards (GuardStmt Id) to PmPats (Pattern)

-- | Translate a list of guard statements to a pattern vector
482 483 484
translateGuards :: FamInstEnvs -> [GuardStmt Id] -> UniqSM PatVec
translateGuards fam_insts guards = do
  all_guards <- concat <$> mapM (translateGuard fam_insts) guards
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  return (replace_unhandled all_guards)
  -- It should have been (return $ all_guards) but it is too expressive.
  -- Since the term oracle does not handle all constraints we generate,
  -- we (hackily) replace all constraints the oracle cannot handle with a
  -- single one (we need to know if there is a possibility of falure).
  -- See Note [Guards and Approximation] for all guard-related approximations
  -- we implement.
  where
    replace_unhandled :: PatVec -> PatVec
    replace_unhandled gv
      | any_unhandled gv = fake_pat : [ p | p <- gv, shouldKeep p ]
      | otherwise        = gv

    any_unhandled :: PatVec -> Bool
    any_unhandled gv = any (not . shouldKeep) gv

    shouldKeep :: Pattern -> Bool
502
    shouldKeep p
503 504 505
      | PmVar {} <- p      = True
      | PmCon {} <- p      = length (allConstructors (pm_con_con p)) == 1
                             && all shouldKeep (pm_con_args p)
506
    shouldKeep (PmGrd pv e)
507 508 509 510 511 512
      | all shouldKeep pv  = True
      | isNotPmExprOther e = True  -- expensive but we want it
    shouldKeep _other_pat  = False -- let the rest..

-- | Check whether a pattern can fail to match
cantFailPattern :: Pattern -> Bool
513
cantFailPattern p
514 515 516
  | PmVar {} <- p = True
  | PmCon {} <- p = length (allConstructors (pm_con_con p)) == 1
                    && all cantFailPattern (pm_con_args p)
517
cantFailPattern (PmGrd pv _e)
518 519 520 521
                  = all cantFailPattern pv
cantFailPattern _ = False

-- | Translate a guard statement to Pattern
522 523 524 525 526 527 528 529 530
translateGuard :: FamInstEnvs -> GuardStmt Id -> UniqSM PatVec
translateGuard _         (BodyStmt   e _ _ _) = translateBoolGuard e
translateGuard _         (LetStmt      binds) = translateLet (unLoc binds)
translateGuard fam_insts (BindStmt p e _ _ _) = translateBind fam_insts p e
translateGuard _         (LastStmt        {}) = panic "translateGuard LastStmt"
translateGuard _         (ParStmt         {}) = panic "translateGuard ParStmt"
translateGuard _         (TransStmt       {}) = panic "translateGuard TransStmt"
translateGuard _         (RecStmt         {}) = panic "translateGuard RecStmt"
translateGuard _         (ApplicativeStmt {}) = panic "translateGuard ApplicativeLastStmt"
531 532 533 534 535 536

-- | Translate let-bindings
translateLet :: HsLocalBinds Id -> UniqSM PatVec
translateLet _binds = return []

-- | Translate a pattern guard
537 538 539
translateBind :: FamInstEnvs -> LPat Id -> LHsExpr Id -> UniqSM PatVec
translateBind fam_insts (L _ p) e = do
  ps <- translatePat fam_insts p
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  return [mkGuard ps (unLoc e)]

-- | Translate a boolean guard
translateBoolGuard :: LHsExpr Id -> UniqSM PatVec
translateBoolGuard e
  | isJust (isTrueLHsExpr e) = return []
    -- The formal thing to do would be to generate (True <- True)
    -- but it is trivial to solve so instead we give back an empty
    -- PatVec for efficiency
  | otherwise = return [mkGuard [truePattern] (unLoc e)]

{- Note [Guards and Approximation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if the algorithm is really expressive, the term oracle we use is not.
Hence, several features are not translated *properly* but we approximate.
The list includes:

1. View Patterns
----------------
A view pattern @(f -> p)@ should be translated to @x (p <- f x)@. The term
oracle does not handle function applications so we know that the generated
constraints will not be handled at the end. Hence, we distinguish between two
cases:
  a) Pattern @p@ cannot fail. Then this is just a binding and we do the *right
     thing*.
  b) Pattern @p@ can fail. This means that when checking the guard, we will
     generate several cases, with no useful information. E.g.:

       h (f -> [a,b]) = ...
       h x ([a,b] <- f x) = ...

       uncovered set = { [x |> { False ~ (f x ~ [])            }]
                       , [x |> { False ~ (f x ~ (t1:[]))       }]
                       , [x |> { False ~ (f x ~ (t1:t2:t3:t4)) }] }

     So we have two problems:
       1) Since we do not print the constraints in the general case (they may
          be too many), the warning will look like this:

            Pattern match(es) are non-exhaustive
            In an equation for `h':
                Patterns not matched:
                    _
                    _
                    _
          Which is not short and not more useful than a single underscore.
       2) The size of the uncovered set increases a lot, without gaining more
          expressivity in our warnings.

     Hence, in this case, we replace the guard @([a,b] <- f x)@ with a *dummy*
     @fake_pat@: @True <- _@. That is, we record that there is a possibility
     of failure but we minimize it to a True/False. This generates a single
     warning and much smaller uncovered sets.

2. Overloaded Lists
-------------------
An overloaded list @[...]@ should be translated to @x ([...] <- toList x)@. The
problem is exactly like above, as its solution. For future reference, the code
below is the *right thing to do*:

   ListPat lpats elem_ty (Just (pat_ty, to_list))
     otherwise -> do
       (xp, xe) <- mkPmId2FormsSM pat_ty
       ps       <- translatePatVec (map unLoc lpats)
       let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
           g    = mkGuard pats (HsApp (noLoc to_list) xe)
       return [xp,g]

3. Overloaded Literals
----------------------
The case with literals is a bit different. a literal @l@ should be translated
to @x (True <- x == from l)@. Since we want to have better warnings for
overloaded literals as it is a very common feature, we treat them differently.
613 614
They are mainly covered in Note [Undecidable Equality on Overloaded Literals]
in PmExpr.
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

4. N+K Patterns & Pattern Synonyms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An n+k pattern (n+k) should be translated to @x (True <- x >= k) (n <- x-k)@.
Since the only pattern of the three that causes failure is guard @(n <- x-k)@,
and has two possible outcomes. Hence, there is no benefit in using a dummy and
we implement the proper thing. Pattern synonyms are simply not implemented yet.
Hence, to be conservative, we generate a dummy pattern, assuming that the
pattern can fail.

5. Actual Guards
----------------
During translation, boolean guards and pattern guards are translated properly.
Let bindings though are omitted by function @translateLet@. Since they are lazy
bindings, we do not actually want to generate a (strict) equality (like we do
in the pattern bind case). Hence, we safely drop them.

Additionally, top-level guard translation (performed by @translateGuards@)
replaces guards that cannot be reasoned about (like the ones we described in
1-4) with a single @fake_pat@ to record the possibility of failure to match.

636 637 638 639 640 641 642 643 644 645 646 647 648
Note [Translate CoPats]
~~~~~~~~~~~~~~~~~~~~~~~
The pattern match checker did not know how to handle coerced patterns `CoPat`
efficiently, which gave rise to #11276. The original approach translated
`CoPat`s:

    pat |> co    ===>    x (pat <- (e |> co))

Instead, we now check whether the coercion is a hole or if it is just refl, in
which case we can drop it. Unfortunately, data families generate useful
coercions so guards are still generated in these cases and checking data
families is not really efficient.

649 650 651 652 653 654
%************************************************************************
%*                                                                      *
                    Main Pattern Matching Check
%*                                                                      *
%************************************************************************
-}
sof's avatar
sof committed
655

656 657 658 659
-- ----------------------------------------------------------------------------
-- * Process a vector

-- Covered, Uncovered, Divergent
660 661 662 663
process_guards :: UniqSupply -> Bool -> [PatVec]
               -> (ValSetAbs, ValSetAbs, ValSetAbs)
process_guards _us _oversimplify [] = (Singleton, Empty, Empty) -- No guard
process_guards  us  oversimplify gs
664 665
  -- If we have a list of guards but one of them is empty (True by default)
  -- then we know that it is exhaustive (just a shortcut)
666 667 668 669 670
  | any null gs  = (Singleton, Empty, Singleton)
  -- If the user wants the same behaviour (almost no expressivity about guards)
  | oversimplify = go us Singleton [[fake_pat]] -- to signal failure
  -- If the user want the full reasoning (may be non-performant)
  | otherwise    = go us Singleton gs
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  where
    go _usupply missing []       = (Empty, missing, Empty)
    go  usupply missing (gv:gvs) = (mkUnion cs css, uss, mkUnion ds dss)
      where
        (us1, us2, us3, us4) = splitUniqSupply4 usupply

        cs = covered   us1 Singleton gv missing
        us = uncovered us2 Empty     gv missing
        ds = divergent us3 Empty     gv missing

        (css, uss, dss) = go us4 us gvs

-- ----------------------------------------------------------------------------
-- * Basic utilities

-- | Get the type out of a PmPat. For guard patterns (ps <- e) we use the type
-- of the first (or the single -WHEREVER IT IS- valid to use?) pattern
pmPatType :: PmPat p -> Type
pmPatType (PmCon { pm_con_con = con, pm_con_arg_tys = tys })
690
  = mkTyConApp (dataConTyCon con) tys
691 692 693 694
pmPatType (PmVar  { pm_var_id  = x }) = idType x
pmPatType (PmLit  { pm_lit_lit = l }) = pmLitType l
pmPatType (PmNLit { pm_lit_id  = x }) = idType x
pmPatType (PmGrd  { pm_grd_pv  = pv })
695 696
  = ASSERT(patVecArity pv == 1) (pmPatType p)
  where Just p = find ((==1) . patternArity) pv
697

698
mkOneConFull :: Id -> UniqSupply -> DataCon -> (ValAbs, [PmConstraint])
699 700 701 702 703 704 705 706 707 708 709 710 711 712
--  *  x :: T tys, where T is an algebraic data type
--     NB: in the case of a data familiy, T is the *representation* TyCon
--     e.g.   data instance T (a,b) = T1 a b
--       leads to
--            data TPair a b = T1 a b  -- The "representation" type
--       It is TPair, not T, that is given to mkOneConFull
--
--  * 'con' K is a constructor of data type T
--
-- After instantiating the universal tyvars of K we get
--          K tys :: forall bs. Q => s1 .. sn -> T tys
--
-- Results: ValAbs:          K (y1::s1) .. (yn::sn)
--          [PmConstraint]:  Q, x ~ K y1..yn
713

714 715
mkOneConFull x usupply con = (con_abs, constraints)
  where
sof's avatar
sof committed
716

717 718 719 720 721 722 723 724 725
    (usupply1, usupply2, usupply3) = splitUniqSupply3 usupply

    res_ty = idType x -- res_ty == TyConApp (dataConTyCon cabs_con) cabs_arg_tys
    (univ_tvs, ex_tvs, eq_spec, thetas, arg_tys, _) = dataConFullSig con
    data_tc = dataConTyCon con   -- The representation TyCon
    tc_args = case splitTyConApp_maybe res_ty of
                 Just (tc, tys) -> ASSERT( tc == data_tc ) tys
                 Nothing -> pprPanic "mkOneConFull: Not TyConApp:" (ppr res_ty)

niteria's avatar
niteria committed
726
    subst1  = zipTvSubst univ_tvs tc_args
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    (subst, ex_tvs') = cloneTyVarBndrs subst1 ex_tvs usupply1

    -- Fresh term variables (VAs) as arguments to the constructor
    arguments  = mkConVars usupply2 (substTys subst arg_tys)
    -- All constraints bound by the constructor (alpha-renamed)
    theta_cs   = substTheta subst (eqSpecPreds eq_spec ++ thetas)
    evvars     = zipWith (nameType "pm") (listSplitUniqSupply usupply3) theta_cs
    con_abs    = PmCon { pm_con_con     = con
                       , pm_con_arg_tys = tc_args
                       , pm_con_tvs     = ex_tvs'
                       , pm_con_dicts   = evvars
                       , pm_con_args    = arguments }

    constraints -- term and type constraints
742 743
      | null evvars = [ TmConstraint (PmExprVar x) (valAbsToPmExpr con_abs) ]
      | otherwise   = [ TmConstraint (PmExprVar x) (valAbsToPmExpr con_abs)
744 745 746
                      , TyConstraint evvars ]

mkConVars :: UniqSupply -> [Type] -> [ValAbs] -- ys, fresh with the given type
747
mkConVars us tys = zipWith mkPmVar (listSplitUniqSupply us) tys
748 749 750 751 752 753 754 755 756 757

tailVSA :: ValSetAbs -> ValSetAbs
tailVSA Empty               = Empty
tailVSA Singleton           = panic "tailVSA: Singleton"
tailVSA (Union vsa1 vsa2)   = tailVSA vsa1 `mkUnion` tailVSA vsa2
tailVSA (Constraint cs vsa) = cs `mkConstraint` tailVSA vsa
tailVSA (Cons _ vsa)        = vsa -- actual work

wrapK :: DataCon -> [Type] -> [TyVar] -> [EvVar] -> ValSetAbs -> ValSetAbs
wrapK con arg_tys ex_tvs dicts = go (dataConSourceArity con) emptylist
sof's avatar
sof committed
758
  where
759 760
    go :: Int -> DList ValAbs -> ValSetAbs -> ValSetAbs
    go _ _    Empty = Empty
761 762 763
    go 0 args vsa   = PmCon { pm_con_con  = con, pm_con_arg_tys = arg_tys
                            , pm_con_tvs  = ex_tvs, pm_con_dicts = dicts
                            , pm_con_args = toList args } `mkCons` vsa
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    go _ _    Singleton           = panic "wrapK: Singleton"
    go n args (Cons vs vsa)       = go (n-1) (args `snoc` vs) vsa
    go n args (Constraint cs vsa) = cs `mkConstraint` go n args vsa
    go n args (Union vsa1 vsa2)   = go n args vsa1 `mkUnion` go n args vsa2

newtype DList a = DL { unDL :: [a] -> [a] }

toList :: DList a -> [a]
toList = ($[]) . unDL
{-# INLINE toList #-}

emptylist :: DList a
emptylist = DL id
{-# INLINE emptylist #-}

infixl `snoc`
snoc :: DList a -> a -> DList a
snoc xs x = DL (unDL xs . (x:))
{-# INLINE snoc #-}

-- ----------------------------------------------------------------------------
-- * Smart Value Set Abstraction Constructors
-- (NB: An empty value set can only be represented as `Empty')

-- | The smart constructor for Constraint (maintains VsaInvariant)
mkConstraint :: [PmConstraint] -> ValSetAbs -> ValSetAbs
mkConstraint _cs Empty                = Empty
mkConstraint cs1 (Constraint cs2 vsa) = Constraint (cs1++cs2) vsa
mkConstraint cs  other_vsa            = Constraint cs other_vsa

-- | The smart constructor for Union (maintains VsaInvariant)
mkUnion :: ValSetAbs -> ValSetAbs -> ValSetAbs
mkUnion Empty vsa = vsa
mkUnion vsa Empty = vsa
mkUnion vsa1 vsa2 = Union vsa1 vsa2

-- | The smart constructor for Cons (maintains VsaInvariant)
mkCons :: ValAbs -> ValSetAbs -> ValSetAbs
mkCons _ Empty = Empty
mkCons va vsa  = Cons va vsa

-- ----------------------------------------------------------------------------
-- * More smart constructors and fresh variable generation

mkGuard :: PatVec -> HsExpr Id -> Pattern
809
mkGuard pv e = PmGrd pv (hsExprToPmExpr e)
810 811 812 813

mkPmVar :: UniqSupply -> Type -> PmPat p
mkPmVar usupply ty = PmVar (mkPmId usupply ty)

814 815
mkPmVarSM :: Type -> UniqSM Pattern
mkPmVarSM ty = flip mkPmVar ty <$> getUniqueSupplyM
816

817 818
mkPmVarsSM :: [Type] -> UniqSM PatVec
mkPmVarsSM tys = mapM mkPmVarSM tys
819 820 821

mkPmId :: UniqSupply -> Type -> Id
mkPmId usupply ty = mkLocalId name ty
sof's avatar
sof committed
822
  where
823 824 825 826 827 828 829 830
    unique  = uniqFromSupply usupply
    occname = mkVarOccFS (fsLit (show unique))
    name    = mkInternalName unique occname noSrcSpan

mkPmId2FormsSM :: Type -> UniqSM (Pattern, LHsExpr Id)
mkPmId2FormsSM ty = do
  us <- getUniqueSupplyM
  let x = mkPmId us ty
831
  return (PmVar x, noLoc (HsVar (noLoc x)))
832 833 834 835 836

-- ----------------------------------------------------------------------------
-- * Converting between Value Abstractions, Patterns and PmExpr

valAbsToPmExpr :: ValAbs -> PmExpr
837
valAbsToPmExpr (PmCon  { pm_con_con = c, pm_con_args = ps })
838
  = PmExprCon c (map valAbsToPmExpr ps)
839 840 841
valAbsToPmExpr (PmVar  { pm_var_id  = x }) = PmExprVar x
valAbsToPmExpr (PmLit  { pm_lit_lit = l }) = PmExprLit l
valAbsToPmExpr (PmNLit { pm_lit_id  = x }) = PmExprVar x
842 843 844

-- Convert a pattern vector to a value list abstraction by dropping the guards
-- recursively (See Note [Translating As Patterns])
845 846
coercePatVec :: PatVec -> ValVecAbs
coercePatVec pv = concatMap coercePmPat pv
847

848 849 850
coercePmPat :: Pattern -> [ValAbs]
coercePmPat (PmVar { pm_var_id  = x }) = [PmVar { pm_var_id  = x }]
coercePmPat (PmLit { pm_lit_lit = l }) = [PmLit { pm_lit_lit = l }]
851 852 853
coercePmPat (PmCon { pm_con_con = con, pm_con_arg_tys = arg_tys
                   , pm_con_tvs = tvs, pm_con_dicts = dicts
                   , pm_con_args = args })
854 855 856 857
  = [PmCon { pm_con_con  = con, pm_con_arg_tys = arg_tys
           , pm_con_tvs  = tvs, pm_con_dicts = dicts
           , pm_con_args = coercePatVec args }]
coercePmPat (PmGrd {}) = [] -- drop the guards
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

-- Get all constructors in the family (including given)
allConstructors :: DataCon -> [DataCon]
allConstructors = tyConDataCons . dataConTyCon

-- -----------------------------------------------------------------------
-- * Types and constraints

newEvVar :: Name -> Type -> EvVar
newEvVar name ty = mkLocalId name (toTcType ty)

nameType :: String -> UniqSupply -> Type -> EvVar
nameType name usupply ty = newEvVar idname ty
  where
    unique  = uniqFromSupply usupply
    occname = mkVarOccFS (fsLit (name++"_"++show unique))
    idname  = mkInternalName unique occname noSrcSpan

-- | Partition the constraints to type cs, term cs and forced variables
877
splitConstraints :: [PmConstraint] -> ([EvVar], [(PmExpr, PmExpr)], Maybe Id)
878 879 880
splitConstraints [] = ([],[],Nothing)
splitConstraints (c : rest)
  = case c of
881 882
      TyConstraint cs    -> (cs ++ ty_cs, tm_cs, bot_cs)
      TmConstraint e1 e2 -> (ty_cs, (e1,e2):tm_cs, bot_cs)
Ben Gamari's avatar
Ben Gamari committed
883 884
      BtConstraint cs    -> ASSERT(isNothing bot_cs) -- NB: Only one x ~ _|_
                                  (ty_cs, tm_cs, Just cs)
885 886
  where
    (ty_cs, tm_cs, bot_cs) = splitConstraints rest
sof's avatar
sof committed
887

Austin Seipp's avatar
Austin Seipp committed
888
{-
889 890 891 892 893
%************************************************************************
%*                                                                      *
                              The oracles
%*                                                                      *
%************************************************************************
Austin Seipp's avatar
Austin Seipp committed
894
-}
sof's avatar
sof committed
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
-- | Check whether at least a path in a value set
-- abstraction has satisfiable constraints.
anySatVSA :: ValSetAbs -> PmM Bool
anySatVSA vsa = notNull <$> pruneVSABound 1 vsa

pruneVSA :: ValSetAbs -> PmM [([PmExpr], [ComplexEq])]
-- Prune a Value Set abstraction, keeping only as many as we are going to print
-- plus one more. We need the additional one to be able to print "..." when the
-- uncovered are too many.
pruneVSA vsa = pruneVSABound (maximum_output+1) vsa

-- | Apply a term substitution to a value vector abstraction. All VAs are
-- transformed to PmExpr (used only before pretty printing).
substInValVecAbs :: PmVarEnv -> ValVecAbs -> [PmExpr]
substInValVecAbs subst = map (exprDeepLookup subst . valAbsToPmExpr)

mergeBotCs :: Maybe Id -> Maybe Id -> Maybe Id
mergeBotCs (Just x) Nothing  = Just x
mergeBotCs Nothing  (Just y) = Just y
mergeBotCs Nothing  Nothing  = Nothing
mergeBotCs (Just _) (Just _) = panic "mergeBotCs: two (x ~ _|_) constraints"

-- | Wrap up the term oracle's state once solving is complete. Drop any
-- information about unhandled constraints (involving HsExprs) and flatten
-- (height 1) the substitution.
wrapUpTmState :: TmState -> ([ComplexEq], PmVarEnv)
wrapUpTmState (residual, (_, subst)) = (residual, flattenPmVarEnv subst)

-- | Prune all paths in a value set abstraction with inconsistent constraints.
-- Returns only `n' value vector abstractions, when `n' is given as an argument.
pruneVSABound :: Int -> ValSetAbs -> PmM [([PmExpr], [ComplexEq])]
pruneVSABound n v = go n init_cs emptylist v
  where
    init_cs :: ([EvVar], TmState, Maybe Id)
    init_cs = ([], initialTmState, Nothing)

    go :: Int -> ([EvVar], TmState, Maybe Id) -> DList ValAbs
       -> ValSetAbs -> PmM [([PmExpr], [ComplexEq])]
    go n all_cs@(ty_cs, tm_env, bot_ct) vec in_vsa
      | n <= 0    = return [] -- no need to keep going
      | otherwise = case in_vsa of
          Empty -> return []
          Union vsa1 vsa2 -> do
            vecs1 <- go n                  all_cs vec vsa1
            vecs2 <- go (n - length vecs1) all_cs vec vsa2
            return (vecs1 ++ vecs2)
942 943 944 945 946 947 948 949
          Singleton -> do
            -- TODO: Provide an incremental interface for the type oracle
            sat <- tyOracle (listToBag ty_cs)
            return $ case sat of
              True  -> let (residual_eqs, subst) = wrapUpTmState tm_env
                           vector = substInValVecAbs subst (toList vec)
                       in  [(vector, residual_eqs)]
              False -> []
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

          Constraint cs vsa -> case splitConstraints cs of
            (new_ty_cs, new_tm_cs, new_bot_ct) ->
              case tmOracle tm_env new_tm_cs of
                Just new_tm_env ->
                  let bot = mergeBotCs new_bot_ct bot_ct
                      ans = case bot of
                              Nothing -> True                    -- covered
                              Just b  -> canDiverge b new_tm_env -- divergent
                  in  case ans of
                        True  -> go n (new_ty_cs++ty_cs,new_tm_env,bot) vec vsa
                        False -> return []
                Nothing -> return []
          Cons va vsa -> go n all_cs (vec `snoc` va) vsa

-- | This variable shows the maximum number of lines of output generated for
-- warnings. It will limit the number of patterns/equations displayed to
-- maximum_output. (TODO: add command-line option?)
maximum_output :: Int
maximum_output = 4

-- | Check whether a set of type constraints is satisfiable.
tyOracle :: Bag EvVar -> PmM Bool
tyOracle evs
  = do { ((_warns, errs), res) <- initTcDsForSolver $ tcCheckSatisfiability evs
       ; case res of
            Just sat -> return sat
            Nothing  -> pprPanic "tyOracle" (vcat $ pprErrMsgBagWithLoc errs) }
sof's avatar
sof committed
978

Austin Seipp's avatar
Austin Seipp committed
979
{-
980 981 982 983 984
%************************************************************************
%*                                                                      *
                             Sanity Checks
%*                                                                      *
%************************************************************************
Austin Seipp's avatar
Austin Seipp committed
985
-}
sof's avatar
sof committed
986

987
type PmArity = Int
sof's avatar
sof committed
988

989 990
patVecArity :: PatVec -> PmArity
patVecArity = sum . map patternArity
sof's avatar
sof committed
991

992
patternArity :: Pattern -> PmArity
993 994
patternArity (PmGrd {}) = 0
patternArity _other_pat = 1
sof's avatar
sof committed
995

Austin Seipp's avatar
Austin Seipp committed
996
{-
997 998 999 1000 1001
%************************************************************************
%*                                                                      *
            Heart of the algorithm: Function patVectProc
%*                                                                      *
%************************************************************************
Austin Seipp's avatar
Austin Seipp committed
1002
-}
sof's avatar
sof committed
1003

1004
-- | Process a single vector
1005 1006 1007
patVectProc :: Bool -> (PatVec, [PatVec]) -> ValSetAbs
            -> PmM (Bool, Bool, ValSetAbs)
patVectProc oversimplify (vec,gvs) vsa = do
1008
  us <- getUniqueSupplyM
1009
  let (c_def, u_def, d_def) = process_guards us oversimplify gvs
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  (usC, usU, usD) <- getUniqueSupplyM3
  mb_c <- anySatVSA (covered   usC c_def vec vsa)
  mb_d <- anySatVSA (divergent usD d_def vec vsa)
  let vsa' = uncovered usU u_def vec vsa
  return (mb_c, mb_d, vsa')

-- | Covered, Uncovered, Divergent
covered, uncovered, divergent :: UniqSupply -> ValSetAbs
                              -> PatVec -> ValSetAbs -> ValSetAbs
covered   us gvsa vec vsa = pmTraverse us gvsa cMatcher vec vsa
uncovered us gvsa vec vsa = pmTraverse us gvsa uMatcher vec vsa
divergent us gvsa vec vsa = pmTraverse us gvsa dMatcher vec vsa

-- ----------------------------------------------------------------------------
-- * Generic traversal function
--
-- | Because we represent Value Set Abstractions as a different datatype, more
-- cases than the ones described in the paper appear. Since they are the same
-- for all three functions (covered, uncovered, divergent), function
-- `pmTraverse' handles these cases (`pmTraverse' also takes care of the
-- Guard-Case since it is common for all). The actual work is done by functions
-- `cMatcher', `uMatcher' and `dMatcher' below.

pmTraverse :: UniqSupply
           -> ValSetAbs -- gvsa
           -> PmMatcher -- what to do
           -> PatVec
           -> ValSetAbs
           -> ValSetAbs
pmTraverse _us _gvsa _rec _vec Empty      = Empty
pmTraverse _us  gvsa _rec []   Singleton  = gvsa
pmTraverse _us _gvsa _rec []   (Cons _ _) = panic "pmTraverse: cons"
pmTraverse  us  gvsa  rec vec  (Union vsa1 vsa2)
  = mkUnion (pmTraverse us1 gvsa rec vec vsa1)
            (pmTraverse us2 gvsa rec vec vsa2)
  where (us1, us2) = splitUniqSupply us
pmTraverse us gvsa rec vec (Constraint cs vsa)
  = mkConstraint cs (pmTraverse us gvsa rec vec vsa)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
pmTraverse us gvsa rec (p:ps) vsa
  | PmGrd pv e <- p
  = -- Guard Case
    let (us1, us2) = splitUniqSupply us
        y  = mkPmId us1 (pmPatType p)
        cs = [TmConstraint (PmExprVar y) e]
    in  mkConstraint cs $ tailVSA $
          pmTraverse us2 gvsa rec (pv++ps) (PmVar y `mkCons` vsa)

  -- Constructor/Variable/Literal Case
  | Cons va vsa <- vsa = rec us gvsa p ps va vsa
  -- Impossible: length mismatch for ValSetAbs and PatVec
  | otherwise = panic "pmTraverse: singleton" -- can't be anything else
1061 1062 1063

type PmMatcher =  UniqSupply
               -> ValSetAbs
1064 1065
               -> Pattern -> PatVec    -- Vector head and tail
               -> ValAbs  -> ValSetAbs -- VSA    head and tail
1066 1067 1068 1069 1070 1071 1072 1073 1074
               -> ValSetAbs

cMatcher, uMatcher, dMatcher :: PmMatcher

-- cMatcher
-- ----------------------------------------------------------------------------

-- CVar
cMatcher us gvsa (PmVar x) ps va vsa
1075 1076
  = va `mkCons` (cs `mkConstraint` covered us gvsa ps vsa)
  where cs = [TmConstraint (PmExprVar x) (valAbsToPmExpr va)]
1077 1078 1079

-- CLitCon
cMatcher us gvsa (PmLit l) ps (va@(PmCon {})) vsa
1080 1081
  = va `mkCons` (cs `mkConstraint` covered us gvsa ps vsa)
  where cs = [ TmConstraint (PmExprLit l) (valAbsToPmExpr va) ]
1082 1083 1084 1085

-- CConLit
cMatcher us gvsa (p@(PmCon {})) ps (PmLit l) vsa
  = cMatcher us3 gvsa p ps con_abs (mkConstraint cs vsa)
sof's avatar
sof committed
1086
  where
1087 1088 1089
    (us1, us2, us3)   = splitUniqSupply3 us
    y                 = mkPmId us1 (pmPatType p)
    (con_abs, all_cs) = mkOneConFull y us2 (pm_con_con p)
1090
    cs = TmConstraint (PmExprVar y) (PmExprLit l) : all_cs
1091

1092 1093 1094 1095 1096 1097 1098 1099
-- CConNLit
cMatcher us gvsa (p@(PmCon { pm_con_con = con })) ps
                 (PmNLit { pm_lit_id = x }) vsa
  = cMatcher us2 gvsa p ps con_abs (mkConstraint all_cs vsa)
  where
    (us1, us2)        = splitUniqSupply us
    (con_abs, all_cs) = mkOneConFull x us1 con

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
-- CConCon
cMatcher us gvsa (p@(PmCon { pm_con_con = c1, pm_con_args = args1 })) ps
                    (PmCon { pm_con_con = c2, pm_con_args = args2 }) vsa
  | c1 /= c2  = Empty
  | otherwise = wrapK c1 (pm_con_arg_tys p)
                         (pm_con_tvs     p)
                         (pm_con_dicts   p)
                         (covered us gvsa (args1 ++ ps)
                                          (foldr mkCons vsa args2))

-- CLitLit
cMatcher us gvsa (PmLit l1) ps (va@(PmLit l2)) vsa = case eqPmLit l1 l2 of
1112
  -- See Note [Undecidable Equality for Overloaded Literals] in PmExpr
1113 1114
  True  -> va `mkCons` covered us gvsa ps vsa -- match
  False -> Empty                              -- mismatch
1115 1116 1117 1118 1119 1120 1121

-- CConVar
cMatcher us gvsa (p@(PmCon { pm_con_con = con })) ps (PmVar x) vsa
  = cMatcher us2 gvsa p ps con_abs (mkConstraint all_cs vsa)
  where
    (us1, us2)        = splitUniqSupply us
    (con_abs, all_cs) = mkOneConFull x us1 con
sof's avatar
sof committed
1122

1123 1124 1125 1126 1127
-- CLitVar
cMatcher us gvsa (p@(PmLit l)) ps (PmVar x) vsa
  = cMatcher us gvsa p ps lit_abs (mkConstraint cs vsa)
  where
    lit_abs = PmLit l
1128
    cs      = [TmConstraint (PmExprVar x) (PmExprLit l)]
sof's avatar
sof committed
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
-- CLitNLit
cMatcher us gvsa (p@(PmLit l)) ps
                 (PmNLit { pm_lit_id = x, pm_lit_not = lits }) vsa
  | all (not . eqPmLit l) lits
  = cMatcher us gvsa p ps lit_abs (mkConstraint cs vsa)
  | otherwise = Empty
  where
    lit_abs = PmLit l
    cs      = [TmConstraint (PmExprVar x) (PmExprLit l)]

1140 1141 1142
-- Impossible: handled by pmTraverse
cMatcher _ _ (PmGrd {}) _ _ _ = panic "Check.cMatcher: Guard"

1143 1144
-- uMatcher
-- ----------------------------------------------------------------------------
sof's avatar
sof committed
1145

1146 1147
-- UVar
uMatcher us gvsa (PmVar x) ps va vsa
1148 1149
  = va `mkCons` (cs `mkConstraint` uncovered us gvsa ps vsa)
  where cs = [TmConstraint (PmExprVar x) (valAbsToPmExpr va)]
sof's avatar
sof committed
1150

1151 1152 1153
-- ULitCon
uMatcher us gvsa (PmLit l) ps (va@(PmCon {})) vsa
  = uMatcher us2 gvsa (PmVar y) ps va (mkConstraint cs vsa)
1154
  where
1155 1156
    (us1, us2) = splitUniqSupply us
    y  = mkPmId us1 (pmPatType va)
1157
    cs = [TmConstraint (PmExprVar y) (PmExprLit l)]
sof's avatar
sof committed
1158

1159 1160 1161 1162 1163 1164
-- UConLit
uMatcher us gvsa (p@(PmCon {})) ps (PmLit l) vsa
  = uMatcher us2 gvsa p ps (PmVar y) (mkConstraint cs vsa)
  where
    (us1, us2) = splitUniqSupply us
    y  = mkPmId us1 (pmPatType p)
1165
    cs = [TmConstraint (PmExprVar y) (PmExprLit l)]
1166

1167 1168 1169 1170
-- UConNLit
uMatcher us gvsa (p@(PmCon {})) ps (PmNLit { pm_lit_id = x }) vsa
  = uMatcher us gvsa p ps (PmVar x) vsa

1171 1172 1173
-- UConCon
uMatcher us gvsa ( p@(PmCon { pm_con_con = c1, pm_con_args = args1 })) ps
                 (va