TcBinds.lhs 41.9 KB
Newer Older
1
%
2
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3 4 5 6
%
\section[TcBinds]{TcBinds}

\begin{code}
7 8 9
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun,
10
		 TcSigInfo(..),
11
		 badBootDeclErr ) where
12

13
#include "HsVersions.h"
14

ross's avatar
ross committed
15
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
16
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
17

18
import DynFlags		( DynFlag(Opt_MonomorphismRestriction, Opt_GlasgowExts) )
19 20 21 22 23
import HsSyn		( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
			  HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
			  LSig, Match(..), IPBind(..), Prag(..),
			  HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
			  isVanillaLSig, sigName, placeHolderNames, isPragLSig,
24
			  LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
25
			  collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
26
			)
27
import TcHsSyn		( zonkId )
28

29
import TcRnMonad
30
import Inst		( newDictsAtLoc, newIPDict, instToId )
31
import TcEnv		( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
32
			  pprBinders, tcLookupLocalId_maybe, tcLookupId,
33
			  tcGetGlobalTyVars )
34
import TcUnify		( tcInfer, tcSubExp, unifyTheta, 
35
			  bleatEscapedTvs, sigCtxt )
36 37
import TcSimplify	( tcSimplifyInfer, tcSimplifyInferCheck, 
			  tcSimplifyRestricted, tcSimplifyIPs )
38
import TcHsType		( tcHsSigType, UserTypeCtxt(..) )
39
import TcPat		( tcPat, PatCtxt(..) )
40
import TcSimplify	( bindInstsOfLocalFuns )
41 42 43 44 45
import TcMType		( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
			  tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
			  zonkTcType, zonkTcTypes, zonkTcTyVars )
import TcType		( TcType, TcTyVar, TcThetaType, 
			  SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
46
			  TcTauType, TcSigmaType, isUnboxedTupleType,
47
			  mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
48
			  mkForAllTy, isUnLiftedType, tcGetTyVar, 
49
			  mkTyVarTys, tidyOpenTyVar )
50
import Kind		( argTypeKind )
51 52
import VarEnv		( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
import TysWiredIn	( unitTy )
53
import TysPrim		( alphaTyVar )
54
import Id		( Id, mkLocalId, mkVanillaGlobal )
55
import IdInfo		( vanillaIdInfo )
56
import Var		( TyVar, idType, idName )
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
57
import Name		( Name )
58
import NameSet
59
import NameEnv
60
import VarSet
61
import SrcLoc		( Located(..), unLoc, getLoc )
62
import Bag
63
import ErrUtils		( Message )
64
import Digraph		( SCC(..), stronglyConnComp )
65
import Maybes		( expectJust, isJust, isNothing, orElse )
66 67
import Util		( singleton )
import BasicTypes	( TopLevelFlag(..), isTopLevel, isNotTopLevel,
68
			  RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
69
import Outputable
70
\end{code}
71

72

73 74 75 76 77 78
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

79
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
80 81 82 83 84 85 86 87 88 89
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

90
The real work is done by @tcBindWithSigsAndThen@.
91 92 93 94 95 96 97 98 99 100

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

101 102 103
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

104
\begin{code}
105
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
106 107 108
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
109
tcTopBinds binds
110
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
111
	; return (foldr (unionBags . snd) emptyBag prs, env) }
112
	-- The top level bindings are flattened into a giant 
113
	-- implicitly-mutually-recursive LHsBinds
114

115
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
116 117
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
118 119
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
120
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
121
  where
122
    tc_boot_sig (TypeSig (L _ name) ty)
123
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
124 125
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
126
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
127

128 129 130
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

131 132 133
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
134

135 136 137
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
138

139 140 141
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
142

143 144 145
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
146 147 148

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
149 150
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
151 152 153 154
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
155
    tc_ip_bind (IPBind ip expr)
156
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
157
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
158
  	tcMonoExpr expr ty			`thenM` \ expr' ->
159 160
  	returnM (ip_inst, (IPBind ip' expr'))

161 162 163 164 165
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

166 167 168
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

169
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
170
  = do 	{   	-- Typecheck the signature
171
	; let { prag_fn = mkPragFun sigs
172 173 174 175
	      ; ty_sigs = filter isVanillaLSig sigs
	      ; sig_fn  = mkSigFun ty_sigs }

	; poly_ids <- mapM tcTySig ty_sigs
176

177 178
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
179
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
180
			     tc_val_binds top_lvl sig_fn prag_fn 
181
					  binds thing_inside
182

183
	; return (ValBindsOut binds' sigs, thing) }
184

185 186
------------------------
tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
187
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
188 189 190 191 192 193 194 195
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
  = do	{ thing <- thing_inside
	; return ([], thing) }

196
tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
197
  = do	{ (group', (groups', thing))
198 199
		<- tc_group top_lvl sig_fn prag_fn group $ 
		   tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
200
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
201

202 203
------------------------
tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
204
	 -> (RecFlag, LHsBinds Name) -> TcM thing
205 206 207 208 209 210
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

211
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
212 213 214
  =  	-- A single non-recursive binding
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
215 216
    do	{ (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
					sig_fn prag_fn binds thing_inside
217 218
	; return ([(NonRecursive, b) | b <- binds], thing) }

219
tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
220
  =	-- A recursive strongly-connected component
221
 	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
222
	-- strongly-connected-component analysis, this time omitting 
223
	-- any references to variables with type signatures.
224 225
	--
	-- Then we bring into scope all the variables with type signatures
226
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
227 228 229
	; gla_exts     <- doptM Opt_GlasgowExts
	; (binds,thing) <- if gla_exts 
			   then go new_sccs
230
			   else tc_binds Recursive binds thing_inside
231 232 233
	; return ([(Recursive, unionManyBags binds)], thing) }
		-- Rec them all together
  where
234
    new_sccs :: [SCC (LHsBind Name)]
235
    new_sccs = stronglyConnComp (mkEdges sig_fn binds)
236

237 238 239 240
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
    go (scc:sccs) = do	{ (binds1, (binds2, thing)) <- go1 scc (go sccs)
			; return (binds1 ++ binds2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], thing) }
sof's avatar
sof committed
241

242 243
    go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
    go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
sof's avatar
sof committed
244

245 246 247 248 249 250 251 252 253
    tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
254 255
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
256 257 258 259 260 261 262 263 264 265 266 267 268
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
269 270
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
271

272
------------------------
273 274 275
tcPolyBinds :: TopLevelFlag 
	    -> RecFlag			-- Whether the group is really recursive
	    -> RecFlag			-- Whether it's recursive for typechecking purposes
276
	    -> TcSigFun -> TcPragFun
277
	    -> LHsBinds Name
278 279 280 281 282 283 284 285
 	    -> TcM thing
	    -> TcM ([LHsBinds TcId], thing)

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
-- Deals with the bindInstsOfLocalFuns thing too
286 287 288 289
--
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
290

291
tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
292 293 294
  =	-- NB: polymorphic recursion means that a function
	-- may use an instance of itself, we must look at the LIE arising
	-- from the function's own right hand side.  Hence the getLIE
295 296
	-- encloses the tc_poly_binds. 
    do	{ traceTc (text "tcPolyBinds" <+> ppr scc)
297
	; ((binds1, poly_ids, thing), lie) <- getLIE $ 
298
		do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
							 sig_fn prag_fn scc
		   ; thing <- tcExtendIdEnv poly_ids thing_inside
		   ; return (binds1, poly_ids, thing) }

	; if isTopLevel top_lvl 
	  then		-- For the top level don't bother will all this
			-- bindInstsOfLocalFuns stuff. All the top level 
			-- things are rec'd together anyway, so it's fine to
		        -- leave them to the tcSimplifyTop, 
			-- and quite a bit faster too
		do { extendLIEs lie; return (binds1, thing) }

	  else do	-- Nested case
		{ lie_binds <- bindInstsOfLocalFuns lie poly_ids
	 	; return (binds1 ++ [lie_binds], thing) }}
314

315
------------------------
316 317
tc_poly_binds :: TopLevelFlag		-- See comments on tcPolyBinds
	      -> RecFlag -> RecFlag
318
	      -> TcSigFun -> TcPragFun
319
	      -> LHsBinds Name
320 321 322 323
	      -> TcM ([LHsBinds TcId], [TcId])
-- Typechecks the bindings themselves
-- Knows nothing about the scope of the bindings

324
tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
325
  = let 
326 327
        binder_names = collectHsBindBinders binds
	bind_list    = bagToList binds
328

329
	loc = getLoc (head bind_list)
330 331 332
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
333
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
334
    setSrcSpan loc				$
335
    recoverM (recoveryCode binder_names)	$ do 
336

337 338
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
339 340

   	-- TYPECHECK THE BINDINGS
341
  ; ((binds', mono_bind_infos), lie_req) 
342
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
343

344 345 346 347
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
348 349 350 351 352
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
353 354
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
355
			-- ToDo: prags for unlifted bindings
356

357 358
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
359 360

    else do	-- The normal lifted case: GENERALISE
361
  { is_unres <- isUnRestrictedGroup bind_list sig_fn
362
  ; (tyvars_to_gen, dict_binds, dict_ids)
363 364
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
	   generalise top_lvl is_unres mono_bind_infos lie_req
365 366 367 368 369 370

	-- FINALISE THE QUANTIFIED TYPE VARIABLES
	-- The quantified type variables often include meta type variables
	-- we want to freeze them into ordinary type variables, and
	-- default their kind (e.g. from OpenTypeKind to TypeKind)
  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
371 372

	-- BUILD THE POLYMORPHIC RESULT IDs
373 374
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
		    mono_bind_infos
sof's avatar
sof committed
375

376 377
	-- ZONK THE poly_ids, because they are used to extend the type 
	-- environment; see the invariant on TcEnv.tcExtendIdEnv 
378
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
379 380
  ; zonked_poly_ids <- mappM zonkId poly_ids

381
  ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
382 383 384 385 386 387 388 389 390 391 392 393 394

  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

  ; return ([unitBag abs_bind], zonked_poly_ids)
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  = case mb_sig of
      Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
		     ; return (inferred_tvs, poly_id, mono_id, prags) }
	  where
	    poly_id = mkLocalId poly_name poly_ty
	    poly_ty = mkForAllTys inferred_tvs
				       $ mkFunTys dict_tys 
				       $ idType mono_id

      Just sig -> do { let poly_id = sig_id sig
		     ; prags <- tcPrags poly_id (prag_fn poly_name)
		     ; sig_tys <- zonkTcTyVars (sig_tvs sig)
		     ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
		     ; return (sig_tvs', poly_id, mono_id, prags) }
		-- We zonk the sig_tvs here so that the export triple
		-- always has zonked type variables; 
		-- a convenient invariant

413 414 415 416 417 418 419

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
420 421
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
422 423 424 425 426 427 428 429 430 431 432 433 434
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
435 436 437
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
438

439

440 441
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
442
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
443
	; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
444 445
	; extendLIEs lie
	; let const_dicts = map instToId lie
446
	; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
447 448
  
--------------
449 450 451
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
452
recoveryCode binder_names
453
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
454
	; poly_ids <- mapM mk_dummy binder_names
455
	; return ([], poly_ids) }
456
  where
457 458 459 460 461 462 463 464
    mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
			; case mb_id of
    		     	      Just id -> return id		-- Had signature, was in envt
	    		      Nothing -> return (mkLocalId name forall_a_a) }    -- No signature

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

465

466 467 468
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
469 470
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
471 472 473 474 475
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
476
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
477
	  	  (strictBindErr "Top-level" unlifted mbind)
478
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
479
	  	  (strictBindErr "Recursive" unlifted mbind)
480
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
481 482 483 484 485
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
486
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
487 488
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
489
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
490
					 (badStrictSig unlifted sig)
491
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
492 493 494 495 496 497 498 499 500 501 502 503 504

strictBindErr flavour unlifted mbind
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 4 (ppr mbind)
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
505 506
\end{code}

507

508 509
%************************************************************************
%*									*
510
\subsection{tcMonoBind}
511 512 513
%*									*
%************************************************************************

514
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
515 516
The signatures have been dealt with already.

517
\begin{code}
518 519
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
520 521 522
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
523 524
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

525 526
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
527
	    sig_fn 		-- Single function binding,
528
	    NonRecursive	-- binder isn't mentioned in RHS,
529
  | Nothing <- sig_fn name	-- ...with no type signature
530 531 532 533 534 535
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
536
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
537

538 539 540 541 542 543 544 545
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
546

547
	; mono_name <- newLocalName name
548
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
549 550 551
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
					      fun_co_fn = co_fn })),
552 553
		  [(name, Nothing, mono_id)]) }

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
  | Just sig <- sig_fn name	-- ...with a type signature
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
    do	{ tc_sig <- tcInstSig True sig
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
		    	       tcMatchesFun mono_name matches mono_ty

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn }
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

579 580
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
581

582
	-- Bring the monomorphic Ids, into scope for the RHSs
583
	; let mono_info  = getMonoBindInfo tc_binds
584 585 586
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
587

588
	; binds' <- tcExtendIdEnv2    rhs_id_env $
589 590 591 592
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

614 615 616 617 618 619 620 621 622 623
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

624
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
625 626
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
  = do	{ mb_sig <- tcInstSig_maybe (sig_fn name)
627 628 629 630 631 632
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
633 634 635 636
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
  = do	{ mb_sigs <- mapM (tcInstSig_maybe . sig_fn) names
637

638 639 640
	; let nm_sig_prs  = names `zip` mb_sigs
	      tau_sig_env = mkNameEnv [ (name, sig_tau sig) | (name, Just sig) <- nm_sig_prs]
	      sig_tau_fn  = lookupNameEnv tau_sig_env
641

642 643 644 645 646 647 648 649 650 651 652 653
	      tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
			      mapM lookup_info nm_sig_prs
		-- The unitTy is a bit bogus; it's the "result type" for lookup_info.  

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
654

655 656 657 658 659
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


660
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
661 662
	-- AbsBind, VarBind impossible

663 664
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
665
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
666 667 668 669
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
				    	    (idType mono_id)
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
670 671 672

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
673 674 675
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
676 677 678


---------------------
679
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
680
getMonoBindInfo tc_binds
681
  = foldr (get_info . unLoc) [] tc_binds
682 683 684 685 686 687 688 689
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
690
		Generalisation
691 692 693 694
%*									*
%************************************************************************

\begin{code}
695 696
generalise :: TopLevelFlag -> Bool 
	   -> [MonoBindInfo] -> [Inst]
697
	   -> TcM ([TcTyVar], TcDictBinds, [TcId])
698
generalise top_lvl is_unrestricted mono_infos lie_req
699 700 701
  | not is_unrestricted	-- RESTRICTED CASE
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
702
	  	  (restrictedBindCtxtErr bndrs)
703

704 705
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
706
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
707
						tau_tvs lie_req
708

709
   	-- Check that signature type variables are OK
710
	; final_qtvs <- checkSigsTyVars qtvs sigs
711

712
	; return (final_qtvs, binds, []) }
713

714 715 716 717
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
718
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty
719 720
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
721
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
722 723
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
724

725 726
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
727
	; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
728 729
	
   	-- Check that signature type variables are OK
730
	; final_qtvs <- checkSigsTyVars forall_tvs sigs
731

732
	; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
733
  where
734 735
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
736 737 738
    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
		-- NB: exactTyVarsOfType; see Note [Silly type synonym] 
		--     near defn of TcType.exactTyVarsOfType
739
    is_mono_sig sig = null (sig_theta sig)
740
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
741

742
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
743 744 745
		            sig_theta = theta, sig_loc = loc }) mono_id
      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
\end{code}
746

747 748 749
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
750

751 752 753 754 755 756 757 758 759
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
760 761 762 763 764 765 766 767 768 769 770 771
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
	; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
	= setSrcSpan (instLocSrcSpan (sig_loc sig)) 	$
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

772 773
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
774 775 776 777 778 779 780 781 782 783 784 785 786 787
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
788
  where
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
809
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
810 811 812 813 814 815 816 817
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
818
		Just sig_tv' -> bomb_out sig_tv sig_tv'
819 820 821

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

822
    bomb_out sig_tv1 sig_tv2
823 824 825 826 827 828 829
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
830 831 832
       where
\end{code}    

833

834
@getTyVarsToGen@ decides what type variables to generalise over.
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

850 851 852 853
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

854 855 856 857 858 859 860 861
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
862 863
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
864

865 866 867 868 869 870 871 872
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

873 874 875
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
876

877 878 879
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
880

881 882
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
914 915 916 917

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

918 919 920 921 922 923
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
924

925 926 927 928 929 930 931 932
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


933 934 935

%************************************************************************
%*									*
936
		Signatures
937 938 939
%*									*
%************************************************************************

940
Type signatures are tricky.  See Note [Signature skolems] in TcType
941

942 943 944 945 946 947 948 949 950
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

951
\begin{code}
952
type TcSigFun = Name -> Maybe (LSig Name)
953

954 955 956 957 958 959
mkSigFun :: [LSig Name] -> TcSigFun
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
mkSigFun sigs = lookupNameEnv env
  where
960
    env = mkNameEnv [(expectJust "mkSigFun" (sigName sig), sig) | sig <- sigs]
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

---------------
data TcSigInfo
  = TcSigInfo {
	sig_id     :: TcId,		--  *Polymorphic* binder for this value...

	sig_scoped :: [Name],		-- Names for any scoped type variables
					-- Invariant: correspond 1-1 with an initial
					-- segment of sig_tvs (see Note [Scoped])

	sig_tvs    :: [TcTyVar],	-- Instantiated type variables
					-- See Note [Instantiate sig]

	sig_theta  :: TcThetaType,	-- Instantiated theta
	sig_tau    :: TcTauType,	-- Instantiated tau
	sig_loc    :: InstLoc	 	-- The location of the signature
    }

-- 	Note [Scoped]
-- There may be more instantiated type variables than scoped 
-- ones.  For example:
--	type T a = forall b. b -> (a,b)
--	f :: forall c. T c
-- Here, the signature for f will have one scoped type variable, c,
-- but two instantiated type variables, c' and b'.  
--
-- We assume that the scoped ones are at the *front* of sig_tvs,
-- and remember the names from the original HsForAllTy in sig_scoped

-- 	Note [Instantiate sig]
-- It's vital to instantiate a type signature with fresh variable.
-- For example:
--	type S = forall a. a->a
--	f,g :: S
--	f = ...
--	g = ...
-- Here, we must use distinct type variables when checking f,g's right hand sides.
-- (Instantiation is only necessary because of type synonyms.  Otherwise,
-- it's all cool; each signature has distinct type variables from the renamer.)

instance Outputable TcSigInfo where
    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
	= ppr id <+> ptext SLIT("::") <+> ppr tyvars <+> ppr theta <+> ptext SLIT("=>") <+> ppr tau
\end{code}

\begin{code}
tcTySig :: LSig Name -> TcM TcId
1008
tcTySig (L span (TypeSig (L _ name) ty))
1009
  = setSrcSpan span		$
1010
    do	{ sigma_ty <- tcHsSigType (FunSigCtxt name) ty
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	; return (mkLocalId name sigma_ty) }

-------------------
tcInstSig_maybe :: Maybe (LSig Name) -> TcM (Maybe TcSigInfo)
-- Instantiate with *meta* type variables; 
-- this signature is part of a multi-signature group
tcInstSig_maybe Nothing    = return Nothing
tcInstSig_maybe (Just sig) = do { tc_sig <- tcInstSig False sig
				; return (Just tc_sig) }

tcInstSig :: Bool -> LSig Name -> TcM TcSigInfo
-- Instantiate the signature, with either skolems or meta-type variables
-- depending on the use_skols boolean
--
-- We always instantiate with freshs uniques,
-- although we keep the same print-name
--	
--	type T = forall a. [a] -> [a]
--	f :: T; 
--	f = g where { g :: T; g = <rhs> }
--
-- We must not use the same 'a' from the defn of T at both places!!

tcInstSig use_skols (L loc (TypeSig (L _ name) hs_ty))
  = setSrcSpan loc $
    do	{ poly_id <- tcLookupId name	-- Cannot fail; the poly ids are put into 
					-- scope when starting the binding group
	; let skol_info = SigSkol (FunSigCtxt name)
	      inst_tyvars | use_skols = tcInstSkolTyVars skol_info
			  | otherwise = tcInstSigTyVars  skol_info
	; (tvs, theta, tau) <- tcInstType inst_tyvars (idType poly_id)
	; loc <- getInstLoc (SigOrigin skol_info)
	; return (TcSigInfo { sig_id = poly_id,
			      sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
			      sig_scoped = scoped_names, sig_loc = loc }) }
		-- Note that the scoped_names and the sig_tvs will have
		-- different Names. That's quite ok; when we bring the 
		-- scoped_names into scope, we just bind them to the sig_tvs
1049 1050 1051 1052
  where
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
1053 1054 1055 1056 1057
	-- We also only have scoped type variables when we are instantiating
	-- with true skolems
    scoped_names = case (use_skols, hs_ty) of
		     (True, L _ (HsForAllTy Explicit tvs _ _)) -> hsLTyVarNames tvs
		     other 		    		       -> []
1058

1059
-------------------
1060 1061 1062 1063 1064 1065 1066 1067
isUnRestrictedGroup :: [LHsBind Name] -> TcSigFun -> TcM Bool
isUnRestrictedGroup binds sig_fn
  = do	{ mono_restriction <- doptM Opt_MonomorphismRestriction
	; return (not mono_restriction || all_unrestricted) }
  where 
    all_unrestricted = all (unrestricted . unLoc) binds
    has_sig n = isJust (sig_fn n)

1068 1069 1070 1071
    unrestricted (PatBind {})  					 = False
    unrest