Coercion.hs 77.6 KB
Newer Older
1
-- (c) The University of Glasgow 2006
2

3 4
{-# LANGUAGE CPP, DeriveDataTypeable #-}

5
-- | Module for (a) type kinds and (b) type coercions,
6
-- as used in System FC. See 'CoreSyn.Expr' for
batterseapower's avatar
batterseapower committed
7 8
-- more on System FC and how coercions fit into it.
--
9
module Coercion (
batterseapower's avatar
batterseapower committed
10
        -- * Main data type
11
        Coercion(..), Var, CoVar,
12
        LeftOrRight(..), pickLR,
13
        Role(..), ltRole,
14

dreixel's avatar
dreixel committed
15
        -- ** Functions over coercions
16
        coVarKind, coVarRole,
17
        coercionType, coercionKind, coercionKinds, isReflCo,
18
        isReflCo_maybe, coercionRole, coercionKindRole,
batterseapower's avatar
batterseapower committed
19
        mkCoercionType,
20

21
        -- ** Constructing coercions
22
        mkReflCo, mkCoVarCo,
23
        mkAxInstCo, mkUnbranchedAxInstCo, mkAxInstLHS, mkAxInstRHS,
24
        mkUnbranchedAxInstRHS,
25
        mkPiCo, mkPiCos, mkCoCast,
26
        mkSymCo, mkTransCo, mkNthCo, mkNthCoRole, mkLRCo,
27
        mkInstCo, mkAppCo, mkAppCoFlexible, mkTyConAppCo, mkFunCo,
28
        mkForAllCo, mkUnsafeCo, mkUnivCo, mkSubCo, mkPhantomCo,
29
        mkNewTypeCo, downgradeRole,
30
        mkAxiomRuleCo,
TomSchrijvers's avatar
TomSchrijvers committed
31

32
        -- ** Decomposition
33
        instNewTyCon_maybe,
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
34 35 36 37

        NormaliseStepper, NormaliseStepResult(..), composeSteppers,
        modifyStepResultCo, unwrapNewTypeStepper,
        topNormaliseNewType_maybe, topNormaliseTypeX_maybe,
38

39
        decomposeCo, getCoVar_maybe,
40 41
        splitAppCo_maybe,
        splitForAllCo_maybe,
42
        nthRole, tyConRolesX,
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
43
        setNominalRole_maybe,
44

45 46
        -- ** Coercion variables
        mkCoVar, isCoVar, isCoVarType, coVarName, setCoVarName, setCoVarUnique,
47 48 49

        -- ** Free variables
        tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo, coercionSize,
50

51
        -- ** Substitution
52
        CvSubstEnv, emptyCvSubstEnv,
53 54
        CvSubst(..), emptyCvSubst, Coercion.lookupTyVar, lookupCoVar,
        isEmptyCvSubst, zapCvSubstEnv, getCvInScope,
55
        substCo, substCos, substCoVar, substCoVars,
56
        substCoWithTy, substCoWithTys,
57
        cvTvSubst, tvCvSubst, mkCvSubst, zipOpenCvSubst,
58 59
        substTy, extendTvSubst,
        extendCvSubstAndInScope, extendTvSubstAndInScope,
60
        substTyVarBndr, substCoVarBndr,
61

62 63
        -- ** Lifting
        liftCoMatch, liftCoSubstTyVar, liftCoSubstWith,
64

batterseapower's avatar
batterseapower committed
65
        -- ** Comparison
66
        coreEqCoercion, coreEqCoercion2,
67

68 69
        -- ** Forcing evaluation of coercions
        seqCo,
70

71
        -- * Pretty-printing
72 73
        pprCo, pprParendCo,
        pprCoAxiom, pprCoAxBranch, pprCoAxBranchHdr,
Simon Peyton Jones's avatar
Simon Peyton Jones committed
74 75 76

        -- * Tidying
        tidyCo, tidyCos,
TomSchrijvers's avatar
TomSchrijvers committed
77

78
        -- * Other
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
79
        applyCo,
80
       ) where
81 82 83

#include "HsVersions.h"

84
import Unify    ( MatchEnv(..), matchList )
85
import TypeRep
86 87
import qualified Type
import Type hiding( substTy, substTyVarBndr, extendTvSubst )
88
import TyCon
89
import CoAxiom
90
import Var
91
import VarEnv
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
92
import VarSet
93
import Binary
94
import Maybes   ( orElse )
95 96
import Name     ( Name, NamedThing(..), nameUnique, nameModule, getSrcSpan )
import OccName  ( parenSymOcc )
97 98
import Util
import BasicTypes
99
import Outputable
100 101
import Unique
import Pair
Simon Peyton Jones's avatar
Simon Peyton Jones committed
102
import SrcLoc
103
import PrelNames        ( funTyConKey, eqPrimTyConKey, eqReprPrimTyConKey )
104
#if __GLASGOW_HASKELL__ < 709
105
import Control.Applicative hiding ( empty )
106
import Data.Traversable (traverse, sequenceA)
107
#endif
108
import FastString
109
import ListSetOps
110 111

import qualified Data.Data as Data hiding ( TyCon )
112
import Control.Arrow ( first )
113

114 115 116
{-
************************************************************************
*                                                                      *
117
            Coercions
118 119 120
*                                                                      *
************************************************************************
-}
121

122 123
-- | A 'Coercion' is concrete evidence of the equality/convertibility
-- of two types.
124

125
-- If you edit this type, you may need to update the GHC formalism
126
-- See Note [GHC Formalism] in coreSyn/CoreLint.hs
127
data Coercion
128 129 130 131 132 133 134
  -- Each constructor has a "role signature", indicating the way roles are
  -- propagated through coercions. P, N, and R stand for coercions of the
  -- given role. e stands for a coercion of a specific unknown role (think
  -- "role polymorphism"). "e" stands for an explicit role parameter
  -- indicating role e. _ stands for a parameter that is not a Role or
  -- Coercion.

135
  -- These ones mirror the shape of types
136 137
  = -- Refl :: "e" -> _ -> e
    Refl Role Type  -- See Note [Refl invariant]
138 139 140 141 142 143 144 145 146 147
          -- Invariant: applications of (Refl T) to a bunch of identity coercions
          --            always show up as Refl.
          -- For example  (Refl T) (Refl a) (Refl b) shows up as (Refl (T a b)).

          -- Applications of (Refl T) to some coercions, at least one of
          -- which is NOT the identity, show up as TyConAppCo.
          -- (They may not be fully saturated however.)
          -- ConAppCo coercions (like all coercions other than Refl)
          -- are NEVER the identity.

148 149
          -- Use (Refl Representational _), not (SubCo (Refl Nominal _))

150
  -- These ones simply lift the correspondingly-named
151
  -- Type constructors into Coercions
152

153 154
  -- TyConAppCo :: "e" -> _ -> ?? -> e
  -- See Note [TyConAppCo roles]
155
  | TyConAppCo Role TyCon [Coercion]    -- lift TyConApp
156 157 158
               -- The TyCon is never a synonym;
               -- we expand synonyms eagerly
               -- But it can be a type function
159 160

  | AppCo Coercion Coercion        -- lift AppTy
161
          -- AppCo :: e -> N -> e
162 163 164

  -- See Note [Forall coercions]
  | ForAllCo TyVar Coercion       -- forall a. g
165
         -- :: _ -> e -> e
166 167

  -- These are special
168 169 170 171
  | CoVarCo CoVar      -- :: _ -> (N or R)
                       -- result role depends on the tycon of the variable's type

    -- AxiomInstCo :: e -> _ -> [N] -> e
172
  | AxiomInstCo (CoAxiom Branched) BranchIndex [Coercion]
173
     -- See also [CoAxiom index]
174
     -- The coercion arguments always *precisely* saturate
175
     -- arity of (that branch of) the CoAxiom.  If there are
176
     -- any left over, we use AppCo.  See
177 178
     -- See [Coercion axioms applied to coercions]

179
         -- see Note [UnivCo]
180 181
  | UnivCo FastString Role Type Type -- :: "e" -> _ -> _ -> e
                               -- the FastString is just a note for provenance
182 183
  | SymCo Coercion             -- :: e -> e
  | TransCo Coercion Coercion  -- :: e -> e -> e
184

185 186 187 188
    -- The number of types and coercions should match exactly the expectations
    -- of the CoAxiomRule (i.e., the rule is fully saturated).
  | AxiomRuleCo CoAxiomRule [Type] [Coercion]

189
  -- These are destructors
190

191
  | NthCo  Int         Coercion     -- Zero-indexed; decomposes (T t0 ... tn)
192
    -- :: _ -> e -> ?? (inverse of TyConAppCo, see Note [TyConAppCo roles])
193
  | LRCo   LeftOrRight Coercion     -- Decomposes (t_left t_right)
194
    -- :: _ -> N -> N
195
  | InstCo Coercion Type
196 197 198 199
    -- :: e -> _ -> e

  | SubCo Coercion                  -- Turns a ~N into a ~R
    -- :: N -> R
200
  deriving (Data.Data, Data.Typeable)
201

202
-- If you edit this type, you may need to update the GHC formalism
203
-- See Note [GHC Formalism] in coreSyn/CoreLint.hs
204
data LeftOrRight = CLeft | CRight
205 206
                 deriving( Eq, Data.Data, Data.Typeable )

207 208 209 210 211 212 213 214 215
instance Binary LeftOrRight where
   put_ bh CLeft  = putByte bh 0
   put_ bh CRight = putByte bh 1

   get bh = do { h <- getByte bh
               ; case h of
                   0 -> return CLeft
                   _ -> return CRight }

216 217 218
pickLR :: LeftOrRight -> (a,a) -> a
pickLR CLeft  (l,_) = l
pickLR CRight (_,r) = r
219

220
{-
221 222
Note [Refl invariant]
~~~~~~~~~~~~~~~~~~~~~
223 224
Coercions have the following invariant
     Refl is always lifted as far as possible.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

You might think that a consequencs is:
     Every identity coercions has Refl at the root

But that's not quite true because of coercion variables.  Consider
     g         where g :: Int~Int
     Left h    where h :: Maybe Int ~ Maybe Int
etc.  So the consequence is only true of coercions that
have no coercion variables.

Note [Coercion axioms applied to coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The reason coercion axioms can be applied to coercions and not just
types is to allow for better optimization.  There are some cases where
we need to be able to "push transitivity inside" an axiom in order to
240
expose further opportunities for optimization.
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

For example, suppose we have

  C a : t[a] ~ F a
  g   : b ~ c

and we want to optimize

  sym (C b) ; t[g] ; C c

which has the kind

  F b ~ F c

(stopping through t[b] and t[c] along the way).

We'd like to optimize this to just F g -- but how?  The key is
that we need to allow axioms to be instantiated by *coercions*,
not just by types.  Then we can (in certain cases) push
transitivity inside the axiom instantiations, and then react
opposite-polarity instantiations of the same axiom.  In this
case, e.g., we match t[g] against the LHS of (C c)'s kind, to
obtain the substitution  a |-> g  (note this operation is sort
of the dual of lifting!) and hence end up with

  C g : t[b] ~ F c

which indeed has the same kind as  t[g] ; C c.

Now we have

  sym (C b) ; C g

which can be optimized to F g.

276 277 278 279 280 281 282 283 284 285 286 287
Note [CoAxiom index]
~~~~~~~~~~~~~~~~~~~~
A CoAxiom has 1 or more branches. Each branch has contains a list
of the free type variables in that branch, the LHS type patterns,
and the RHS type for that branch. When we apply an axiom to a list
of coercions, we must choose which branch of the axiom we wish to
use, as the different branches may have different numbers of free
type variables. (The number of type patterns is always the same
among branches, but that doesn't quite concern us here.)

The Int in the AxiomInstCo constructor is the 0-indexed number
of the chosen branch.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

Note [Forall coercions]
~~~~~~~~~~~~~~~~~~~~~~~
Constructing coercions between forall-types can be a bit tricky.
Currently, the situation is as follows:

  ForAllCo TyVar Coercion

represents a coercion between polymorphic types, with the rule

           v : k       g : t1 ~ t2
  ----------------------------------------------
  ForAllCo v g : (all v:k . t1) ~ (all v:k . t2)

Note that it's only necessary to coerce between polymorphic types
where the type variables have identical kinds, because equality on
kinds is trivial.

306 307 308 309 310 311 312 313 314
Note [Predicate coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
   g :: a~b
How can we coerce between types
   ([c]~a) => [a] -> c
and
   ([c]~b) => [b] -> c
where the equality predicate *itself* differs?
315

316 317
Answer: we simply treat (~) as an ordinary type constructor, so these
types really look like
318

319 320
   ((~) [c] a) -> [a] -> c
   ((~) [c] b) -> [b] -> c
321

322
So the coercion between the two is obviously
323

324
   ((~) [c] g) -> [g] -> c
325

326 327
Another way to see this to say that we simply collapse predicates to
their representation type (see Type.coreView and Type.predTypeRep).
328

329
This collapse is done by mkPredCo; there is no PredCo constructor
330
in Coercion.  This is important because we need Nth to work on
331 332 333
predicates too:
    Nth 1 ((~) [c] g) = g
See Simplify.simplCoercionF, which generates such selections.
334

dreixel's avatar
dreixel committed
335 336 337 338 339 340 341 342 343 344 345 346 347
Note [Kind coercions]
~~~~~~~~~~~~~~~~~~~~~
Suppose T :: * -> *, and g :: A ~ B
Then the coercion
   TyConAppCo T [g]      T g : T A ~ T B

Now suppose S :: forall k. k -> *, and g :: A ~ B
Then the coercion
   TyConAppCo S [Refl *, g]   T <*> g : T * A ~ T * B

Notice that the arguments to TyConAppCo are coercions, but the first
represents a *kind* coercion. Now, we don't allow any non-trivial kind
coercions, so it's an invariant that any such kind coercions are Refl.
348
Lint checks this.
dreixel's avatar
dreixel committed
349 350 351

However it's inconvenient to insist that these kind coercions are always
*structurally* (Refl k), because the key function exprIsConApp_maybe
352
pushes coercions into constructor arguments, so
dreixel's avatar
dreixel committed
353 354 355 356 357
       C k ty e |> g
may turn into
       C (Nth 0 g) ....
Now (Nth 0 g) will optimise to Refl, but perhaps not instantly.

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
Note [Roles]
~~~~~~~~~~~~
Roles are a solution to the GeneralizedNewtypeDeriving problem, articulated
in Trac #1496. The full story is in docs/core-spec/core-spec.pdf. Also, see
http://ghc.haskell.org/trac/ghc/wiki/RolesImplementation

Here is one way to phrase the problem:

Given:
newtype Age = MkAge Int
type family F x
type instance F Age = Bool
type instance F Int = Char

This compiles down to:
axAge :: Age ~ Int
axF1 :: F Age ~ Bool
axF2 :: F Int ~ Char

Then, we can make:
(sym (axF1) ; F axAge ; axF2) :: Bool ~ Char

Yikes!

The solution is _roles_, as articulated in "Generative Type Abstraction and
Type-level Computation" (POPL 2010), available at
http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf

The specification for roles has evolved somewhat since that paper. For the
current full details, see the documentation in docs/core-spec. Here are some
highlights.

We label every equality with a notion of type equivalence, of which there are
three options: Nominal, Representational, and Phantom. A ground type is
nominally equivalent only with itself. A newtype (which is considered a ground
type in Haskell) is representationally equivalent to its representation.
Anything is "phantomly" equivalent to anything else. We use "N", "R", and "P"
to denote the equivalences.

The axioms above would be:
axAge :: Age ~R Int
axF1 :: F Age ~N Bool
axF2 :: F Age ~N Char

Then, because transitivity applies only to coercions proving the same notion
of equivalence, the above construction is impossible.

However, there is still an escape hatch: we know that any two types that are
nominally equivalent are representationally equivalent as well. This is what
the form SubCo proves -- it "demotes" a nominal equivalence into a
representational equivalence. So, it would seem the following is possible:

sub (sym axF1) ; F axAge ; sub axF2 :: Bool ~R Char   -- WRONG

What saves us here is that the arguments to a type function F, lifted into a
coercion, *must* prove nominal equivalence. So, (F axAge) is ill-formed, and
we are safe.

Roles are attached to parameters to TyCons. When lifting a TyCon into a
coercion (through TyConAppCo), we need to ensure that the arguments to the
TyCon respect their roles. For example:

data T a b = MkT a (F b)

If we know that a1 ~R a2, then we know (T a1 b) ~R (T a2 b). But, if we know
that b1 ~R b2, we know nothing about (T a b1) and (T a b2)! This is because
the type function F branches on b's *name*, not representation. So, we say
that 'a' has role Representational and 'b' has role Nominal. The third role,
Phantom, is for parameters not used in the type's definition. Given the
following definition

data Q a = MkQ Int

the Phantom role allows us to say that (Q Bool) ~R (Q Char), because we
can construct the coercion Bool ~P Char (using UnivCo).

See the paper cited above for more examples and information.

Note [UnivCo]
~~~~~~~~~~~~~
The UnivCo ("universal coercion") serves two rather separate functions:
 - the implementation for unsafeCoerce#
 - placeholder for phantom parameters in a TyConAppCo

At Representational, it asserts that two (possibly unrelated)
types have the same representation and can be casted to one another.
This form is necessary for unsafeCoerce#.

For optimisation purposes, it is convenient to allow UnivCo to appear
at Nominal role. If we have

data Foo a = MkFoo (F a)   -- F is a type family

and we want an unsafe coercion from Foo Int to Foo Bool, then it would
be nice to have (TyConAppCo Foo (UnivCo Nominal Int Bool)). So, we allow
Nominal UnivCo's.

At Phantom role, it is used as an argument to TyConAppCo in the place
of a phantom parameter (a type parameter unused in the type definition).

For example:

data Q a = MkQ Int

We want a coercion for (Q Bool) ~R (Q Char).

(TyConAppCo Representational Q [UnivCo Phantom Bool Char]) does the trick.

Note [TyConAppCo roles]
~~~~~~~~~~~~~~~~~~~~~~~
The TyConAppCo constructor has a role parameter, indicating the role at
which the coercion proves equality. The choice of this parameter affects
the required roles of the arguments of the TyConAppCo. To help explain
it, assume the following definition:

Simon Peyton Jones's avatar
Simon Peyton Jones committed
473 474 475
  type instance F Int = Bool   -- Axiom axF : F Int ~N Bool
  newtype Age = MkAge Int      -- Axiom axAge : Age ~R Int
  data Foo a = MkFoo a         -- Role on Foo's parameter is Represntational
476

Simon Peyton Jones's avatar
Simon Peyton Jones committed
477 478 479
TyConAppCo Nominal Foo axF : Foo (F Int) ~N Foo Bool
  For (TyConAppCo Nominal) all arguments must have role Nominal. Why?
  So that Foo Age ~N Foo Int does *not* hold.
480

Simon Peyton Jones's avatar
Simon Peyton Jones committed
481 482 483 484 485 486
TyConAppCo Representational Foo (SubCo axF) : Foo (F Int) ~R Foo Bool
TyConAppCo Representational Foo axAge       : Foo Age     ~R Foo Int
  For (TyConAppCo Representational), all arguments must have the roles
  corresponding to the result of tyConRoles on the TyCon. This is the
  whole point of having roles on the TyCon to begin with. So, we can
  have Foo Age ~R Foo Int, if Foo's parameter has role R.
487

Simon Peyton Jones's avatar
Simon Peyton Jones committed
488 489 490
  If a Representational TyConAppCo is over-saturated (which is otherwise fine),
  the spill-over arguments must all be at Nominal. This corresponds to the
  behavior for AppCo.
491

Simon Peyton Jones's avatar
Simon Peyton Jones committed
492 493 494
TyConAppCo Phantom Foo (UnivCo Phantom Int Bool) : Foo Int ~P Foo Bool
  All arguments must have role Phantom. This one isn't strictly
  necessary for soundness, but this choice removes ambiguity.
495

Simon Peyton Jones's avatar
Simon Peyton Jones committed
496 497
The rules here dictate the roles of the parameters to mkTyConAppCo
(should be checked by Lint).
498

499 500
************************************************************************
*                                                                      *
501
\subsection{Coercion variables}
502 503 504
*                                                                      *
************************************************************************
-}
505 506 507 508 509 510 511 512 513 514 515 516 517 518

coVarName :: CoVar -> Name
coVarName = varName

setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique

setCoVarName :: CoVar -> Name -> CoVar
setCoVarName   = setVarName

isCoVar :: Var -> Bool
isCoVar v = isCoVarType (varType v)

isCoVarType :: Type -> Bool
519
isCoVarType ty      -- Tests for t1 ~# t2, the unboxed equality
520
  = case splitTyConApp_maybe ty of
521 522
      Just (tc,tys) -> (tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey)
                       && tys `lengthAtLeast` 2
523
      Nothing       -> False
524 525 526

tyCoVarsOfCo :: Coercion -> VarSet
-- Extracts type and coercion variables from a coercion
527 528 529 530 531
tyCoVarsOfCo (Refl _ ty)           = tyVarsOfType ty
tyCoVarsOfCo (TyConAppCo _ _ cos)  = tyCoVarsOfCos cos
tyCoVarsOfCo (AppCo co1 co2)       = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (ForAllCo tv co)      = tyCoVarsOfCo co `delVarSet` tv
tyCoVarsOfCo (CoVarCo v)           = unitVarSet v
532
tyCoVarsOfCo (AxiomInstCo _ _ cos) = tyCoVarsOfCos cos
533
tyCoVarsOfCo (UnivCo _ _ ty1 ty2)  = tyVarsOfType ty1 `unionVarSet` tyVarsOfType ty2
534 535 536 537 538 539
tyCoVarsOfCo (SymCo co)            = tyCoVarsOfCo co
tyCoVarsOfCo (TransCo co1 co2)     = tyCoVarsOfCo co1 `unionVarSet` tyCoVarsOfCo co2
tyCoVarsOfCo (NthCo _ co)          = tyCoVarsOfCo co
tyCoVarsOfCo (LRCo _ co)           = tyCoVarsOfCo co
tyCoVarsOfCo (InstCo co ty)        = tyCoVarsOfCo co `unionVarSet` tyVarsOfType ty
tyCoVarsOfCo (SubCo co)            = tyCoVarsOfCo co
540
tyCoVarsOfCo (AxiomRuleCo _ ts cs) = tyVarsOfTypes ts `unionVarSet` tyCoVarsOfCos cs
541 542

tyCoVarsOfCos :: [Coercion] -> VarSet
543
tyCoVarsOfCos = mapUnionVarSet tyCoVarsOfCo
544 545 546

coVarsOfCo :: Coercion -> VarSet
-- Extract *coerction* variables only.  Tiresome to repeat the code, but easy.
547 548 549 550 551
coVarsOfCo (Refl _ _)            = emptyVarSet
coVarsOfCo (TyConAppCo _ _ cos)  = coVarsOfCos cos
coVarsOfCo (AppCo co1 co2)       = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (ForAllCo _ co)       = coVarsOfCo co
coVarsOfCo (CoVarCo v)           = unitVarSet v
552
coVarsOfCo (AxiomInstCo _ _ cos) = coVarsOfCos cos
553
coVarsOfCo (UnivCo _ _ _ _)      = emptyVarSet
554 555 556 557 558 559
coVarsOfCo (SymCo co)            = coVarsOfCo co
coVarsOfCo (TransCo co1 co2)     = coVarsOfCo co1 `unionVarSet` coVarsOfCo co2
coVarsOfCo (NthCo _ co)          = coVarsOfCo co
coVarsOfCo (LRCo _ co)           = coVarsOfCo co
coVarsOfCo (InstCo co _)         = coVarsOfCo co
coVarsOfCo (SubCo co)            = coVarsOfCo co
560
coVarsOfCo (AxiomRuleCo _ _ cos) = coVarsOfCos cos
561 562

coVarsOfCos :: [Coercion] -> VarSet
563
coVarsOfCos = mapUnionVarSet coVarsOfCo
564 565

coercionSize :: Coercion -> Int
566 567 568 569 570
coercionSize (Refl _ ty)           = typeSize ty
coercionSize (TyConAppCo _ _ cos)  = 1 + sum (map coercionSize cos)
coercionSize (AppCo co1 co2)       = coercionSize co1 + coercionSize co2
coercionSize (ForAllCo _ co)       = 1 + coercionSize co
coercionSize (CoVarCo _)           = 1
571
coercionSize (AxiomInstCo _ _ cos) = 1 + sum (map coercionSize cos)
572
coercionSize (UnivCo _ _ ty1 ty2)  = typeSize ty1 + typeSize ty2
573 574 575 576 577 578
coercionSize (SymCo co)            = 1 + coercionSize co
coercionSize (TransCo co1 co2)     = 1 + coercionSize co1 + coercionSize co2
coercionSize (NthCo _ co)          = 1 + coercionSize co
coercionSize (LRCo  _ co)          = 1 + coercionSize co
coercionSize (InstCo co ty)        = 1 + coercionSize co + typeSize ty
coercionSize (SubCo co)            = 1 + coercionSize co
579 580
coercionSize (AxiomRuleCo _ tys cos) = 1 + sum (map typeSize tys)
                                         + sum (map coercionSize cos)
581

582 583 584
{-
************************************************************************
*                                                                      *
Simon Peyton Jones's avatar
Simon Peyton Jones committed
585
                            Tidying coercions
586 587 588
*                                                                      *
************************************************************************
-}
Simon Peyton Jones's avatar
Simon Peyton Jones committed
589 590 591 592 593

tidyCo :: TidyEnv -> Coercion -> Coercion
tidyCo env@(_, subst) co
  = go co
  where
594 595 596 597 598 599 600 601 602 603
    go (Refl r ty)            = Refl r (tidyType env ty)
    go (TyConAppCo r tc cos)  = let args = map go cos
                                in args `seqList` TyConAppCo r tc args
    go (AppCo co1 co2)        = (AppCo $! go co1) $! go co2
    go (ForAllCo tv co)       = ForAllCo tvp $! (tidyCo envp co)
                                where
                                  (envp, tvp) = tidyTyVarBndr env tv
    go (CoVarCo cv)           = case lookupVarEnv subst cv of
                                  Nothing  -> CoVarCo cv
                                  Just cv' -> CoVarCo cv'
Simon Peyton Jones's avatar
Simon Peyton Jones committed
604
    go (AxiomInstCo con ind cos) = let args = tidyCos env cos
605
                                   in args `seqList` AxiomInstCo con ind args
606
    go (UnivCo s r ty1 ty2)   = (UnivCo s r $! tidyType env ty1) $! tidyType env ty2
607 608 609 610 611 612
    go (SymCo co)             = SymCo $! go co
    go (TransCo co1 co2)      = (TransCo $! go co1) $! go co2
    go (NthCo d co)           = NthCo d $! go co
    go (LRCo lr co)           = LRCo lr $! go co
    go (InstCo co ty)         = (InstCo $! go co) $! tidyType env ty
    go (SubCo co)             = SubCo $! go co
Simon Peyton Jones's avatar
Simon Peyton Jones committed
613

614 615 616 617 618 619
    go (AxiomRuleCo ax tys cos) = let tys1 = map (tidyType env) tys
                                      cos1 = tidyCos env cos
                                  in tys1 `seqList` cos1 `seqList`
                                     AxiomRuleCo ax tys1 cos1


Simon Peyton Jones's avatar
Simon Peyton Jones committed
620 621 622
tidyCos :: TidyEnv -> [Coercion] -> [Coercion]
tidyCos env = map (tidyCo env)

623 624 625
{-
************************************************************************
*                                                                      *
626
                   Pretty-printing coercions
627 628
*                                                                      *
************************************************************************
629

630 631 632 633 634
@pprCo@ is the standard @Coercion@ printer; the overloaded @ppr@
function is defined to use this.  @pprParendCo@ is the same, except it
puts parens around the type, except for the atomic cases.
@pprParendCo@ works just by setting the initial context precedence
very high.
635
-}
636

637 638 639 640 641 642 643
instance Outputable Coercion where
  ppr = pprCo

pprCo, pprParendCo :: Coercion -> SDoc
pprCo       co = ppr_co TopPrec   co
pprParendCo co = ppr_co TyConPrec co

644
ppr_co :: TyPrec -> Coercion -> SDoc
645
ppr_co _ (Refl r ty) = angleBrackets (ppr ty) <> ppr_role r
646

647
ppr_co p co@(TyConAppCo _ tc [_,_])
648
  | tc `hasKey` funTyConKey = ppr_fun_co p co
649

650 651 652 653 654
ppr_co _ (TyConAppCo r tc cos)  = pprTcApp TyConPrec ppr_co tc cos <> ppr_role r
ppr_co p (AppCo co1 co2)        = maybeParen p TyConPrec $
                                  pprCo co1 <+> ppr_co TyConPrec co2
ppr_co p co@(ForAllCo {})       = ppr_forall_co p co
ppr_co _ (CoVarCo cv)           = parenSymOcc (getOccName cv) (ppr cv)
655
ppr_co p (AxiomInstCo con index cos)
656 657
  = pprPrefixApp p (ppr (getName con) <> brackets (ppr index))
                   (map (ppr_co TyConPrec) cos)
658

659 660 661 662 663
ppr_co p co@(TransCo {}) = maybeParen p FunPrec $
                           case trans_co_list co [] of
                             [] -> panic "ppr_co"
                             (co:cos) -> sep ( ppr_co FunPrec co
                                             : [ char ';' <+> ppr_co FunPrec co | co <- cos])
664 665 666
ppr_co p (InstCo co ty) = maybeParen p TyConPrec $
                          pprParendCo co <> ptext (sLit "@") <> pprType ty

667
ppr_co p (UnivCo s r ty1 ty2) = pprPrefixApp p (ptext (sLit "UnivCo") <+> ftext s <+> ppr r)
668
                                           [pprParendType ty1, pprParendType ty2]
669
ppr_co p (SymCo co)         = pprPrefixApp p (ptext (sLit "Sym")) [pprParendCo co]
670 671
ppr_co p (NthCo n co)       = pprPrefixApp p (ptext (sLit "Nth:") <> int n) [pprParendCo co]
ppr_co p (LRCo sel co)      = pprPrefixApp p (ppr sel) [pprParendCo co]
672
ppr_co p (SubCo co)         = pprPrefixApp p (ptext (sLit "Sub")) [pprParendCo co]
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
ppr_co p (AxiomRuleCo co ts cs) = maybeParen p TopPrec $
                                  ppr_axiom_rule_co co ts cs

ppr_axiom_rule_co :: CoAxiomRule -> [Type] -> [Coercion] -> SDoc
ppr_axiom_rule_co co ts ps = ppr (coaxrName co) <> ppTs ts $$ nest 2 (ppPs ps)
  where
  ppTs []   = Outputable.empty
  ppTs [t]  = ptext (sLit "@") <> ppr_type TopPrec t
  ppTs ts   = ptext (sLit "@") <>
                parens (hsep $ punctuate comma $ map pprType ts)

  ppPs []   = Outputable.empty
  ppPs [p]  = pprParendCo p
  ppPs (p : ps) = ptext (sLit "(") <+> pprCo p $$
                  vcat [ ptext (sLit ",") <+> pprCo q | q <- ps ] $$
                  ptext (sLit ")")


691 692

ppr_role :: Role -> SDoc
693 694 695 696 697
ppr_role r = underscore <> pp_role
  where pp_role = case r of
                    Nominal          -> char 'N'
                    Representational -> char 'R'
                    Phantom          -> char 'P'
698

699 700 701 702
trans_co_list :: Coercion -> [Coercion] -> [Coercion]
trans_co_list (TransCo co1 co2) cos = trans_co_list co1 (trans_co_list co2 cos)
trans_co_list co                cos = co : cos

703 704 705
instance Outputable LeftOrRight where
  ppr CLeft    = ptext (sLit "Left")
  ppr CRight   = ptext (sLit "Right")
706

707
ppr_fun_co :: TyPrec -> Coercion -> SDoc
708 709
ppr_fun_co p co = pprArrowChain p (split co)
  where
710
    split :: Coercion -> [SDoc]
711
    split (TyConAppCo _ f [arg,res])
712 713 714 715
      | f `hasKey` funTyConKey
      = ppr_co FunPrec arg : split res
    split co = [ppr_co TopPrec co]

716
ppr_forall_co :: TyPrec -> Coercion -> SDoc
717 718
ppr_forall_co p ty
  = maybeParen p FunPrec $
719
    sep [pprForAll tvs, ppr_co TopPrec rho]
720 721 722 723 724
  where
    (tvs,  rho) = split1 [] ty
    split1 tvs (ForAllCo tv ty) = split1 (tv:tvs) ty
    split1 tvs ty               = (reverse tvs, ty)

725 726 727 728 729 730
pprCoAxiom :: CoAxiom br -> SDoc
pprCoAxiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
  = hang (ptext (sLit "axiom") <+> ppr ax <+> dcolon)
       2 (vcat (map (pprCoAxBranch tc) $ fromBranchList branches))

pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
731 732
pprCoAxBranch fam_tc (CoAxBranch { cab_tvs = tvs
                                 , cab_lhs = lhs
Simon Peyton Jones's avatar
Simon Peyton Jones committed
733
                                 , cab_rhs = rhs })
734
  = hang (pprUserForAll tvs)
735
       2 (hang (pprTypeApp fam_tc lhs) 2 (equals <+> (ppr rhs)))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
736 737 738 739 740 741 742 743 744 745

pprCoAxBranchHdr :: CoAxiom br -> BranchIndex -> SDoc
pprCoAxBranchHdr ax@(CoAxiom { co_ax_tc = fam_tc, co_ax_name = name }) index
  | CoAxBranch { cab_lhs = tys, cab_loc = loc } <- coAxiomNthBranch ax index
  = hang (pprTypeApp fam_tc tys)
       2 (ptext (sLit "-- Defined") <+> ppr_loc loc)
  where
        ppr_loc loc
          | isGoodSrcSpan loc
          = ptext (sLit "at") <+> ppr (srcSpanStart loc)
746

Simon Peyton Jones's avatar
Simon Peyton Jones committed
747 748 749
          | otherwise
          = ptext (sLit "in") <+>
              quotes (ppr (nameModule name))
750

751 752 753
{-
************************************************************************
*                                                                      *
754
        Functions over Kinds
755 756 757
*                                                                      *
************************************************************************
-}
batterseapower's avatar
batterseapower committed
758

759
-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into
760
-- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence:
batterseapower's avatar
batterseapower committed
761
--
762
-- > decomposeCo 3 c = [nth 0 c, nth 1 c, nth 2 c]
763
decomposeCo :: Arity -> Coercion -> [Coercion]
764
decomposeCo arity co
765 766
  = [mkNthCo n co | n <- [0..(arity-1)] ]
           -- Remember, Nth is zero-indexed
767 768 769

-- | Attempts to obtain the type variable underlying a 'Coercion'
getCoVar_maybe :: Coercion -> Maybe CoVar
770
getCoVar_maybe (CoVarCo cv) = Just cv
771 772
getCoVar_maybe _            = Nothing

773
-- first result has role equal to input; second result is Nominal
774 775 776
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
-- ^ Attempt to take a coercion application apart.
splitAppCo_maybe (AppCo co1 co2) = Just (co1, co2)
777
splitAppCo_maybe (TyConAppCo r tc cos)
778
  | isDecomposableTyCon tc || cos `lengthExceeds` tyConArity tc
779
  , Just (cos', co') <- snocView cos
780
  , Just co'' <- setNominalRole_maybe co'
781
  = Just (mkTyConAppCo r tc cos', co'') -- Never create unsaturated type family apps!
782 783
       -- Use mkTyConAppCo to preserve the invariant
       --  that identity coercions are always represented by Refl
784 785
splitAppCo_maybe (Refl r ty)
  | Just (ty1, ty2) <- splitAppTy_maybe ty
786
  = Just (Refl r ty1, Refl Nominal ty2)
787 788 789 790 791
splitAppCo_maybe _ = Nothing

splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion)
splitForAllCo_maybe (ForAllCo tv co) = Just (tv, co)
splitForAllCo_maybe _                = Nothing
792 793 794 795

-------------------------------------------------------
-- and some coercion kind stuff

796
coVarKind :: CoVar -> (Type,Type)
797 798
coVarKind cv
 | Just (tc, [_kind,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
799
 = ASSERT(tc `hasKey` eqPrimTyConKey || tc `hasKey` eqReprPrimTyConKey)
800 801 802
   (ty1,ty2)
 | otherwise = panic "coVarKind, non coercion variable"

803 804 805 806 807 808 809 810 811 812 813 814 815 816
coVarRole :: CoVar -> Role
coVarRole cv
  | tc `hasKey` eqPrimTyConKey
  = Nominal
  | tc `hasKey` eqReprPrimTyConKey
  = Representational
  | otherwise
  = pprPanic "coVarRole: unknown tycon" (ppr cv)

  where
    tc = case tyConAppTyCon_maybe (varType cv) of
           Just tc0 -> tc0
           Nothing  -> pprPanic "coVarRole: not tyconapp" (ppr cv)

817
-- | Makes a coercion type from two types: the types whose equality
818
-- is proven by the relevant 'Coercion'
819 820 821 822
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType Nominal          = mkPrimEqPred
mkCoercionType Representational = mkReprPrimEqPred
mkCoercionType Phantom          = panic "mkCoercionType"
823

824
isReflCo :: Coercion -> Bool
825 826
isReflCo (Refl {})         = True
isReflCo _                 = False
827 828

isReflCo_maybe :: Coercion -> Maybe Type
829 830
isReflCo_maybe (Refl _ ty)       = Just ty
isReflCo_maybe _                 = Nothing
831

832 833 834
{-
************************************************************************
*                                                                      *
835
            Building coercions
836 837
*                                                                      *
************************************************************************
838

839 840 841 842 843 844 845 846 847
Note [Role twiddling functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are a plethora of functions for twiddling roles:

mkSubCo: Requires a nominal input coercion and always produces a
representational output. This is used when you (the programmer) are sure you
know exactly that role you have and what you want.

848
downgradeRole_maybe: This function takes both the input role and the output role
849 850 851 852 853 854 855 856
as parameters. (The *output* role comes first!) It can only *downgrade* a
role -- that is, change it from N to R or P, or from R to P. This one-way
behavior is why there is the "_maybe". If an upgrade is requested, this
function produces Nothing. This is used when you need to change the role of a
coercion, but you're not sure (as you're writing the code) of which roles are
involved.

This function could have been written using coercionRole to ascertain the role
857
of the input. But, that function is recursive, and the caller of downgradeRole_maybe
858 859
often knows the input role. So, this is more efficient.

860
downgradeRole: This is just like downgradeRole_maybe, but it panics if the conversion
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
isn't a downgrade.

setNominalRole_maybe: This is the only function that can *upgrade* a coercion. The result
(if it exists) is always Nominal. The input can be at any role. It works on a
"best effort" basis, as it should never be strictly necessary to upgrade a coercion
during compilation. It is currently only used within GHC in splitAppCo_maybe. In order
to be a proper inverse of mkAppCo, the second coercion that splitAppCo_maybe returns
must be nominal. But, it's conceivable that splitAppCo_maybe is operating over a
TyConAppCo that uses a representational coercion. Hence the need for setNominalRole_maybe.
splitAppCo_maybe, in turn, is used only within coercion optimization -- thus, it is
not absolutely critical that setNominalRole_maybe be complete.

Note that setNominalRole_maybe will never upgrade a phantom UnivCo. Phantom
UnivCos are perfectly type-safe, whereas representational and nominal ones are
not. Indeed, `unsafeCoerce` is implemented via a representational UnivCo.
(Nominal ones are no worse than representational ones, so this function *will*
change a UnivCo Representational to a UnivCo Nominal.)

Conal Elliott also came across a need for this function while working with the GHC
API, as he was decomposing Core casts. The Core casts use representational coercions,
as they must, but his use case required nominal coercions (he was building a GADT).
So, that's why this function is exported from this module.

884
One might ask: shouldn't downgradeRole_maybe just use setNominalRole_maybe as appropriate?
885 886
I (Richard E.) have decided not to do this, because upgrading a role is bizarre and
a caller should have to ask for this behavior explicitly.
887
-}
888

889
mkCoVarCo :: CoVar -> Coercion
890
-- cv :: s ~# t
891
mkCoVarCo cv
892
  | ty1 `eqType` ty2 = Refl (coVarRole cv) ty1
893 894 895
  | otherwise        = CoVarCo cv
  where
    (ty1, ty2) = ASSERT( isCoVar cv ) coVarKind cv
896

897
mkReflCo :: Role -> Type -> Coercion
898
mkReflCo = Refl
899

900
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> Coercion
901
-- mkAxInstCo can legitimately be called over-staturated;
902
-- i.e. with more type arguments than the coercion requires
903
mkAxInstCo role ax index tys
904
  | arity == n_tys = downgradeRole role ax_role $ AxiomInstCo ax_br index rtys
905
  | otherwise      = ASSERT( arity < n_tys )
906
                     downgradeRole role ax_role $
907
                     foldl AppCo (AxiomInstCo ax_br index (take arity rtys))
908 909
                                 (drop arity rtys)
  where
910 911 912 913 914 915 916
    n_tys     = length tys
    ax_br     = toBranchedAxiom ax
    branch    = coAxiomNthBranch ax_br index
    arity     = length $ coAxBranchTyVars branch
    arg_roles = coAxBranchRoles branch
    rtys      = zipWith mkReflCo (arg_roles ++ repeat Nominal) tys
    ax_role   = coAxiomRole ax
917 918

-- to be used only with unbranched axioms
919 920 921
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> Coercion
mkUnbranchedAxInstCo role ax tys
  = mkAxInstCo role ax 0 tys
922

923
mkAxInstLHS, mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> Type
924 925
-- Instantiate the axiom with specified types,
-- returning the instantiated RHS
926
-- A companion to mkAxInstCo:
927
--    mkAxInstRhs ax index tys = snd (coercionKind (mkAxInstCo ax index tys))
928 929 930
mkAxInstLHS ax index tys
  | CoAxBranch { cab_tvs = tvs, cab_lhs = lhs } <- coAxiomNthBranch ax index
  , (tys1, tys2) <- splitAtList tvs tys
931
  = ASSERT( tvs `equalLength` tys1 )
932 933 934 935 936
    mkTyConApp (coAxiomTyCon ax) (substTysWith tvs tys1 lhs ++ tys2)

mkAxInstRHS ax index tys
  | CoAxBranch { cab_tvs = tvs, cab_rhs = rhs } <- coAxiomNthBranch ax index
  , (tys1, tys2) <- splitAtList tvs tys
937
  = ASSERT( tvs `equalLength` tys1 )
938
    mkAppTys (substTyWith tvs tys1 rhs) tys2
939 940 941

mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> Type
mkUnbranchedAxInstRHS ax = mkAxInstRHS ax 0
942

943
-- | Apply a 'Coercion' to another 'Coercion'.
944 945
-- The second coercion must be Nominal, unless the first is Phantom.
-- If the first is Phantom, then the second can be either Phantom or Nominal.
946
mkAppCo :: Coercion -> Coercion -> Coercion
947 948 949
mkAppCo co1 co2 = mkAppCoFlexible co1 Nominal co2
-- Note, mkAppCo is careful to maintain invariants regarding
-- where Refl constructors appear; see the comments in the definition
950
-- of Coercion and the Note [Refl invariant] in types/TypeRep.hs.
951 952 953 954 955 956

-- | Apply a 'Coercion' to another 'Coercion'.
-- The second 'Coercion's role is given, making this more flexible than
-- 'mkAppCo'.
mkAppCoFlexible :: Coercion -> Role -> Coercion -> Coercion
mkAppCoFlexible (Refl r ty1) _ (Refl _ ty2)
957
  = Refl r (mkAppTy ty1 ty2)
958 959 960
mkAppCoFlexible (Refl r ty1) r2 co2
  | Just (tc, tys) <- splitTyConApp_maybe ty1
    -- Expand type synonyms; a TyConAppCo can't have a type synonym (Trac #9102)
961 962
  = TyConAppCo r tc (zip_roles (tyConRolesX r tc) tys)
  where
963
    zip_roles (r1:_)  []        = [downgradeRole r1 r2 co2]
964 965
    zip_roles (r1:rs) (ty1:tys) = mkReflCo r1 ty1 : zip_roles rs tys
    zip_roles _       _         = panic "zip_roles" -- but the roles are infinite...
966
mkAppCoFlexible (TyConAppCo r tc cos) r2 co
967
  = case r of