TidyPgm.lhs 44.9 KB
Newer Older
Simon Marlow's avatar
Simon Marlow committed
1

2 3 4 5 6
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{Tidying up Core}

\begin{code}
7 8
module TidyPgm( mkBootModDetailsDs, mkBootModDetailsTc, 
       		tidyProgram, globaliseAndTidyId ) where
9 10 11

#include "HsVersions.h"

Simon Marlow's avatar
Simon Marlow committed
12 13
import TcRnTypes
import FamInstEnv
Simon Marlow's avatar
Simon Marlow committed
14
import DynFlags
15
import CoreSyn
Simon Marlow's avatar
Simon Marlow committed
16 17 18
import CoreUnfold
import CoreFVs
import CoreTidy
19
import CoreMonad
Simon Marlow's avatar
Simon Marlow committed
20
import CoreUtils
21
import Rules
22
import CoreArity	( exprArity, exprBotStrictness_maybe )
23
import Class		( classAllSelIds )
24 25
import VarEnv
import VarSet
26
import Var
Simon Marlow's avatar
Simon Marlow committed
27 28 29
import Id
import IdInfo
import InstEnv
30
import Demand
Simon Marlow's avatar
Simon Marlow committed
31
import BasicTypes
32
import Name hiding (varName)
Simon Marlow's avatar
Simon Marlow committed
33 34 35 36 37 38
import NameSet
import IfaceEnv
import NameEnv
import TcType
import DataCon
import TyCon
39
import Module
40
import Packages( isDllName )
41
import HscTypes
Simon Marlow's avatar
Simon Marlow committed
42 43
import Maybes
import UniqSupply
44
import Outputable
Ian Lynagh's avatar
Ian Lynagh committed
45
import FastBool hiding ( fastOr )
46
import Util
47
import FastString
Simon Marlow's avatar
Simon Marlow committed
48

49
import Control.Monad	( when )
50
import Data.List	( sortBy )
Simon Marlow's avatar
Simon Marlow committed
51
import Data.IORef	( IORef, readIORef, writeIORef )
52 53 54
\end{code}


55 56 57
Constructing the TypeEnv, Instances, Rules, VectInfo from which the
ModIface is constructed, and which goes on to subsequent modules in
--make mode.
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Most of the interface file is obtained simply by serialising the
TypeEnv.  One important consequence is that if the *interface file*
has pragma info if and only if the final TypeEnv does. This is not so
important for *this* module, but it's essential for ghc --make:
subsequent compilations must not see (e.g.) the arity if the interface
file does not contain arity If they do, they'll exploit the arity;
then the arity might change, but the iface file doesn't change =>
recompilation does not happen => disaster. 

For data types, the final TypeEnv will have a TyThing for the TyCon,
plus one for each DataCon; the interface file will contain just one
data type declaration, but it is de-serialised back into a collection
of TyThings.

%************************************************************************
%*				 					*
		Plan A: simpleTidyPgm
%*				 					* 
%************************************************************************


80
Plan A: mkBootModDetails: omit pragmas, make interfaces small
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Ignore the bindings

* Drop all WiredIn things from the TypeEnv 
	(we never want them in interface files)

* Retain all TyCons and Classes in the TypeEnv, to avoid
	having to find which ones are mentioned in the
	types of exported Ids

* Trim off the constructors of non-exported TyCons, both
	from the TyCon and from the TypeEnv

* Drop non-exported Ids from the TypeEnv

* Tidy the types of the DFunIds of Instances, 
  make them into GlobalIds, (they already have External Names)
  and add them to the TypeEnv

* Tidy the types of the (exported) Ids in the TypeEnv,
  make them into GlobalIds (they already have External Names)

* Drop rules altogether

105 106 107 108
* Tidy the bindings, to ensure that the Caf and Arity
  information is correct for each top-level binder; the 
  code generator needs it. And to ensure that local names have
  distinct OccNames in case of object-file splitting
109 110 111 112

\begin{code}
-- This is Plan A: make a small type env when typechecking only,
-- or when compiling a hs-boot file, or simply when not using -O
113 114 115
--
-- We don't look at the bindings at all -- there aren't any
-- for hs-boot files
116

Simon Marlow's avatar
Simon Marlow committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
mkBootModDetailsTc :: HscEnv -> TcGblEnv -> IO ModDetails
mkBootModDetailsTc hsc_env 
        TcGblEnv{ tcg_exports   = exports,
                  tcg_type_env  = type_env,
                  tcg_insts     = insts,
                  tcg_fam_insts = fam_insts
                }
  = mkBootModDetails hsc_env exports type_env insts fam_insts

mkBootModDetailsDs :: HscEnv -> ModGuts -> IO ModDetails
mkBootModDetailsDs hsc_env 
        ModGuts{ mg_exports   = exports,
                 mg_types     = type_env,
                 mg_insts     = insts,
                 mg_fam_insts = fam_insts
                }
  = mkBootModDetails hsc_env exports type_env insts fam_insts
  
mkBootModDetails :: HscEnv -> [AvailInfo] -> NameEnv TyThing
                 -> [Instance] -> [FamInstEnv.FamInst] -> IO ModDetails
mkBootModDetails hsc_env exports type_env insts fam_insts
138
  = do	{ let dflags = hsc_dflags hsc_env 
139
	; showPass dflags CoreTidy
140

141
	; let { insts'     = tidyInstances globaliseAndTidyId insts
142 143 144
	      ; dfun_ids   = map instanceDFunId insts'
	      ; type_env1  = tidyBootTypeEnv (availsToNameSet exports) type_env
	      ; type_env'  = extendTypeEnvWithIds type_env1 dfun_ids
145
	      }
146 147 148 149
	; return (ModDetails { md_types     = type_env'
			     , md_insts     = insts'
			     , md_fam_insts = fam_insts
			     , md_rules     = []
150
			     , md_anns      = []
mnislaih's avatar
mnislaih committed
151
			     , md_exports   = exports
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
152
                             , md_vect_info = noVectInfo
153
                             })
154
	}
155 156
  where

157 158
tidyBootTypeEnv :: NameSet -> TypeEnv -> TypeEnv
tidyBootTypeEnv exports type_env 
159
  = tidyTypeEnv True False exports type_env final_ids
160 161 162 163 164 165 166 167
  where
	-- Find the LocalIds in the type env that are exported
	-- Make them into GlobalIds, and tidy their types
	--
	-- It's very important to remove the non-exported ones
	-- because we don't tidy the OccNames, and if we don't remove
	-- the non-exported ones we'll get many things with the
	-- same name in the interface file, giving chaos.
168
    final_ids = [ globaliseAndTidyId id
169 170 171 172 173 174 175 176
		| id <- typeEnvIds type_env
		, isLocalId id
		, keep_it id ]

        -- default methods have their export flag set, but everything
        -- else doesn't (yet), because this is pre-desugaring, so we
        -- must test both.
    keep_it id = isExportedId id || idName id `elemNameSet` exports
177 178


179 180

globaliseAndTidyId :: Id -> Id
181
-- Takes an LocalId with an External Name, 
182 183 184 185 186 187 188 189
-- makes it into a GlobalId 
--     * unchanged Name (might be Internal or External)
--     * unchanged details
--     * VanillaIdInfo (makes a conservative assumption about Caf-hood)
globaliseAndTidyId id	
  = Id.setIdType (globaliseId id) tidy_type
  where
    tidy_type = tidyTopType (idType id)
190 191 192
\end{code}


193 194
%************************************************************************
%*				 					*
195
	Plan B: tidy bindings, make TypeEnv full of IdInfo
196 197 198
%*				 					* 
%************************************************************************

199 200 201 202 203
Plan B: include pragmas, make interfaces 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Figure out which Ids are externally visible

* Tidy the bindings, externalising appropriate Ids
204

205 206 207
* Drop all Ids from the TypeEnv, and add all the External Ids from 
  the bindings.  (This adds their IdInfo to the TypeEnv; and adds
  floated-out Ids that weren't even in the TypeEnv before.)
208 209 210

Step 1: Figure out external Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211 212
Note [choosing external names]

Simon Marlow's avatar
Simon Marlow committed
213 214 215 216
See also the section "Interface stability" in the
RecompilationAvoidance commentary:
  http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance

217 218 219 220 221 222 223
First we figure out which Ids are "external" Ids.  An
"external" Id is one that is visible from outside the compilation
unit.  These are
	a) the user exported ones
	b) ones mentioned in the unfoldings, workers, 
	   or rules of externally-visible ones 

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
While figuring out which Ids are external, we pick a "tidy" OccName
for each one.  That is, we make its OccName distinct from the other
external OccNames in this module, so that in interface files and
object code we can refer to it unambiguously by its OccName.  The
OccName for each binder is prefixed by the name of the exported Id
that references it; e.g. if "f" references "x" in its unfolding, then
"x" is renamed to "f_x".  This helps distinguish the different "x"s
from each other, and means that if "f" is later removed, things that
depend on the other "x"s will not need to be recompiled.  Of course,
if there are multiple "f_x"s, then we have to disambiguate somehow; we
use "f_x0", "f_x1" etc.

As far as possible we should assign names in a deterministic fashion.
Each time this module is compiled with the same options, we should end
up with the same set of external names with the same types.  That is,
the ABI hash in the interface should not change.  This turns out to be
quite tricky, since the order of the bindings going into the tidy
phase is already non-deterministic, as it is based on the ordering of
Uniques, which are assigned unpredictably.

To name things in a stable way, we do a depth-first-search of the
bindings, starting from the exports sorted by name.  This way, as long
as the bindings themselves are deterministic (they sometimes aren't!),
the order in which they are presented to the tidying phase does not
affect the names we assign.
249 250 251 252 253 254

Step 2: Tidy the program
~~~~~~~~~~~~~~~~~~~~~~~~
Next we traverse the bindings top to bottom.  For each *top-level*
binder

255 256 257
 1. Make it into a GlobalId; its IdDetails becomes VanillaGlobal, 
    reflecting the fact that from now on we regard it as a global, 
    not local, Id
258 259 260 261 262

 2. Give it a system-wide Unique.
    [Even non-exported things need system-wide Uniques because the
    byte-code generator builds a single Name->BCO symbol table.]

263
    We use the NameCache kept in the HscEnv as the
264 265
    source of such system-wide uniques.

266
    For external Ids, use the original-name cache in the NameCache
267 268
    to ensure that the unique assigned is the same as the Id had 
    in any previous compilation run.
269 270 271 272 273 274 275

 3. Rename top-level Ids according to the names we chose in step 1.
    If it's an external Id, make it have a External Name, otherwise
    make it have an Internal Name.  This is used by the code generator
    to decide whether to make the label externally visible

 4. Give it its UTTERLY FINAL IdInfo; in ptic, 
276 277 278 279 280 281 282 283 284 285 286 287
  	* its unfolding, if it should have one
	
	* its arity, computed from the number of visible lambdas

	* its CAF info, computed from what is free in its RHS

		
Finally, substitute these new top-level binders consistently
throughout, including in unfoldings.  We also tidy binders in
RHSs, so that they print nicely in interfaces.

\begin{code}
288
tidyProgram :: HscEnv -> ModGuts -> IO (CgGuts, ModDetails)
289
tidyProgram hsc_env  (ModGuts { mg_module = mod, mg_exports = exports, 
290 291
				mg_types = type_env, 
				mg_insts = insts, mg_fam_insts = fam_insts,
292 293
				mg_binds = binds, 
				mg_rules = imp_rules,
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
294
                                mg_vect_info = vect_info,
295
                                mg_anns = anns,
Simon Marlow's avatar
Simon Marlow committed
296
                                mg_deps = deps, 
andy@galois.com's avatar
andy@galois.com committed
297
				mg_foreign = foreign_stubs,
mnislaih's avatar
mnislaih committed
298
			        mg_hpc_info = hpc_info,
299
                                mg_modBreaks = modBreaks })
300

301 302
  = do	{ let { dflags     = hsc_dflags hsc_env
	      ; omit_prags = dopt Opt_OmitInterfacePragmas dflags
303
	      ; expose_all = dopt Opt_ExposeAllUnfoldings  dflags
304
	      ; th	   = xopt Opt_TemplateHaskell      dflags
305
              }
306
	; showPass dflags CoreTidy
307

308 309
    	; let { implicit_binds = getImplicitBinds type_env }

310
        ; (unfold_env, tidy_occ_env)
311 312
              <- chooseExternalIds hsc_env mod omit_prags expose_all 
                                   binds implicit_binds imp_rules
313 314

        ; let { ext_rules = findExternalRules omit_prags binds imp_rules unfold_env }
315 316
	        -- Glom together imp_rules and rules currently attached to binders
		-- Then pick just the ones we need to expose
317
		-- See Note [Which rules to expose]
318

319 320
	; let { (tidy_env, tidy_binds)
                 = tidyTopBinds hsc_env unfold_env tidy_occ_env binds }
321

322
	; let { export_set = availsToNameSet exports
323 324
	      ; final_ids  = [ id | id <- bindersOfBinds tidy_binds, 
				    isExternalName (idName id)]
325 326
              ; tidy_type_env = tidyTypeEnv omit_prags th export_set
					    type_env final_ids
327
	      ; tidy_insts    = tidyInstances (lookup_dfun tidy_type_env) insts
328 329 330
		-- A DFunId will have a binding in tidy_binds, and so
		-- will now be in final_env, replete with IdInfo
		-- Its name will be unchanged since it was born, but
331 332
		-- we want Global, IdInfo-rich (or not) DFunId in the
		-- tidy_insts
333 334 335

	      ; tidy_rules = tidyRules tidy_env ext_rules
		-- You might worry that the tidy_env contains IdInfo-rich stuff
336 337
		-- and indeed it does, but if omit_prags is on, ext_rules is
		-- empty
338

339 340
              ; tidy_vect_info = tidyVectInfo tidy_env vect_info

341 342 343
	      -- See Note [Injecting implicit bindings]
    	      ; all_tidy_binds = implicit_binds ++ tidy_binds

344
	      ; alg_tycons = filter isAlgTyCon (typeEnvTyCons type_env)
345
	      }
346

347 348 349 350 351 352 353 354 355
   	; endPass dflags CoreTidy all_tidy_binds tidy_rules

	  -- If the endPass didn't print the rules, but ddump-rules is on, print now
	; dumpIfSet (dopt Opt_D_dump_rules dflags 
                     && (not (dopt Opt_D_dump_simpl dflags))) 
		    CoreTidy
                    (ptext (sLit "rules"))
                    (pprRulesForUser tidy_rules)

356 357 358 359 360 361 362 363 364
          -- Print one-line size info
        ; let cs = coreBindsStats tidy_binds
        ; when (dopt Opt_D_dump_core_stats dflags)
	       (printDump (ptext (sLit "Tidy size (terms,types,coercions)") 
                           <+> ppr (moduleName mod) <> colon 
                           <+> int (cs_tm cs) 
                           <+> int (cs_ty cs) 
                           <+> int (cs_co cs) ))

365 366 367 368
        ; return (CgGuts { cg_module   = mod,
                           cg_tycons   = alg_tycons,
                           cg_binds    = all_tidy_binds,
                           cg_foreign  = foreign_stubs,
369 370
                           cg_dep_pkgs = map fst $ dep_pkgs deps,
                           cg_hpc_info = hpc_info,
371
                           cg_modBreaks = modBreaks }, 
372

373 374 375
		   ModDetails { md_types     = tidy_type_env,
				md_rules     = tidy_rules,
				md_insts     = tidy_insts,
376 377
                                md_vect_info = tidy_vect_info,
                                md_fam_insts = fam_insts,
mnislaih's avatar
mnislaih committed
378
				md_exports   = exports,
379
				md_anns      = anns      -- are already tidy
chak@cse.unsw.edu.au.'s avatar
chak@cse.unsw.edu.au. committed
380
                              })
381 382
	}

Simon Marlow's avatar
Simon Marlow committed
383
lookup_dfun :: TypeEnv -> Var -> Id
384 385 386
lookup_dfun type_env dfun_id
  = case lookupTypeEnv type_env (idName dfun_id) of
	Just (AnId dfun_id') -> dfun_id'
Simon Marlow's avatar
Simon Marlow committed
387
	_other -> pprPanic "lookup_dfun" (ppr dfun_id)
388

389
--------------------------
390 391 392
tidyTypeEnv :: Bool 	-- Compiling without -O, so omit prags
	    -> Bool	-- Template Haskell is on
	    -> NameSet -> TypeEnv -> [Id] -> TypeEnv
393

394
-- The competed type environment is gotten from
395
--	Dropping any wired-in things, and then
396 397 398 399
-- 	a) keeping the types and classes
--	b) removing all Ids, 
--	c) adding Ids with correct IdInfo, including unfoldings,
--		gotten from the bindings
400
-- From (c) we keep only those Ids with External names;
401 402 403 404 405
--	    the CoreTidy pass makes sure these are all and only
--	    the externally-accessible ones
-- This truncates the type environment to include only the 
-- exported Ids and things needed from them, which saves space

406
tidyTypeEnv omit_prags th exports type_env final_ids
407
 = let  type_env1 = filterNameEnv keep_it type_env
408
	type_env2 = extendTypeEnvWithIds type_env1 final_ids
409
	type_env3 | omit_prags = mapNameEnv (trimThing th exports) type_env2
410 411 412
		  | otherwise  = type_env2
    in 
    type_env3
413
  where
414
   	-- We keep GlobalIds, because they won't appear 
415
	-- in the bindings from which final_ids are derived!
416
	-- (The bindings bind LocalIds.)
417
    keep_it thing | isWiredInThing thing = False
418
    keep_it (AnId id) = isGlobalId id	-- Keep GlobalIds (e.g. class ops)
Simon Marlow's avatar
Simon Marlow committed
419
    keep_it _other    = True		-- Keep all TyCons, DataCons, and Classes
420

421 422 423 424 425
--------------------------
isWiredInThing :: TyThing -> Bool
isWiredInThing thing = isWiredInName (getName thing)

--------------------------
426
trimThing :: Bool -> NameSet -> TyThing -> TyThing
427
-- Trim off inessentials, for boot files and no -O
428 429 430
trimThing th exports (ATyCon tc)
   | not th && not (mustExposeTyCon exports tc)
   = ATyCon (makeTyConAbstract tc)	-- Note [Trimming and Template Haskell]
431

432
trimThing _th _exports (AnId id)
433 434
   | not (isImplicitId id) 
   = AnId (id `setIdInfo` vanillaIdInfo)
435

436
trimThing _th _exports other_thing 
437
  = other_thing
438 439


440 441 442 443 444 445 446 447 448 449 450 451
{- Note [Trimming and Template Haskell]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (Trac #2386) this
	module M(T, makeOne) where
	  data T = Yay String
	  makeOne = [| Yay "Yep" |]
Notice that T is exported abstractly, but makeOne effectively exports it too!
A module that splices in $(makeOne) will then look for a declartion of Yay,
so it'd better be there.  Hence, brutally but simply, we switch off type
constructor trimming if TH is enabled in this module. -}


452 453 454 455 456 457 458 459 460
mustExposeTyCon :: NameSet	-- Exports
		-> TyCon	-- The tycon
		-> Bool 	-- Can its rep be hidden?
-- We are compiling without -O, and thus trying to write as little as 
-- possible into the interface file.  But we must expose the details of
-- any data types whose constructors or fields are exported
mustExposeTyCon exports tc
  | not (isAlgTyCon tc) 	-- Synonyms
  = True
461 462 463
  | isEnumerationTyCon tc	-- For an enumeration, exposing the constructors
  = True			-- won't lead to the need for further exposure
				-- (This includes data types with no constructors.)
464
  | isFamilyTyCon tc		-- Open type family
465
  = True
466

467 468 469 470
  | otherwise			-- Newtype, datatype
  = any exported_con (tyConDataCons tc)
	-- Expose rep if any datacon or field is exported

471
  || (isNewTyCon tc && isFFITy (snd (newTyConRhs tc)))
472 473 474 475 476 477 478 479 480 481 482 483 484 485
	-- Expose the rep for newtypes if the rep is an FFI type.  
	-- For a very annoying reason.  'Foreign import' is meant to
	-- be able to look through newtypes transparently, but it
	-- can only do that if it can "see" the newtype representation
  where
    exported_con con = any (`elemNameSet` exports) 
			   (dataConName con : dataConFieldLabels con)

tidyInstances :: (DFunId -> DFunId) -> [Instance] -> [Instance]
tidyInstances tidy_dfun ispecs
  = map tidy ispecs
  where
    tidy ispec = setInstanceDFunId ispec $
		 tidy_dfun (instanceDFunId ispec)
486 487
\end{code}

488 489
\begin{code}
tidyVectInfo :: TidyEnv -> VectInfo -> VectInfo
490 491 492 493 494 495 496 497 498 499
tidyVectInfo (_, var_env) info@(VectInfo { vectInfoVar          = vars
                                         , vectInfoPADFun       = pas
                                         , vectInfoIso          = isos
                                         , vectInfoScalarVars   = scalarVars
                                         })
  = info { vectInfoVar          = tidy_vars
         , vectInfoPADFun       = tidy_pas
         , vectInfoIso          = tidy_isos 
         , vectInfoScalarVars   = tidy_scalarVars
         }
500 501 502 503 504 505 506 507 508 509 510
  where
    tidy_vars = mkVarEnv
              $ map tidy_var_mapping
              $ varEnvElts vars

    tidy_pas = mapNameEnv tidy_snd_var pas
    tidy_isos = mapNameEnv tidy_snd_var isos

    tidy_var_mapping (from, to) = (from', (from', lookup_var to))
      where from' = lookup_var from
    tidy_snd_var (x, var) = (x, lookup_var var)
511 512 513 514

    tidy_scalarVars = mkVarSet
                    $ map lookup_var
                    $ varSetElems scalarVars
515 516 517 518
      
    lookup_var var = lookupWithDefaultVarEnv var_env var var
\end{code}

519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
%************************************************************************
%*									*
	Implicit bindings
%*									*
%************************************************************************

Note [Injecting implicit bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We inject the implict bindings right at the end, in CoreTidy.
Some of these bindings, notably record selectors, are not
constructed in an optimised form.  E.g. record selector for
	data T = MkT { x :: {-# UNPACK #-} !Int }
Then the unfolding looks like
	x = \t. case t of MkT x1 -> let x = I# x1 in x
This generates bad code unless it's first simplified a bit.  That is
why CoreUnfold.mkImplicitUnfolding uses simleExprOpt to do a bit of
optimisation first.  (Only matters when the selector is used curried;
eg map x ys.)  See Trac #2070.

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
539 540 541 542 543
[Oct 09: in fact, record selectors are no longer implicit Ids at all,
because we really do want to optimise them properly. They are treated
much like any other Id.  But doing "light" optimisation on an implicit
Id still makes sense.]

544 545 546 547 548 549 550 551 552
At one time I tried injecting the implicit bindings *early*, at the
beginning of SimplCore.  But that gave rise to real difficulty,
becuase GlobalIds are supposed to have *fixed* IdInfo, but the
simplifier and other core-to-core passes mess with IdInfo all the
time.  The straw that broke the camels back was when a class selector
got the wrong arity -- ie the simplifier gave it arity 2, whereas
importing modules were expecting it to have arity 1 (Trac #2844).
It's much safer just to inject them right at the end, after tidying.

553
Oh: two other reasons for injecting them late:
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
554

555 556 557 558 559 560
  - If implicit Ids are already in the bindings when we start TidyPgm,
    we'd have to be careful not to treat them as external Ids (in
    the sense of findExternalIds); else the Ids mentioned in *their*
    RHSs will be treated as external and you get an interface file 
    saying      a18 = <blah>
    but nothing refererring to a18 (because the implicit Id is the 
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
561
    one that does, and implicit Ids don't appear in interface files).
562 563 564 565 566

  - More seriously, the tidied type-envt will include the implicit
    Id replete with a18 in its unfolding; but we won't take account
    of a18 when computing a fingerprint for the class; result chaos.
    
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
567 568 569 570
There is one sort of implicit binding that is injected still later,
namely those for data constructor workers. Reason (I think): it's
really just a code generation trick.... binding itself makes no sense.
See CorePrep Note [Data constructor workers].
571 572 573 574

\begin{code}
getImplicitBinds :: TypeEnv -> [CoreBind]
getImplicitBinds type_env
575
  = map get_defn (concatMap implicit_ids (typeEnvElts type_env))
576
  where
577
    implicit_ids (ATyCon tc)  = mapCatMaybes dataConWrapId_maybe (tyConDataCons tc)
578
    implicit_ids (AClass cls) = classAllSelIds cls
579
    implicit_ids _            = []
580 581
    
    get_defn :: Id -> CoreBind
582
    get_defn id = NonRec id (unfoldingTemplate (realIdUnfolding id))
583 584 585
\end{code}


586 587 588 589 590 591
%************************************************************************
%*				 					*
\subsection{Step 1: finding externals}
%*				 					* 
%************************************************************************

592 593
Sete Note [choosing external names].

594
\begin{code}
595
type UnfoldEnv  = IdEnv (Name{-new name-}, Bool {-show unfolding-})
596 597
  -- Maps each top-level Id to its new Name (the Id is tidied in step 2)
  -- The Unique is unchanged.  If the new Name is external, it will be
Simon Marlow's avatar
Simon Marlow committed
598 599 600
  -- visible in the interface file.  
  --
  -- Bool => expose unfolding or not.
601 602 603

chooseExternalIds :: HscEnv
                  -> Module
604
                  -> Bool -> Bool
605
		  -> [CoreBind]
606
                  -> [CoreBind]
607
		  -> [CoreRule]
608
                  -> IO (UnfoldEnv, TidyOccEnv)
609
	-- Step 1 from the notes above
610

611
chooseExternalIds hsc_env mod omit_prags expose_all binds implicit_binds imp_id_rules
612 613 614
  = do { (unfold_env1,occ_env1) <- search init_work_list emptyVarEnv init_occ_env
       ; let internal_ids = filter (not . (`elemVarEnv` unfold_env1)) binders
       ; tidy_internal internal_ids unfold_env1 occ_env1 }
615 616 617
 where
  nc_var = hsc_NC hsc_env 

618 619
  -- init_ext_ids is the intial list of Ids that should be
  -- externalised.  It serves as the starting point for finding a
620 621
  -- deterministic, tidy, renaming for all external Ids in this
  -- module.
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
  -- 
  -- It is sorted, so that it has adeterministic order (i.e. it's the
  -- same list every time this module is compiled), in contrast to the
  -- bindings, which are ordered non-deterministically.
  init_work_list = zip init_ext_ids init_ext_ids
  init_ext_ids   = sortBy (compare `on` getOccName) $
                   filter is_external binders

  -- An Id should be external if either (a) it is exported or
  -- (b) it appears in the RHS of a local rule for an imported Id.   
  -- See Note [Which rules to expose]
  is_external id = isExportedId id || id `elemVarSet` rule_rhs_vars
  rule_rhs_vars = foldr (unionVarSet . ruleRhsFreeVars) emptyVarSet imp_id_rules

  binders          = bindersOfBinds binds
637
  implicit_binders = bindersOfBinds implicit_binds
638
  binder_set       = mkVarSet binders
639

640
  avoids   = [getOccName name | bndr <- binders ++ implicit_binders,
641
                                let name = idName bndr,
642
                                isExternalName name ]
643 644 645 646 647 648
		-- In computing our "avoids" list, we must include
		--	all implicit Ids
		--	all things with global names (assigned once and for
		--					all by the renamer)
		-- since their names are "taken".
		-- The type environment is a convenient source of such things.
649 650
                -- In particular, the set of binders doesn't include
                -- implicit Ids at this stage.
651

652 653 654 655 656 657 658 659 660 661 662
	-- We also make sure to avoid any exported binders.  Consider
	--	f{-u1-} = 1	-- Local decl
	--	...
	--	f{-u2-} = 2	-- Exported decl
	--
	-- The second exported decl must 'get' the name 'f', so we
	-- have to put 'f' in the avoids list before we get to the first
	-- decl.  tidyTopId then does a no-op on exported binders.
  init_occ_env = initTidyOccEnv avoids


663 664 665 666 667 668
  search :: [(Id,Id)]    -- The work-list: (external id, referrring id)
  	    		 -- Make a tidy, external Name for the external id,
                         --   add it to the UnfoldEnv, and do the same for the
                         --   transitive closure of Ids it refers to
  	    		 -- The referring id is used to generate a tidy
			 ---  name for the external id
669 670 671 672 673 674
         -> UnfoldEnv    -- id -> (new Name, show_unfold)
         -> TidyOccEnv   -- occ env for choosing new Names
         -> IO (UnfoldEnv, TidyOccEnv)

  search [] unfold_env occ_env = return (unfold_env, occ_env)

675 676
  search ((idocc,referrer) : rest) unfold_env occ_env
    | idocc `elemVarEnv` unfold_env = search rest unfold_env occ_env
677
    | otherwise = do
678
      (occ_env', name') <- tidyTopName mod nc_var (Just referrer) occ_env idocc
679 680 681
      let 
          (new_ids, show_unfold)
                | omit_prags = ([], False)
682
                | otherwise  = addExternal expose_all refined_id
683 684 685 686 687 688 689 690 691 692

		-- 'idocc' is an *occurrence*, but we need to see the
		-- unfolding in the *definition*; so look up in binder_set
          refined_id = case lookupVarSet binder_set idocc of
                         Just id -> id
                         Nothing -> WARN( True, ppr idocc ) idocc

          unfold_env' = extendVarEnv unfold_env idocc (name',show_unfold)
          referrer' | isExportedId refined_id = refined_id
                    | otherwise               = referrer
693 694 695 696 697 698 699 700 701 702 703
      --
      search (zip new_ids (repeat referrer') ++ rest) unfold_env' occ_env'

  tidy_internal :: [Id] -> UnfoldEnv -> TidyOccEnv
                -> IO (UnfoldEnv, TidyOccEnv)
  tidy_internal []       unfold_env occ_env = return (unfold_env,occ_env)
  tidy_internal (id:ids) unfold_env occ_env = do
      (occ_env', name') <- tidyTopName mod nc_var Nothing occ_env id
      let unfold_env' = extendVarEnv unfold_env id (name',False)
      tidy_internal ids unfold_env' occ_env'

704 705
addExternal :: Bool -> Id -> ([Id],Bool)
addExternal expose_all id = (new_needed_ids, show_unfold)
706 707
  where
    new_needed_ids = unfold_ids ++
708 709
                     filter (\id -> isLocalId id &&
                                    not (id `elemVarSet` unfold_set))
710
                       (varSetElems spec_ids) -- XXX non-det ordering
711 712

    idinfo	   = idInfo id
713
    never_active   = isNeverActive (inlinePragmaActivation (inlinePragInfo idinfo))
714
    loop_breaker   = isNonRuleLoopBreaker (occInfo idinfo)
715
    bottoming_fn   = isBottomingSig (strictnessInfo idinfo `orElse` topSig)
716
    spec_ids	   = specInfoFreeVars (specInfo idinfo)
717 718 719 720

	-- Stuff to do with the Id's unfolding
	-- We leave the unfolding there even if there is a worker
	-- In GHCI the unfolding is used by importers
721 722 723 724 725
    show_unfold = isJust mb_unfold_ids
    (unfold_set, unfold_ids) = mb_unfold_ids `orElse` (emptyVarSet, [])

    mb_unfold_ids :: Maybe (IdSet, [Id])	-- Nothing => don't unfold
    mb_unfold_ids = case unfoldingInfo idinfo of
726
		      CoreUnfolding { uf_tmpl = unf_rhs, uf_src = src, uf_guidance = guide } 
727 728
					    | show_unfolding src guide
					    -> Just (unf_ext_ids src unf_rhs)
729
                      DFunUnfolding _ _ ops -> Just (exprsFvsInOrder (dfunArgExprs ops))
730
		      _                     -> Nothing
731 732 733 734 735 736 737
                  where
                    unf_ext_ids (InlineWrapper v) _ = (unitVarSet v, [v])
                    unf_ext_ids _           unf_rhs = exprFvsInOrder unf_rhs
		    -- For a wrapper, externalise the wrapper id rather than the
		    -- fvs of the rhs.  The two usually come down to the same thing
		    -- but I've seen cases where we had a wrapper id $w but a
		    -- rhs where $w had been inlined; see Trac #3922
738 739 740 741 742

    show_unfolding unf_source unf_guidance
       =  expose_all 	     -- 'expose_all' says to expose all 
			     -- unfoldings willy-nilly

743
       || isStableSource unf_source	     -- Always expose things whose 
744 745 746 747 748 749
       	  		     		     -- source is an inline rule

       || not (bottoming_fn	 -- No need to inline bottom functions
	   || never_active	 -- Or ones that say not to
	   || loop_breaker	 -- Or that are loop breakers
	   || neverUnfoldGuidance unf_guidance)
750 751 752 753 754 755 756 757

-- We want a deterministic free-variable list.  exprFreeVars gives us
-- a VarSet, which is in a non-deterministic order when converted to a
-- list.  Hence, here we define a free-variable finder that returns
-- the free variables in the order that they are encountered.
--
-- Note [choosing external names]

758 759 760 761 762 763 764 765 766
exprFvsInOrder :: CoreExpr -> (VarSet, [Id])
exprFvsInOrder e = run (dffvExpr e)

exprsFvsInOrder :: [CoreExpr] -> (VarSet, [Id])
exprsFvsInOrder es = run (mapM_ dffvExpr es)

run :: DFFV () -> (VarSet, [Id])
run (DFFV m) = case m emptyVarSet [] of
                 (set,ids,_) -> (set,ids)
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

newtype DFFV a = DFFV (VarSet -> [Var] -> (VarSet,[Var],a))

instance Monad DFFV where
  return a = DFFV $ \set ids -> (set, ids, a)
  (DFFV m) >>= k = DFFV $ \set ids ->
    case m set ids of
       (set',ids',a) -> case k a of
                          DFFV f -> f set' ids' 

insert :: Var -> DFFV ()
insert v = DFFV $ \ set ids  -> case () of 
 _ | v `elemVarSet` set -> (set,ids,())
   | otherwise          -> (extendVarSet set v, v:ids, ())

dffvExpr :: CoreExpr -> DFFV ()
dffvExpr e = go emptyVarSet e
  where
    go scope e = case e of
      Var v | isLocalId v && not (v `elemVarSet` scope) -> insert v
      App e1 e2          -> do go scope e1; go scope e2
      Lam v e            -> go (extendVarSet scope v) e
      Note _ e           -> go scope e
      Cast e _           -> go scope e
      Let (NonRec x r) e -> do go scope r; go (extendVarSet scope x) e
      Let (Rec prs) e    -> do let scope' = extendVarSetList scope (map fst prs)
                               mapM_ (go scope') (map snd prs)
                               go scope' e
      Case e b _ as      -> do go scope e
                               mapM_ (go_alt (extendVarSet scope b)) as
      _other             -> return ()

    go_alt scope (_,xs,r) = go (extendVarSetList scope xs) r
800 801 802
\end{code}


803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
--------------------------------------------------------------------
--		tidyTopName
-- This is where we set names to local/global based on whether they really are 
-- externally visible (see comment at the top of this module).  If the name
-- was previously local, we have to give it a unique occurrence name if
-- we intend to externalise it.

\begin{code}
tidyTopName :: Module -> IORef NameCache -> Maybe Id -> TidyOccEnv
	    -> Id -> IO (TidyOccEnv, Name)
tidyTopName mod nc_var maybe_ref occ_env id
  | global && internal = return (occ_env, localiseName name)

  | global && external = return (occ_env, name)
	-- Global names are assumed to have been allocated by the renamer,
	-- so they already have the "right" unique
	-- And it's a system-wide unique too

  -- Now we get to the real reason that all this is in the IO Monad:
  -- we have to update the name cache in a nice atomic fashion

  | local  && internal = do { nc <- readIORef nc_var
			    ; let (nc', new_local_name) = mk_new_local nc
			    ; writeIORef nc_var nc'
			    ; return (occ_env', new_local_name) }
	-- Even local, internal names must get a unique occurrence, because
	-- if we do -split-objs we externalise the name later, in the code generator
	--
	-- Similarly, we must make sure it has a system-wide Unique, because
	-- the byte-code generator builds a system-wide Name->BCO symbol table

  | local  && external = do { nc <- readIORef nc_var
			    ; let (nc', new_external_name) = mk_new_external nc
			    ; writeIORef nc_var nc'
			    ; return (occ_env', new_external_name) }

  | otherwise = panic "tidyTopName"
  where
    name	= idName id
    external    = isJust maybe_ref
    global	= isExternalName name
    local	= not global
    internal	= not external
    loc		= nameSrcSpan name

    old_occ     = nameOccName name
    new_occ
      | Just ref <- maybe_ref, ref /= id = 
          mkOccName (occNameSpace old_occ) $
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
             let
                 ref_str = occNameString (getOccName ref)
                 occ_str = occNameString old_occ
             in
             case occ_str of
               '$':'w':_ -> occ_str
                  -- workers: the worker for a function already
                  -- includes the occname for its parent, so there's
                  -- no need to prepend the referrer.
               _other | isSystemName name -> ref_str
                      | otherwise         -> ref_str ++ '_' : occ_str
                  -- If this name was system-generated, then don't bother
                  -- to retain its OccName, just use the referrer.  These
                  -- system-generated names will become "f1", "f2", etc. for
                  -- a referrer "f".
867 868 869 870
      | otherwise = old_occ

    (occ_env', occ') = tidyOccName occ_env new_occ

871
    mk_new_local nc = (nc { nsUniqs = us }, mkInternalName uniq occ' loc)
872
 		    where
873
		      (uniq, us) = takeUniqFromSupply (nsUniqs nc)
874 875 876 877 878 879 880 881 882 883

    mk_new_external nc = allocateGlobalBinder nc mod occ' loc
	-- If we want to externalise a currently-local name, check
	-- whether we have already assigned a unique for it.
	-- If so, use it; if not, extend the table.
	-- All this is done by allcoateGlobalBinder.
	-- This is needed when *re*-compiling a module in GHCi; we must
	-- use the same name for externally-visible things as we did before.
\end{code}

884
\begin{code}
885 886 887
findExternalRules :: Bool	-- Omit pragmas
                  -> [CoreBind]
		  -> [CoreRule]	-- Local rules for imported fns
888
	          -> UnfoldEnv	-- Ids that are exported, so we need their rules
889 890
	          -> [CoreRule]
  -- The complete rules are gotten by combining
891
  --	a) local rules for imported Ids
892
  --	b) rules embedded in the top-level Ids
893 894 895
findExternalRules omit_prags binds imp_id_rules unfold_env
  | omit_prags = []
  | otherwise  = filterOut internal_rule (imp_id_rules ++ local_rules)
896 897 898
  where
    local_rules  = [ rule
 		   | id <- bindersOfBinds binds,
899
                     external_id id,
900 901 902 903
		     rule <- idCoreRules id
		   ]

    internal_rule rule
904
	=  any (not . external_id) (varSetElems (ruleLhsFreeIds rule))
905 906 907 908
		-- Don't export a rule whose LHS mentions a locally-defined
		--  Id that is completely internal (i.e. not visible to an
		-- importing module)

909 910 911
    external_id id
      | Just (name,_) <- lookupVarEnv unfold_env id = isExternalName name
      | otherwise = False
912 913
\end{code}

914 915 916 917 918 919 920 921
Note [Which rules to expose]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
findExternalRules filters imp_rules to avoid binders that 
aren't externally visible; but the externally-visible binders 
are computed (by findExternalIds) assuming that all orphan
rules are externalised (see init_ext_ids in function 
'search'). So in fact we may export more than we need. 
(It's a sort of mutual recursion.)
922

923 924 925 926 927 928 929 930 931
%************************************************************************
%*									*
\subsection{Step 2: top-level tidying}
%*									*
%************************************************************************


\begin{code}
-- TopTidyEnv: when tidying we need to know
932
--   * nc_var: The NameCache, containing a unique supply and any pre-ordained Names.  
933 934 935 936 937 938 939 940 941 942 943 944
--	  These may have arisen because the
--	  renamer read in an interface file mentioning M.$wf, say,
--	  and assigned it unique r77.  If, on this compilation, we've
--	  invented an Id whose name is $wf (but with a different unique)
--	  we want to rename it to have unique r77, so that we can do easy
--	  comparisons with stuff from the interface file
--
--   * occ_env: The TidyOccEnv, which tells us which local occurrences 
--     are 'used'
--
--   * subst_env: A Var->Var mapping that substitutes the new Var for the old

945
tidyTopBinds :: HscEnv
946 947
	     -> UnfoldEnv
             -> TidyOccEnv
948
	     -> [CoreBind]
949
	     -> (TidyEnv, [CoreBind])
950

951
tidyTopBinds hsc_env unfold_env init_occ_env binds
952
  = tidy init_env binds
953
  where
954
    init_env = (init_occ_env, emptyVarEnv)
955

Simon Marlow's avatar
Simon Marlow committed
956 957
    this_pkg = thisPackage (hsc_dflags hsc_env)

958 959 960 961 962
    tidy env []     = (env, [])
    tidy env (b:bs) = let (env1, b')  = tidyTopBind this_pkg unfold_env env b
			  (env2, bs') = tidy env1 bs
                      in
			  (env2, b':bs')
963

964
------------------------
Simon Marlow's avatar
Simon Marlow committed
965
tidyTopBind  :: PackageId
966 967 968 969 970
             -> UnfoldEnv
	     -> TidyEnv
             -> CoreBind
	     -> (TidyEnv, CoreBind)

Simon Marlow's avatar
Simon Marlow committed
971
tidyTopBind this_pkg unfold_env (occ_env,subst1) (NonRec bndr rhs)
972
  = (tidy_env2,  NonRec bndr' rhs')
973
  where
974 975 976 977
    Just (name',show_unfold) = lookupVarEnv unfold_env bndr
    caf_info      = hasCafRefs this_pkg subst1 (idArity bndr) rhs
    (bndr', rhs') = tidyTopPair show_unfold tidy_env2 caf_info name' (bndr, rhs)
    subst2        = extendVarEnv subst1 bndr bndr'
Simon Marlow's avatar
Simon Marlow committed
978
    tidy_env2     = (occ_env, subst2)
979

Simon Marlow's avatar
Simon Marlow committed
980
tidyTopBind this_pkg unfold_env (occ_env,subst1) (Rec prs)
981
  = (tidy_env2, Rec prs')
982
  where
983 984 985 986 987 988 989
    prs' = [ tidyTopPair show_unfold tidy_env2 caf_info name' (id,rhs)
           | (id,rhs) <- prs,
             let (name',show_unfold) = 
                    expectJust "tidyTopBind" $ lookupVarEnv unfold_env id
           ]

    subst2    = extendVarEnvList subst1 (bndrs `zip` map fst prs')
Simon Marlow's avatar
Simon Marlow committed
990
    tidy_env2 = (occ_env, subst2)
991

992
    bndrs = map fst prs
993

994 995 996
	-- the CafInfo for a recursive group says whether *any* rhs in
	-- the group may refer indirectly to a CAF (because then, they all do).
    caf_info 
Simon Marlow's avatar
Simon Marlow committed
997
	| or [ mayHaveCafRefs (hasCafRefs this_pkg subst1 (idArity bndr) rhs)
998
	     | (bndr,rhs) <- prs ] = MayHaveCafRefs
999 1000 1001
	| otherwise 		   = NoCafRefs

-----------------------------------------------------------
1002
tidyTopPair :: Bool  -- show unfolding
1003 1004 1005 1006 1007 1008
	    -> TidyEnv 	-- The TidyEnv is used to tidy the IdInfo
			-- It is knot-tied: don't look at it!
	    -> CafInfo
	    -> Name		-- New name
	    -> (Id, CoreExpr) 	-- Binder and RHS before tidying
	    -> (Id, CoreExpr)
1009 1010 1011 1012 1013 1014
	-- This function is the heart of Step 2
	-- The rec_tidy_env is the one to use for the IdInfo
	-- It's necessary because when we are dealing with a recursive
	-- group, a variable late in the group might be mentioned
	-- in the IdInfo of one early in the group

1015
tidyTopPair show_unfold rhs_tidy_env caf_info name' (bndr, rhs)
1016
  = (bndr1, rhs1)
1017
  where
1018 1019 1020 1021
    bndr1    = mkGlobalId details name' ty' idinfo'
    details  = idDetails bndr	-- Preserve the IdDetails
    ty'	     = tidyTopType (idType bndr)
    rhs1     = tidyExpr rhs_tidy_env rhs
1022 1023
    idinfo'  = tidyTopIdInfo rhs_tidy_env name' rhs rhs1 (idInfo bndr) 
                             show_unfold caf_info
1024 1025 1026 1027 1028 1029 1030 1031

-- tidyTopIdInfo creates the final IdInfo for top-level
-- binders.  There are two delicate pieces:
--
--  * Arity.  After CoreTidy, this arity must not change any more.
--	Indeed, CorePrep must eta expand where necessary to make
--	the manifest arity equal to the claimed arity.
--
1032 1033
--  * CAF info.  This must also remain valid through to code generation.
-- 	We add the info here so that it propagates to all
1034 1035
-- 	occurrences of the binders in RHSs, and hence to occurrences in
-- 	unfoldings, which are inside Ids imported by GHCi. Ditto RULES.
1036
--	CoreToStg makes use of this when constructing SRTs.
1037 1038 1039
tidyTopIdInfo :: TidyEnv -> Name -> CoreExpr -> CoreExpr 
              -> IdInfo -> Bool -> CafInfo -> IdInfo
tidyTopIdInfo rhs_tidy_env name orig_rhs tidy_rhs idinfo show_unfold caf_info
1040 1041 1042 1043
  | not is_external	-- For internal Ids (not externally visible)
  = vanillaIdInfo	-- we only need enough info for code generation
			-- Arity and strictness info are enough;
			--	c.f. CoreTidy.tidyLetBndr
1044 1045 1046
	`setCafInfo` 	    caf_info
	`setArityInfo`	    arity
	`setStrictnessInfo` final_sig
1047 1048 1049

  | otherwise		-- Externally-visible Ids get the whole lot
  = vanillaIdInfo
1050
	`setCafInfo` 	       caf_info
1051
	`setArityInfo`	       arity
1052 1053 1054
	`setStrictnessInfo`    final_sig
        `setOccInfo`           robust_occ_info
	`setInlinePragInfo`    (inlinePragInfo idinfo)
1055 1056 1057
	`setUnfoldingInfo`     unfold_info
		-- NB: we throw away the Rules
		-- They have already been extracted by findExternalRules
1058
  where
1059 1060 1061 1062
    is_external = isExternalName name

    --------- OccInfo ------------
    robust_occ_info = zapFragileOcc (occInfo idinfo)
1063 1064
    -- It's important to keep loop-breaker information
    -- when we are doing -fexpose-all-unfoldings
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
    --------- Strictness ------------
    final_sig | Just sig <- strictnessInfo idinfo
              = WARN( _bottom_hidden sig, ppr name ) Just sig
              | Just (_, sig) <- mb_bot_str = Just sig
              | otherwise                   = Nothing

    -- If the cheap-and-cheerful bottom analyser can see that
    -- the RHS is bottom, it should jolly well be exposed
    _bottom_hidden id_sig = case mb_bot_str of
                               Nothing         -> False
                               Just (arity, _) -> not (appIsBottom id_sig arity)

    mb_bot_str = exprBotStrictness_maybe orig_rhs

    --------- Unfolding ------------
    unf_info = unfoldingInfo idinfo
1082
    unfold_info | show_unfold = tidyUnfolding rhs_tidy_env unf_info unf_from_rhs
1083
		| otherwise   = noUnfolding
1084 1085 1086 1087
    unf_from_rhs = mkTopUnfolding is_bot tidy_rhs
    is_bot = case final_sig of 
                Just sig -> isBottomingSig sig
                Nothing  -> False
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    -- NB: do *not* expose the worker if show_unfold is off,
    --     because that means this thing is a loop breaker or
    --     marked NOINLINE or something like that
    -- This is important: if you expose the worker for a loop-breaker
    -- then you can make the simplifier go into an infinite loop, because
    -- in effect the unfolding is exposed.  See Trac #1709
    -- 
    -- You might think that if show_unfold is False, then the thing should
    -- not be w/w'd in the first place.  But a legitimate reason is this:
    -- 	  the function returns bottom
    -- In this case, show_unfold will be false (we don't expose unfoldings
    -- for bottoming functions), but we might still have a worker/wrapper
    -- split (see Note [Worker-wrapper for bottoming functions] in WorkWrap.lhs

    --------- Arity ------------
    -- Usually the Id will have an accurate arity on it, because
    -- the simplifier has just run, but not always. 
    -- One case I found was when the last thing the simplifier
    -- did was to let-bind a non-atomic argument and then float
    -- it to the top level. So it seems more robust just to
    -- fix it here.
    arity = exprArity orig_rhs
1110
\end{code}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

%************************************************************************
%*									*
\subsection{Figuring out CafInfo for an expression}
%*									*
%************************************************************************

hasCafRefs decides whether a top-level closure can point into the dynamic heap.
We mark such things as `MayHaveCafRefs' because this information is
used to decide whether a particular closure needs to be referenced
in an SRT or not.

There are two reasons for setting MayHaveCafRefs:
	a) The RHS is a CAF: a top-level updatable thunk.
	b) The RHS refers to something that MayHaveCafRefs

Possible improvement: In an effort to keep the number of CAFs (and 
hence the size of the SRTs) down, we could also look at the expression and 
decide whether it requires a small bounded amount of heap, so we can ignore 
it as a CAF.  In these cases however, we would need to use an additional
CAF list to keep track of non-collectable CAFs.  

\begin{code}
Simon Marlow's avatar
Simon Marlow committed
1134 1135
hasCafRefs  :: PackageId -> VarEnv Var -> Arity -> CoreExpr -> CafInfo
hasCafRefs this_pkg p arity expr 
1136
  | is_caf || mentions_cafs = MayHaveCafRefs
1137 1138 1139
  | otherwise 		    = NoCafRefs
 where
  mentions_cafs = isFastTrue (cafRefs p expr)
1140 1141
  is_dynamic_name = isDllName this_pkg 
  is_caf = not (arity > 0 || rhsIsStatic is_dynamic_name expr)
1142

1143 1144 1145 1146
  -- NB. we pass in the arity of the expression, which is expected
  -- to be calculated by exprArity.  This is because exprArity
  -- knows how much eta expansion is going to be done by 
  -- CorePrep later on, and we don't want to duplicate that
1147
  -- knowledge in rhsIsStatic below.
1148

Simon Marlow's avatar
Simon Marlow committed
1149
cafRefs :: VarEnv Id -> Expr a -> FastBool
1150 1151 1152 1153 1154 1155 1156 1157 1158
cafRefs p (Var id)
	-- imported Ids first:
  | not (isLocalId id) = fastBool (mayHaveCafRefs (idCafInfo id))
	-- now Ids local to this module:
  | otherwise =
     case lookupVarEnv p id of
	Just id' -> fastBool (mayHaveCafRefs (idCafInfo id'))
	Nothing  -> fastBool False

Simon Marlow's avatar
Simon Marlow committed
1159
cafRefs _ (Lit _) 	       = fastBool False
1160
cafRefs p (App f a) 	       = fastOr (cafRefs p f) (cafRefs p) a
Simon Marlow's avatar
Simon Marlow committed
1161
cafRefs p (Lam _ e) 	       = cafRefs p e
1162
cafRefs p (Let b e) 	       = fastOr (cafRefss p (rhssOfBind b)) (cafRefs p) e
Simon Marlow's avatar
Simon Marlow committed
1163 1164 1165 1166
cafRefs p (Case e _bndr _ alts) = fastOr (cafRefs p e) (cafRefss p) (rhssOfAlts alts)
cafRefs p (Note _n e) 	       = cafRefs p e
cafRefs p (Cast e _co)         = cafRefs p e
cafRefs _ (Type _) 	       = fastBool False
1167
cafRefs _ (Coercion _)         = fastBool False
1168

Simon Marlow's avatar
Simon Marlow committed
1169 1170
cafRefss :: VarEnv Id -> [Expr a] -> FastBool
cafRefss _ [] 	  = fastBool False
1171 1172
cafRefss p (e:es) = fastOr (cafRefs p e) (cafRefss p) es

Simon Marlow's avatar
Simon Marlow committed
1173
fastOr :: FastBool -> (a -> FastBool) -> a -> FastBool
1174 1175 1176
-- hack for lazy-or over FastBool.
fastOr a f x = fastBool (isFastTrue a || isFastTrue (f x))
\end{code}