Syntax.hs 21 KB
Newer Older
1
{-# OPTIONS_GHC -fglasgow-exts #-}
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
	-- Need GlaExts for the nested forall in defn of Q
-----------------------------------------------------------------------------
-- |
-- Module      :  Language.Haskell.Syntax
-- Copyright   :  (c) The University of Glasgow 2003
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Abstract syntax definitions for Template Haskell.
--
-----------------------------------------------------------------------------

module Language.Haskell.TH.Syntax(
	Quasi(..), Lift(..), 

	Q, runQ, 
	report,	recover, reify,
	currentModule, runIO,

	-- Names
25
	Name(..), mkName, newName, nameBase, nameModule,
26 27 28

	-- The algebraic data types
	Dec(..), Exp(..), Con(..), Type(..), Cxt, Match(..), 
29
	Clause(..), Body(..), Guard(..), Stmt(..), Range(..),
30 31
	Lit(..), Pat(..), FieldExp, FieldPat, 
	Strict(..), Foreign(..), Callconv(..), Safety(..),
32
	StrictType, VarStrictType, FunDep(..),
33 34 35 36 37 38
	Info(..), 
	Fixity(..), FixityDirection(..), defaultFixity, maxPrecedence,

	-- Internal functions
	returnQ, bindQ, sequenceQ,
	NameFlavour(..), NameSpace (..), 
39
	mkNameG_v, mkNameG_d, mkNameG_tc, Uniq, mkNameL, mkNameU,
40
 	tupleTypeName, tupleDataName,
41
	OccName, mkOccName, occString,
42 43
	ModName, mkModName, modString,
	PkgName, mkPkgName, pkgString
44 45 46 47 48 49 50
    ) where

import Data.PackedString
import GHC.Base		( Int(..), Int#, (<#), (==#) )

import Data.IORef
import GHC.IOBase	( unsafePerformIO )
51
import Control.Monad (liftM)
52
import System.IO	( hPutStrLn, stderr )
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

-----------------------------------------------------
--
--		The Quasi class
--
-----------------------------------------------------

class Monad m => Quasi m where
	-- Fresh names
  qNewName :: String -> m Name

	-- Error reporting and recovery
  qReport  :: Bool -> String -> m ()	-- Report an error (True) or warning (False)
					-- ...but carry on; use 'fail' to stop
  qRecover :: m a -> m a -> m a		-- Recover from the monadic 'fail'
					-- The first arg is the error handler
 
	-- Inspect the type-checker's environment
  qReify :: Name -> m Info
  qCurrentModule :: m String

	-- Input/output (dangerous)
  qRunIO :: IO a -> m a


-----------------------------------------------------
--	The IO instance of Quasi
-- 
--  This instance is used only when running a Q
--  computation in the IO monad, usually just to
--  print the result.  There is no interesting
--  type environment, so reification isn't going to
--  work.
--
-----------------------------------------------------

instance Quasi IO where
  qNewName s = do { n <- readIORef counter
                 ; writeIORef counter (n+1)
                 ; return (mkNameU s n) }

  qReport True  msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
  qReport False msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)

  qReify v       = badIO "reify"
  qCurrentModule = badIO "currentModule"
  qRecover a b   = badIO "recover"	-- Maybe we could fix this?

  qRunIO m = m
  
badIO :: String -> IO a
badIO op = do	{ qReport True ("Can't do `" ++ op ++ "' in the IO monad")
		; fail "Template Haskell failure" }

-- Global variable to generate unique symbols
counter :: IORef Int
{-# NOINLINE counter #-}
counter = unsafePerformIO (newIORef 0)


-----------------------------------------------------
--
--		The Q monad
--
-----------------------------------------------------

newtype Q a = Q { unQ :: forall m. Quasi m => m a }

runQ :: Quasi m => Q a -> m a
runQ (Q m) = m

instance Monad Q where
  return x   = Q (return x)
  Q m >>= k  = Q (m >>= \x -> unQ (k x))
  Q m >> Q n = Q (m >> n)
  fail s     = Q (fail s)

----------------------------------------------------
-- Packaged versions for the programmer, hiding the Quasi-ness
newName :: String -> Q Name
newName s = Q (qNewName s)

report  :: Bool -> String -> Q ()
report b s = Q (qReport b s)

recover :: Q a -> Q a -> Q a
recover (Q r) (Q m) = Q (qRecover r m)

141
-- | 'reify' looks up information about the 'Name'
142 143 144
reify :: Name -> Q Info
reify v = Q (qReify v)

145 146
-- | 'currentModule' gives you the name of the module in which this 
-- computation is spliced.
147 148 149
currentModule :: Q String
currentModule = Q qCurrentModule

dons's avatar
dons committed
150
-- |The 'runIO' function lets you run an I\/O computation in the 'Q' monad.
151 152 153 154 155 156
-- Take care: you are guaranteed the ordering of calls to 'runIO' within 
-- a single 'Q' computation, but not about the order in which splices are run.  
--
-- Note: for various murky reasons, stdout and stderr handles are not 
-- necesarily flushed when the  compiler finishes running, so you should
-- flush them yourself.
157 158 159 160 161 162 163 164 165 166 167 168 169 170
runIO :: IO a -> Q a
runIO m = Q (qRunIO m)

instance Quasi Q where
  qNewName        = newName
  qReport 	 = report
  qRecover  	 = recover 
  qReify    	 = reify
  qCurrentModule = currentModule
  qRunIO         = runIO


----------------------------------------------------
-- The following operations are used solely in DsMeta when desugaring brackets
171
-- They are not necessary for the user, who can use ordinary return and (>>=) etc
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

returnQ :: a -> Q a
returnQ = return

bindQ :: Q a -> (a -> Q b) -> Q b
bindQ = (>>=)

sequenceQ :: [Q a] -> Q [a]
sequenceQ = sequence


-----------------------------------------------------
--
--		The Lift class
--
-----------------------------------------------------

class Lift t where
  lift :: t -> Q Exp
  
instance Lift Integer where
  lift x = return (LitE (IntegerL x))

instance Lift Int where
  lift x= return (LitE (IntegerL (fromIntegral x)))

instance Lift Char where
  lift x = return (LitE (CharL x))

instance Lift Bool where
  lift True  = return (ConE trueName)
  lift False = return (ConE falseName)

205 206 207 208 209 210 211 212
instance Lift a => Lift (Maybe a) where
  lift Nothing  = return (ConE nothingName)
  lift (Just x) = liftM (ConE justName `AppE`) (lift x)

instance (Lift a, Lift b) => Lift (Either a b) where
  lift (Left x)  = liftM (ConE leftName  `AppE`) (lift x)
  lift (Right y) = liftM (ConE rightName `AppE`) (lift y)

213 214 215
instance Lift a => Lift [a] where
  lift xs = do { xs' <- mapM lift xs; return (ListE xs') }

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
instance (Lift a, Lift b) => Lift (a, b) where
  lift (a, b)
    = liftM TupE $ sequence [lift a, lift b]

instance (Lift a, Lift b, Lift c) => Lift (a, b, c) where
  lift (a, b, c)
    = liftM TupE $ sequence [lift a, lift b, lift c]

instance (Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) where
  lift (a, b, c, d)
    = liftM TupE $ sequence [lift a, lift b, lift c, lift d]

instance (Lift a, Lift b, Lift c, Lift d, Lift e)
      => Lift (a, b, c, d, e) where
  lift (a, b, c, d, e)
    = liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e]

instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
      => Lift (a, b, c, d, e, f) where
  lift (a, b, c, d, e, f)
    = liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e, lift f]

instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
      => Lift (a, b, c, d, e, f, g) where
  lift (a, b, c, d, e, f, g)
    = liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e, lift f, lift g]

243 244 245 246 247 248 249 250 251 252
-- TH has a special form for literal strings,
-- which we should take advantage of.
-- NB: the lhs of the rule has no args, so that
--     the rule will apply to a 'lift' all on its own
--     which happens to be the way the type checker 
--     creates it.
{-# RULES "TH:liftString" lift = \s -> return (LitE (StringL s)) #-}


trueName, falseName :: Name
253 254
trueName  = mkNameG DataName "base" "GHC.Base" "True"
falseName = mkNameG DataName "base" "GHC.Base" "False"
255

256 257 258 259 260 261 262 263
nothingName, justName :: Name
nothingName = mkNameG DataName "base" "Data.Maybe" "Nothing"
justName    = mkNameG DataName "base" "Data.Maybe" "Just"

leftName, rightName :: Name
leftName  = mkNameG DataName "base" "Data.Either" "Left"
rightName = mkNameG DataName "base" "Data.Either" "Right"

264 265 266 267 268 269

-----------------------------------------------------
--		Names and uniques 
-----------------------------------------------------

type ModName = PackedString	-- Module name
270

271 272 273 274 275 276
mkModName :: String -> ModName
mkModName s = packString s

modString :: ModName -> String
modString m = unpackPS m

277

278 279 280 281 282 283 284 285 286
type PkgName = PackedString	-- package name

mkPkgName :: String -> PkgName
mkPkgName s = packString s

pkgString :: PkgName -> String
pkgString m = unpackPS m


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
-----------------------------------------------------
--		OccName
-----------------------------------------------------

type OccName = PackedString

mkOccName :: String -> OccName
mkOccName s = packString s

occString :: OccName -> String
occString occ = unpackPS occ


-----------------------------------------------------
--		 Names
-----------------------------------------------------

-- For "global" names (NameG) we need a totally unique name,
-- so we must include the name-space of the thing
--
-- For unique-numbered things (NameU), we've got a unique reference
-- anyway, so no need for name space
--
-- For dynamically bound thing (NameS) we probably want them to 
-- in a context-dependent way, so again we don't want the name
-- space.  For example:
--	let v = mkName "T" in [| data $v = $v |]
-- Here we use the same Name for both type constructor and data constructor

data Name = Name OccName NameFlavour

data NameFlavour
319 320
  = NameS 			-- An unqualified name; dynamically bound
  | NameQ ModName		-- A qualified name; dynamically bound
321

322
  | NameU Int#			-- A unique local name
323

324 325 326 327 328 329 330 331
	-- The next two are for lexically-scoped names that
	-- are bound *outside* the TH syntax tree, 
	-- either globally (NameG) or locally (NameL)
	-- e.g. f x = $(h [| (map, x) |]
	--      The 'map' will be a NameG, and 'x' wil be a NameL
	-- These Names should never appear in a binding position in a TH syntax tree

  | NameL Int#			-- 
332
  | NameG NameSpace PkgName ModName	-- An original name (occurrences only, not binders)
333 334 335 336 337 338 339 340 341 342 343 344 345 346
				-- Need the namespace too to be sure which 
				-- thing we are naming

data NameSpace = VarName	-- Variables
	       | DataName	-- Data constructors 
	       | TcClsName	-- Type constructors and classes; Haskell has them
				-- in the same name space for now.
	       deriving( Eq, Ord )

type Uniq = Int

nameBase :: Name -> String
nameBase (Name occ _) = occString occ

347
nameModule :: Name -> Maybe String
348
nameModule (Name _ (NameQ m))   = Just (modString m)
349
nameModule (Name _ (NameG _ _ m)) = Just (modString m)
350 351
nameModule other_name		= Nothing

352
mkName :: String -> Name
353 354 355 356 357 358 359 360 361 362 363 364 365
-- The string can have a '.', thus "Foo.baz",
-- giving a dynamically-bound qualified name,
-- in which case we want to generate a NameQ
--
-- Parse the string to see if it has a "." in it
-- so we know whether to generate a qualified or unqualified name
-- It's a bit tricky because we need to parse 
--	Foo.Baz.x as Qual Foo.Baz x
-- So we parse it from back to front
mkName str
  = split [] (reverse str)
  where
    split occ []        = Name (mkOccName occ) NameS
366 367 368 369 370 371 372 373 374
    split occ ('.':rev)	| not (null occ), 
			  not (null rev), head rev /= '.'
			= Name (mkOccName occ) (NameQ (mkModName (reverse rev)))
	-- The 'not (null occ)' guard ensures that
	-- 	mkName "&." = Name "&." NameS
	-- The 'rev' guards ensure that
	--	mkName ".&" = Name ".&" NameS
	--	mkName "Data.Bits..&" = Name ".&" (NameQ "Data.Bits")
	-- This rather bizarre case actually happened; (.&.) is in Data.Bits
375
    split occ (c:rev)   = split (c:occ) rev
376 377 378 379

mkNameU :: String -> Uniq -> Name	-- Only used internally
mkNameU s (I# u) = Name (mkOccName s) (NameU u)

380 381 382
mkNameL :: String -> Uniq -> Name	-- Only used internally
mkNameL s (I# u) = Name (mkOccName s) (NameL u)

383 384 385
mkNameG :: NameSpace -> String -> String -> String -> Name	-- Used for 'x etc, but not available
mkNameG ns pkg mod occ 					-- to the programmer
  = Name (mkOccName occ) (NameG ns (mkPkgName pkg) (mkModName mod))
386

387
mkNameG_v, mkNameG_tc, mkNameG_d :: String -> String -> String -> Name
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
mkNameG_v  = mkNameG VarName
mkNameG_tc = mkNameG TcClsName
mkNameG_d  = mkNameG DataName

instance Eq Name where
  v1 == v2 = cmpEq (v1 `compare` v2)

instance Ord Name where
  (Name o1 f1) `compare` (Name o2 f2) = (f1 `compare` f2)   `thenCmp`
				        (o1 `compare` o2)

instance Eq NameFlavour where
  f1 == f2 = cmpEq (f1 `compare` f2)

instance Ord NameFlavour where
403
	-- NameS < NameQ < NameU < NameL < NameG
404 405 406
  NameS `compare` NameS = EQ
  NameS `compare` other = LT

407 408 409 410 411 412
  (NameQ _)  `compare` NameS      = GT
  (NameQ m1) `compare` (NameQ m2) = m1 `compare` m2
  (NameQ _)  `compare` other      = LT

  (NameU _)  `compare` NameS      = GT
  (NameU _)  `compare` (NameQ _)  = GT
413 414 415 416 417
  (NameU u1) `compare` (NameU u2) | u1  <# u2 = LT
				  | u1 ==# u2 = EQ
				  | otherwise = GT
  (NameU _)  `compare` other = LT

418 419 420 421 422 423 424 425
  (NameL _)  `compare` NameS      = GT
  (NameL _)  `compare` (NameQ _)  = GT
  (NameL _)  `compare` (NameU _)  = GT
  (NameL u1) `compare` (NameL u2) | u1  <# u2 = LT
				  | u1 ==# u2 = EQ
				  | otherwise = GT
  (NameL _)  `compare` other      = LT

426 427 428 429
  (NameG ns1 p1 m1) `compare` (NameG ns2 p2 m2) = (ns1 `compare` ns2) `thenCmp`
                                            (p1 `compare` p2) `thenCmp`
					    (m1 `compare` m2) 
  (NameG _ _ _)    `compare` other	  = GT
430 431

instance Show Name where
432 433 434 435 436 437 438
  show (Name occ NameS) = occString occ

	-- For now, we make the NameQ and NameG print the same, even though
	-- NameQ is a qualified name (so what it means depends on what the
	-- current scope is), and NameG is an original name (so its meaning
	-- should be independent of what's in scope.
	-- We may well want to distinguish them in the end.
439
  show (Name occ (NameQ m))      = modString m ++ "." ++ occString occ
440
  show (Name occ (NameG ns p m)) = modString m ++ "." ++ occString occ
441

442 443 444 445
	-- Ditto NameU and NameL  
  show (Name occ (NameU u)) = occString occ ++ "_" ++ show (I# u)
  show (Name occ (NameL u)) = occString occ ++ "_" ++ show (I# u)

446

447 448 449 450 451 452 453 454 455 456 457 458 459
-- 	Tuple data and type constructors
tupleDataName  :: Int -> Name	-- Data constructor
tupleTypeName :: Int -> Name 	-- Type constructor

tupleDataName 0 = mk_tup_name 0 DataName 
tupleDataName 1 = error "tupleDataName 1"
tupleDataName n = mk_tup_name (n-1) DataName 

tupleTypeName 0 = mk_tup_name 0 TcClsName 
tupleTypeName 1 = error "tupleTypeName 1"
tupleTypeName n = mk_tup_name (n-1) TcClsName 

mk_tup_name n_commas space
460
  = Name occ (NameG space (mkPkgName "base") tup_mod)
461 462
  where
    occ = mkOccName ('(' : replicate n_commas ',' ++ ")")
463
    tup_mod = mkModName "Data.Tuple"
464 465


466 467


468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
-----------------------------------------------------
--
--	The Info returned by reification
--
-----------------------------------------------------

data Info 
  = ClassI Dec
  | ClassOpI
	Name	-- The class op itself
	Type 	-- Type of the class-op (fully polymoprhic)
	Name 	-- Name of the parent class
	Fixity

  | TyConI Dec
483 484 485 486 487 488 489

  | PrimTyConI 	-- Ones that can't be expressed with a data type 
		-- decl, such as (->), Int#
	Name 
	Int	-- Arity
	Bool	-- False => lifted type; True => unlifted

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  | DataConI 
	Name	-- The data con itself
	Type 	-- Type of the constructor (fully polymorphic)
	Name 	-- Name of the parent TyCon
	Fixity

  | VarI 
	Name	-- The variable itself
	Type 
	(Maybe Dec)	-- Nothing for lambda-bound variables, and 
			-- for anything else TH can't figure out
			-- E.g. [| let x = 1 in $(do { d <- reify 'x; .. }) |]
	Fixity

  | TyVarI 	-- Scoped type variable
	Name
	Type	-- What it is bound to
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
507
  deriving( Show )
508

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
509 510
data Fixity 	     = Fixity Int FixityDirection deriving( Eq, Show )
data FixityDirection = InfixL | InfixR | InfixN   deriving( Eq, Show )
511

512
maxPrecedence :: Int
513
maxPrecedence = (9::Int)
514 515

defaultFixity :: Fixity
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
defaultFixity = Fixity maxPrecedence InfixL


-----------------------------------------------------
--
--	The main syntax data types
--
-----------------------------------------------------

data Lit = CharL Char 
         | StringL String 
         | IntegerL Integer     -- Used for overloaded and non-overloaded
                                -- literals. We don't have a good way to
                                -- represent non-overloaded literals at
                                -- the moment. Maybe that doesn't matter?
         | RationalL Rational   -- Ditto
         | IntPrimL Integer
         | FloatPrimL Rational
         | DoublePrimL Rational
    deriving( Show, Eq )

    -- We could add Int, Float, Double etc, as we do in HsLit, 
    -- but that could complicate the
    -- suppposedly-simple TH.Syntax literal type

data Pat 
  = LitP Lit                      -- { 5 or 'c' }
  | VarP Name                   -- { x }
  | TupP [Pat]                    -- { (p1,p2) }
  | ConP Name [Pat]             -- data T1 = C1 t1 t2; {C1 p1 p1} = e 
546
  | InfixP Pat Name Pat           -- foo ({x :+ y}) = e 
547 548 549 550 551
  | TildeP Pat                    -- { ~p }
  | AsP Name Pat                -- { x @ p }
  | WildP                         -- { _ }
  | RecP Name [FieldPat]        -- f (Pt { pointx = x }) = g x
  | ListP [ Pat ]                 -- { [1,2,3] }
552
  | SigP Pat Type                 -- p :: t
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
  deriving( Show, Eq )

type FieldPat = (Name,Pat)

data Match = Match Pat Body [Dec]
                                    -- case e of { pat -> body where decs } 
    deriving( Show, Eq )
data Clause = Clause [Pat] Body [Dec]
                                    -- f { p1 p2 = body where decs }
    deriving( Show, Eq )
 
data Exp 
  = VarE Name                        -- { x }
  | ConE Name                        -- data T1 = C1 t1 t2; p = {C1} e1 e2  
  | LitE Lit                           -- { 5 or 'c'}
  | AppE Exp Exp                       -- { f x }

  | InfixE (Maybe Exp) Exp (Maybe Exp) -- {x + y} or {(x+)} or {(+ x)} or {(+)}
    -- It's a bit gruesome to use an Exp as the
    -- operator, but how else can we distinguish
    -- constructors from non-constructors?
    -- Maybe there should be a var-or-con type?
    -- Or maybe we should leave it to the String itself?

  | LamE [Pat] Exp                     -- { \ p1 p2 -> e }
  | TupE [Exp]                         -- { (e1,e2) }  
  | CondE Exp Exp Exp                  -- { if e1 then e2 else e3 }
  | LetE [Dec] Exp                     -- { let x=e1;   y=e2 in e3 }
  | CaseE Exp [Match]                  -- { case e of m1; m2 }
  | DoE [Stmt]                         -- { do { p <- e1; e2 }  }
  | CompE [Stmt]                       -- { [ (x,y) | x <- xs, y <- ys ] }
  | ArithSeqE Range                    -- { [ 1 ,2 .. 10 ] }
  | ListE [ Exp ]                      -- { [1,2,3] }
  | SigE Exp Type                      -- e :: t
  | RecConE Name [FieldExp]            -- { T { x = y, z = w } }
  | RecUpdE Exp [FieldExp]             -- { (f x) { z = w } }
  deriving( Show, Eq )

type FieldExp = (Name,Exp)

-- Omitted: implicit parameters

data Body
596
  = GuardedB [(Guard,Exp)]   -- f p { | e1 = e2 | e3 = e4 } where ds
597 598 599
  | NormalB Exp              -- f p { = e } where ds
  deriving( Show, Eq )

600 601 602 603 604
data Guard
  = NormalG Exp
  | PatG [Stmt]
  deriving( Show, Eq )

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
data Stmt
  = BindS Pat Exp
  | LetS [ Dec ]
  | NoBindS Exp
  | ParS [[Stmt]]
  deriving( Show, Eq )

data Range = FromR Exp | FromThenR Exp Exp
           | FromToR Exp Exp | FromThenToR Exp Exp Exp
          deriving( Show, Eq )
  
data Dec 
  = FunD Name [Clause]            -- { f p1 p2 = b where decs }
  | ValD Pat Body [Dec]           -- { p = b where decs }
  | DataD Cxt Name [Name] 
         [Con] [Name]             -- { data Cxt x => T x = A x | B (T x)
                                  --       deriving (Z,W)}
  | NewtypeD Cxt Name [Name] 
         Con [Name]               -- { newtype Cxt x => T x = A (B x)
                                  --       deriving (Z,W)}
  | TySynD Name [Name] Type       -- { type T x = (x,x) }
626 627
  | ClassD Cxt Name [Name] [FunDep] [Dec]
                                  -- { class Eq a => Ord a where ds }
628 629 630 631 632 633
  | InstanceD Cxt Type [Dec]      -- { instance Show w => Show [w]
                                  --       where ds }
  | SigD Name Type                -- { length :: [a] -> Int }
  | ForeignD Foreign
  deriving( Show, Eq )

634 635 636
data FunDep = FunDep [Name] [Name]
  deriving( Show, Eq )

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
data Foreign = ImportF Callconv Safety String Name Type
             | ExportF Callconv        String Name Type
         deriving( Show, Eq )

data Callconv = CCall | StdCall
          deriving( Show, Eq )

data Safety = Unsafe | Safe | Threadsafe
        deriving( Show, Eq )

type Cxt = [Type]    -- (Eq a, Ord b)

data Strict = IsStrict | NotStrict
         deriving( Show, Eq )

data Con = NormalC Name [StrictType]
         | RecC Name [VarStrictType]
         | InfixC StrictType Name StrictType
655
         | ForallC [Name] Cxt Con
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
         deriving( Show, Eq )

type StrictType = (Strict, Type)
type VarStrictType = (Name, Strict, Type)

-- FIXME: Why this special status for "List" (even tuples might be handled
--      differently)? -=chak
data Type = ForallT [Name] Cxt Type   -- forall <vars>. <ctxt> -> <type>
          | VarT Name                 -- a
          | ConT Name                 -- T
          | TupleT Int                -- (,), (,,), etc.
          | ArrowT                    -- ->
          | ListT                     -- []
          | AppT Type Type            -- T a b
      deriving( Show, Eq )

-----------------------------------------------------
--		Internal helper functions
-----------------------------------------------------

cmpEq :: Ordering -> Bool
cmpEq EQ = True
cmpEq _  = False

thenCmp :: Ordering -> Ordering -> Ordering
thenCmp EQ o2 = o2
thenCmp o1 o2 = o1