TcBinds.lhs 44.9 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 5 6 7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9 10 11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13 14
-- for details

15 16
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
17 18
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
19
		 badBootDeclErr ) where
20

21
#include "HsVersions.h"
22

ross's avatar
ross committed
23
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
24
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
25

Simon Marlow's avatar
Simon Marlow committed
26 27 28
import DynFlags
import HsSyn
import TcHsSyn
29

30
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
31 32 33 34 35 36 37 38 39
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
40
import Coercion
Simon Marlow's avatar
Simon Marlow committed
41 42 43 44
import VarEnv
import TysPrim
import Id
import IdInfo
45
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
46
import Name
47
import NameSet
48
import NameEnv
49
import VarSet
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
Simon Marlow's avatar
Simon Marlow committed
52 53 54
import ErrUtils
import Digraph
import Maybes
55
import List
Simon Marlow's avatar
Simon Marlow committed
56 57
import Util
import BasicTypes
58
import Outputable
59 60

import Control.Monad
61
\end{code}
62

63

64 65 66 67 68 69
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

70
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
71 72 73 74 75 76 77 78 79 80
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

81
The real work is done by @tcBindWithSigsAndThen@.
82 83 84 85 86 87 88 89 90 91

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

92 93 94
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

95
\begin{code}
96
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
97 98 99
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
100
tcTopBinds binds
101
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
102
	; return (foldr (unionBags . snd) emptyBag prs, env) }
103
	-- The top level bindings are flattened into a giant 
104
	-- implicitly-mutually-recursive LHsBinds
105

106
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
107 108
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
109 110
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
111
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
112
  where
113
    tc_boot_sig (TypeSig (L _ name) ty)
114
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
115 116
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
117
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
118

119 120 121
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

122 123 124
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
125

126 127 128
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
129

130 131 132
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
133

134 135 136
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
137 138 139

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
140 141
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
142 143 144 145
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
146 147 148 149 150
    tc_ip_bind (IPBind ip expr) = do
        ty <- newFlexiTyVarTy argTypeKind
        (ip', ip_inst) <- newIPDict (IPBindOrigin ip) ip ty
        expr' <- tcMonoExpr expr ty
        return (ip_inst, (IPBind ip' expr'))
151

152 153 154 155 156
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

157 158 159
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

160
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
161
  = do 	{   	-- Typecheck the signature
162
	; let { prag_fn = mkPragFun sigs
163
	      ; ty_sigs = filter isVanillaLSig sigs
164
	      ; sig_fn  = mkTcSigFun ty_sigs }
165 166

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
167 168 169 170 171
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
172

173 174
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
175
	; poly_rec <- doptM Opt_RelaxedPolyRec
176
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
177
			     tc_val_binds poly_rec top_lvl sig_fn prag_fn 
178
					  binds thing_inside
179

180
	; return (ValBindsOut binds' sigs, thing) }
181

182
------------------------
183
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
184
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
185 186 187 188
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

189
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
190 191 192
  = do	{ thing <- thing_inside
	; return ([], thing) }

193
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
194
  = do	{ (group', (groups', thing))
195 196
		<- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
		   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
197
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
198

199
------------------------
200
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
201
	 -> (RecFlag, LHsBinds Name) -> TcM thing
202 203 204 205 206 207
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

208
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
209
    	-- A single non-recursive binding
210 211
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
212
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
213 214
	; return ([(NonRecursive, b) | b <- binds], thing) }

215 216
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not poly_rec	-- Recursive group, normal Haskell 98 route
217 218 219 220 221
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
222
	-- strongly-connected-component analysis, this time omitting 
223
	-- any references to variables with type signatures.
224
	--
225 226
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
227
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
228 229 230
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
231 232
		-- Rec them all together
  where
233 234 235 236 237
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
238

239 240
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
241

242
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
243

244 245 246 247 248 249 250 251 252 253
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
254
  	-- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
255 256 257 258 259 260 261
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
262 263 264 265 266 267 268 269

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
270 271
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
272 273 274 275 276 277 278 279 280 281 282 283 284
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
285 286
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
287

288
------------------------
289
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
290
	    -> RecFlag			-- Whether the group is really recursive
291 292
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
293
	    -> LHsBinds Name
294
	    -> TcM ([LHsBinds TcId], [TcId])
295 296 297 298 299

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
300 301 302
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
303
-- 
304 305
-- Knows nothing about the scope of the bindings

306
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
307
  = let 
308
	bind_list    = bagToList binds
309 310
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
311 312 313
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
314
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
315
    setSrcSpan loc				$
316
    recoverM (recoveryCode binder_names sig_fn)	$ do 
317

318 319
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
320 321

   	-- TYPECHECK THE BINDINGS
322
  ; ((binds', mono_bind_infos), lie_req) 
323
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
324
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
325

326 327 328 329
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
330 331 332 333 334
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
335 336
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
337
			-- ToDo: prags for unlifted bindings
338

339 340
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
341 342

    else do	-- The normal lifted case: GENERALISE
343
  { dflags <- getDOpts 
344
  ; (tyvars_to_gen, dicts, dict_binds)
345
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
346
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
347

348
	-- BUILD THE POLYMORPHIC RESULT IDs
349 350
  ; let dict_vars = map instToVar dicts	-- May include equality constraints
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
351
		    mono_bind_infos
sof's avatar
sof committed
352

353
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
354
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
355

356
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
357
	 		            dict_vars exports
358 359
	 		    	    (dict_binds `unionBags` binds')

360
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
361 362 363 364
  } }


--------------
365 366
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
	 -> MonoBindInfo
367
	 -> TcM ([TyVar], Id, Id, [LPrag])
368 369 370 371 372 373 374 375 376 377 378
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

379 380 381 382
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ warn_missing_sigs <- doptM Opt_WarnMissingSigs
	; let warn = isTopLevel top_lvl && warn_missing_sigs
	; (tvs, poly_id) <- mk_poly_id warn mb_sig
383
		-- poly_id has a zonked type
384

385
	; prags <- tcPrags poly_id (prag_fn poly_name)
386 387
		-- tcPrags requires a zonked poly_id

388
	; return (tvs, poly_id, mono_id, prags) }
389 390 391
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

392 393 394
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
				    ; missingSigWarn warn poly_name poly_ty'
				    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
395 396
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			            ; return (tvs,  sig_id sig) }
397

398
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
399 400 401 402 403 404 405

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
406 407
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
408 409 410
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

411 412
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
413
  where
414 415
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
		   tcPrag poly_id prag
416 417 418 419

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
420 421
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
422 423 424
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
425

426

427 428
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
429 430
  = do	{ let name = idName poly_id
	; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
431 432
	; co_fn <- tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
433 434
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
435 436
  
--------------
437 438 439
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
440
recoveryCode binder_names sig_fn
441
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
442
	; poly_ids <- mapM mk_dummy binder_names
443
	; return ([], poly_ids) }
444
  where
445 446 447
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
448 449 450 451

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

452

453 454 455
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
456 457
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
458 459 460 461 462
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
463
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
	  	  (strictBindErr "Top-level" unlifted mbind)
465
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
466
	  	  (strictBindErr "Recursive" unlifted mbind)
467
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
468 469 470 471 472
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
473
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
474 475
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
476
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
477
					 (badStrictSig unlifted sig)
478
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
479 480

strictBindErr flavour unlifted mbind
481 482
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
483 484 485 486 487 488 489 490 491 492
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
493 494
\end{code}

495

496 497
%************************************************************************
%*									*
498
\subsection{tcMonoBind}
499 500 501
%*									*
%************************************************************************

502
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
503 504
The signatures have been dealt with already.

505
\begin{code}
506 507
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
508 509 510
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
511 512
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

513 514
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
515
	    sig_fn 		-- Single function binding,
516
	    NonRecursive	-- binder isn't mentioned in RHS,
517
  | Nothing <- sig_fn name	-- ...with no type signature
518 519 520 521 522 523
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
524
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)
525

526 527 528 529 530 531 532 533
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
534

535
	; mono_name <- newLocalName name
536
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
537 538
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
539
					      fun_co_fn = co_fn, fun_tick = Nothing })),
540 541
		  [(name, Nothing, mono_id)]) }

542 543 544 545
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
546
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
547 548 549 550
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
551
    do	{ tc_sig <- tcInstSig True name
552 553 554 555
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
556 557 558 559
		        | (name, tv) <- scoped_tvs `zip` sig_tvs tc_sig ]
			-- See Note [More instantiated than scoped]
			-- Note that the scoped_tvs and the (sig_tvs sig) 
			-- may have different Names. That's quite ok.
560

561
	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs $
562
		    	       tcMatchesFun mono_name inf matches mono_ty
563 564 565

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
566 567
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
568 569 570
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

571 572
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
573

574
	-- Bring the monomorphic Ids, into scope for the RHSs
575
	; let mono_info  = getMonoBindInfo tc_binds
576 577 578
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
579

580
	; binds' <- tcExtendIdEnv2 rhs_id_env $ do
581
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
582
							 | (n,id) <- rhs_id_env])
583 584
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

606 607 608 609 610 611 612 613 614 615
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

616
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
617
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
618
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
619 620 621 622 623 624
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
625 626 627
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
628
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
629 630 631 632 633 634 635 636 637
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
638

639
	; let nm_sig_prs  = names `zip` mb_sigs
640 641 642 643
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
644
	      sig_tau_fn  = lookupNameEnv tau_sig_env
645

646
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
647 648 649 650 651 652 653 654 655 656
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
657

658 659 660 661 662
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


663
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
664 665
	-- AbsBind, VarBind impossible

666 667
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
668 669 670 671 672
-- When we are doing pattern bindings, or multiple function bindings at a time
-- we *don't* bring any scoped type variables into scope
-- Wny not?  They are not completely rigid.
-- That's why we have the special case for a single FunBind in tcMonoBinds
tcRhs (TcFunBind (_,_,mono_id) fun' inf matches)
673 674
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
				    	    matches (idType mono_id)
675
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
676 677
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
678 679 680

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
681 682 683
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
684 685 686


---------------------
687
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
688
getMonoBindInfo tc_binds
689
  = foldr (get_info . unLoc) [] tc_binds
690 691 692 693 694 695 696 697
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
698
		Generalisation
699 700 701 702
%*									*
%************************************************************************

\begin{code}
703 704
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
705
	   -> [MonoBindInfo] -> [Inst]
706 707 708
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

709 710
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
711 712
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
713 714

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
715 716
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
717
	  	  (restrictedBindCtxtErr bndrs)
718

719 720
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
721
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
722
						tau_tvs lie_req
723

724
   	-- Check that signature type variables are OK
725
	; final_qtvs <- checkSigsTyVars qtvs sigs
726

727
	; return (final_qtvs, [], binds) }
728

729 730 731 732
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
733
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
734 735
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
736
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
737 738
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
739
		loc = sig_loc (head sigs)
740

741 742
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
743
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
744 745
	
   	-- Check that signature type variables are OK
746
	; final_qtvs <- checkSigsTyVars qtvs sigs
747

748
	; return (final_qtvs, sig_lie, binds) }
749
  where
750 751
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
752 753 754
    get_tvs | isTopLevel top_lvl = tyVarsOfType	 -- See Note [Silly type synonym] in TcType
	    | otherwise		 = exactTyVarsOfType
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
755
    is_mono_sig sig = null (sig_theta sig)
756
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
757

758
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
759
		            sig_theta = theta, sig_loc = loc }) mono_id
760 761
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
762
\end{code}
763

764 765 766
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
767

768 769 770 771 772 773 774 775 776
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
777
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
778
-- Post-condition: the returned Insts are full zonked
779 780
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
781 782
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
783 784 785 786
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
787
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
788
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
789 790 791 792 793 794 795 796 797 798 799
	  do { cois <- unifyTheta theta1 theta
	     ; -- Check whether all coercions are identity coercions
	       -- That can happen if we have, say
	       -- 	  f :: C [a]   => ...
	       -- 	  g :: C (F a) => ...
	       -- where F is a type function and (F a ~ [a])
	       -- Then unification might succeed with a coercion.  But it's much
	       -- much simpler to require that such signatures have identical contexts
	       checkTc (all isIdentityCoercion cois)
		       (ptext SLIT("Mutually dependent functions have syntactically distinct contexts"))
	     }
800

801 802
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
803
  = do	{ gbl_tvs <- tcGetGlobalTyVars
804
	; sig_tvs_s <- mapM (check_sig gbl_tvs) sigs
805 806 807 808 809 810 811 812 813 814 815

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
816
	; return all_tvs }
817
  where
818 819 820 821 822
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
823 824
	   ; when (any (`elemVarSet` gbl_tvs) tvs')
	          (bleatEscapedTvs gbl_tvs tvs tvs')
825 826 827 828 829 830 831 832 833 834 835 836 837
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
838
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
839 840 841 842 843 844 845 846
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
847
		Just sig_tv' -> bomb_out sig_tv sig_tv'
848 849 850

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

851
    bomb_out sig_tv1 sig_tv2
852 853 854 855 856 857 858
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
859
       where
SamB's avatar
SamB committed
860
\end{code}
861

862

863
@getTyVarsToGen@ decides what type variables to generalise over.
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

879 880 881 882
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

883 884 885 886 887 888 889 890
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
891 892
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
893

894 895 896 897 898 899 900 901
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

902 903 904
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
905

906 907 908
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
909

910 911
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
943 944 945 946

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

947 948 949 950 951 952
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
953

954 955 956 957 958 959 960 961
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


962 963 964

%************************************************************************
%*									*
965
		Signatures
966 967 968
%*									*
%************************************************************************

969
Type signatures are tricky.  See Note [Signature skolems] in TcType
970

971 972 973 974 975 976 977 978 979
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
Note [Scoped tyvars]
~~~~~~~~~~~~~~~~~~~~
The -XScopedTypeVariables flag brings lexically-scoped type variables
into scope for any explicitly forall-quantified type variables:
	f :: forall a. a -> a
	f x = e
Then 'a' is in scope inside 'e'.

However, we do *not* support this 
  - For pattern bindings e.g
	f :: forall a. a->a
	(f,g) = e

  - For multiple function bindings, unless Opt_RelaxedPolyRec is on
   	f :: forall a. a -> a
	f = g
   	g :: forall b. b -> b
	g = ...f...
    Reason: we use mutable variables for 'a' and 'b', since they may
    unify to each other, and that means the scoped type variable would
    not stand for a completely rigid variable.

    Currently, we simply make Opt_ScopedTypeVariables imply Opt_RelaxedPolyRec


Note [More instantiated than scoped]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There may be more instantiated type variables than lexically-scoped 
ones.  For example:
	type T a = forall b. b -> (a,b)
	f :: forall c. T c
Here, the signature for f will have one scoped type variable, c,
but two instantiated type variables, c' and b'.  

We assume that the scoped ones are at the *front* of sig_tvs,
and remember the names from the original HsForAllTy in the TcSigFun.


1018
\begin{code}
1019 1020 1021 1022
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
1023

1024
mkTcSigFun :: [LSig Name] -> TcSigFun
1025 1026