TcBinds.lhs 44.9 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
5
6
7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9
10
11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13
14
-- for details

15
16
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
17
18
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
19
		 badBootDeclErr ) where
20

21
#include "HsVersions.h"
22

ross's avatar
ross committed
23
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
24
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
25

Simon Marlow's avatar
Simon Marlow committed
26
27
28
import DynFlags
import HsSyn
import TcHsSyn
29

30
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
31
32
33
34
35
36
37
38
39
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
40
import Coercion
Simon Marlow's avatar
Simon Marlow committed
41
42
43
44
import VarEnv
import TysPrim
import Id
import IdInfo
45
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
46
import Name
47
import NameSet
48
import NameEnv
49
import VarSet
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
Simon Marlow's avatar
Simon Marlow committed
52
53
54
import ErrUtils
import Digraph
import Maybes
55
import List
Simon Marlow's avatar
Simon Marlow committed
56
57
import Util
import BasicTypes
58
import Outputable
59
60

import Control.Monad
61
\end{code}
62

63

64
65
66
67
68
69
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

70
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
71
72
73
74
75
76
77
78
79
80
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

81
The real work is done by @tcBindWithSigsAndThen@.
82
83
84
85
86
87
88
89
90
91

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

92
93
94
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

95
\begin{code}
96
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
97
98
99
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
100
tcTopBinds binds
101
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
102
	; return (foldr (unionBags . snd) emptyBag prs, env) }
103
	-- The top level bindings are flattened into a giant 
104
	-- implicitly-mutually-recursive LHsBinds
105

106
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
107
108
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
109
110
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
111
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
112
  where
113
    tc_boot_sig (TypeSig (L _ name) ty)
114
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
115
116
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
117
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
118

119
120
121
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

122
123
124
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
125

126
127
128
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
129

130
131
132
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
133

134
135
136
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
137
138
139

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
140
141
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
142
143
144
145
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
146
147
148
149
150
    tc_ip_bind (IPBind ip expr) = do
        ty <- newFlexiTyVarTy argTypeKind
        (ip', ip_inst) <- newIPDict (IPBindOrigin ip) ip ty
        expr' <- tcMonoExpr expr ty
        return (ip_inst, (IPBind ip' expr'))
151

152
153
154
155
156
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

157
158
159
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

160
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
161
  = do 	{   	-- Typecheck the signature
162
	; let { prag_fn = mkPragFun sigs
163
	      ; ty_sigs = filter isVanillaLSig sigs
164
	      ; sig_fn  = mkTcSigFun ty_sigs }
165
166

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
167
168
169
170
171
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
172

173
174
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
175
	; poly_rec <- doptM Opt_RelaxedPolyRec
176
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
177
			     tc_val_binds poly_rec top_lvl sig_fn prag_fn 
178
					  binds thing_inside
179

180
	; return (ValBindsOut binds' sigs, thing) }
181

182
------------------------
183
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
184
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
185
186
187
188
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

189
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
190
191
192
  = do	{ thing <- thing_inside
	; return ([], thing) }

193
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
194
  = do	{ (group', (groups', thing))
195
196
		<- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
		   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
197
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
198

199
------------------------
200
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
201
	 -> (RecFlag, LHsBinds Name) -> TcM thing
202
203
204
205
206
207
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

208
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
209
    	-- A single non-recursive binding
210
211
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
212
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
213
214
	; return ([(NonRecursive, b) | b <- binds], thing) }

215
216
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not poly_rec	-- Recursive group, normal Haskell 98 route
217
218
219
220
221
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
222
	-- strongly-connected-component analysis, this time omitting 
223
	-- any references to variables with type signatures.
224
	--
225
226
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
227
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
228
229
230
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
231
232
		-- Rec them all together
  where
233
234
235
236
237
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
238

239
240
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
241

242
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
243

244
245
246
247
248
249
250
251
252
253
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
254
  	-- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
255
256
257
258
259
260
261
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
262
263
264
265
266
267
268
269

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
270
271
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
272
273
274
275
276
277
278
279
280
281
282
283
284
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
285
286
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
287

288
------------------------
289
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
290
	    -> RecFlag			-- Whether the group is really recursive
291
292
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
293
	    -> LHsBinds Name
294
	    -> TcM ([LHsBinds TcId], [TcId])
295
296
297
298
299

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
300
301
302
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
303
-- 
304
305
-- Knows nothing about the scope of the bindings

306
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
307
  = let 
308
	bind_list    = bagToList binds
309
310
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
311
312
313
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
314
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
315
    setSrcSpan loc				$
316
    recoverM (recoveryCode binder_names sig_fn)	$ do 
317

318
319
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
320
321

   	-- TYPECHECK THE BINDINGS
322
  ; ((binds', mono_bind_infos), lie_req) 
323
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
324
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
325

326
327
328
329
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
330
331
332
333
334
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
335
336
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
337
			-- ToDo: prags for unlifted bindings
338

339
340
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
341
342

    else do	-- The normal lifted case: GENERALISE
343
  { dflags <- getDOpts 
344
  ; (tyvars_to_gen, dicts, dict_binds)
345
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
346
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
347

348
	-- BUILD THE POLYMORPHIC RESULT IDs
349
350
  ; let dict_vars = map instToVar dicts	-- May include equality constraints
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
351
		    mono_bind_infos
sof's avatar
sof committed
352

353
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
354
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
355

356
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
357
	 		            dict_vars exports
358
359
	 		    	    (dict_binds `unionBags` binds')

360
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
361
362
363
364
  } }


--------------
365
366
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
	 -> MonoBindInfo
367
	 -> TcM ([TyVar], Id, Id, [LPrag])
368
369
370
371
372
373
374
375
376
377
378
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

379
380
381
382
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ warn_missing_sigs <- doptM Opt_WarnMissingSigs
	; let warn = isTopLevel top_lvl && warn_missing_sigs
	; (tvs, poly_id) <- mk_poly_id warn mb_sig
383
		-- poly_id has a zonked type
384

385
	; prags <- tcPrags poly_id (prag_fn poly_name)
386
387
		-- tcPrags requires a zonked poly_id

388
	; return (tvs, poly_id, mono_id, prags) }
389
390
391
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

392
393
394
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
				    ; missingSigWarn warn poly_name poly_ty'
				    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
395
396
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			            ; return (tvs,  sig_id sig) }
397

398
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
399
400
401
402
403
404
405

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
406
407
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
408
409
410
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

411
412
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
413
  where
414
415
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
		   tcPrag poly_id prag
416
417
418
419

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
420
421
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
422
423
424
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
425

426

427
428
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
429
430
  = do	{ let name = idName poly_id
	; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
431
432
	; co_fn <- tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
433
434
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
435
436
  
--------------
437
438
439
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
440
recoveryCode binder_names sig_fn
441
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
442
	; poly_ids <- mapM mk_dummy binder_names
443
	; return ([], poly_ids) }
444
  where
445
446
447
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
448
449
450
451

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

452

453
454
455
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
456
457
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
458
459
460
461
462
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
463
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
	  	  (strictBindErr "Top-level" unlifted mbind)
465
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
466
	  	  (strictBindErr "Recursive" unlifted mbind)
467
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
468
469
470
471
472
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
473
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
474
475
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
476
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
477
					 (badStrictSig unlifted sig)
478
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
479
480

strictBindErr flavour unlifted mbind
481
482
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
483
484
485
486
487
488
489
490
491
492
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
493
494
\end{code}

495

496
497
%************************************************************************
%*									*
498
\subsection{tcMonoBind}
499
500
501
%*									*
%************************************************************************

502
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
503
504
The signatures have been dealt with already.

505
\begin{code}
506
507
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
508
509
510
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
511
512
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

513
514
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
515
	    sig_fn 		-- Single function binding,
516
	    NonRecursive	-- binder isn't mentioned in RHS,
517
  | Nothing <- sig_fn name	-- ...with no type signature
518
519
520
521
522
523
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
524
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)
525

526
527
528
529
530
531
532
533
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
534

535
	; mono_name <- newLocalName name
536
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
537
538
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
539
					      fun_co_fn = co_fn, fun_tick = Nothing })),
540
541
		  [(name, Nothing, mono_id)]) }

542
543
544
545
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
546
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
547
548
549
550
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
551
    do	{ tc_sig <- tcInstSig True name
552
553
554
555
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
556
557
558
559
		        | (name, tv) <- scoped_tvs `zip` sig_tvs tc_sig ]
			-- See Note [More instantiated than scoped]
			-- Note that the scoped_tvs and the (sig_tvs sig) 
			-- may have different Names. That's quite ok.
560

561
	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs $
562
		    	       tcMatchesFun mono_name inf matches mono_ty
563
564
565

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
566
567
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
568
569
570
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

571
572
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
573

574
	-- Bring the monomorphic Ids, into scope for the RHSs
575
	; let mono_info  = getMonoBindInfo tc_binds
576
577
578
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
579

580
	; binds' <- tcExtendIdEnv2 rhs_id_env $ do
581
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
582
							 | (n,id) <- rhs_id_env])
583
584
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

606
607
608
609
610
611
612
613
614
615
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

616
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
617
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
618
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
619
620
621
622
623
624
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
625
626
627
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
628
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
629
630
631
632
633
634
635
636
637
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
638

639
	; let nm_sig_prs  = names `zip` mb_sigs
640
641
642
643
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
644
	      sig_tau_fn  = lookupNameEnv tau_sig_env
645

646
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
647
648
649
650
651
652
653
654
655
656
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
657

658
659
660
661
662
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


663
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
664
665
	-- AbsBind, VarBind impossible

666
667
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
668
669
670
671
672
-- When we are doing pattern bindings, or multiple function bindings at a time
-- we *don't* bring any scoped type variables into scope
-- Wny not?  They are not completely rigid.
-- That's why we have the special case for a single FunBind in tcMonoBinds
tcRhs (TcFunBind (_,_,mono_id) fun' inf matches)
673
674
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
				    	    matches (idType mono_id)
675
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
676
677
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
678
679
680

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
681
682
683
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
684
685
686


---------------------
687
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
688
getMonoBindInfo tc_binds
689
  = foldr (get_info . unLoc) [] tc_binds
690
691
692
693
694
695
696
697
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
698
		Generalisation
699
700
701
702
%*									*
%************************************************************************

\begin{code}
703
704
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
705
	   -> [MonoBindInfo] -> [Inst]
706
707
708
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

709
710
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
711
712
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
713
714

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
715
716
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
717
	  	  (restrictedBindCtxtErr bndrs)
718

719
720
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
721
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
722
						tau_tvs lie_req
723

724
   	-- Check that signature type variables are OK
725
	; final_qtvs <- checkSigsTyVars qtvs sigs
726

727
	; return (final_qtvs, [], binds) }
728

729
730
731
732
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
733
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
734
735
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
736
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
737
738
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
739
		loc = sig_loc (head sigs)
740

741
742
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
743
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
744
745
	
   	-- Check that signature type variables are OK
746
	; final_qtvs <- checkSigsTyVars qtvs sigs
747

748
	; return (final_qtvs, sig_lie, binds) }
749
  where
750
751
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
752
753
754
    get_tvs | isTopLevel top_lvl = tyVarsOfType	 -- See Note [Silly type synonym] in TcType
	    | otherwise		 = exactTyVarsOfType
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
755
    is_mono_sig sig = null (sig_theta sig)
756
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
757

758
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
759
		            sig_theta = theta, sig_loc = loc }) mono_id
760
761
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
762
\end{code}
763

764
765
766
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
767

768
769
770
771
772
773
774
775
776
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
777
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
778
-- Post-condition: the returned Insts are full zonked
779
780
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
781
782
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
783
784
785
786
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
787
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
788
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
789
790
791
792
793
794
795
796
797
798
799
	  do { cois <- unifyTheta theta1 theta
	     ; -- Check whether all coercions are identity coercions
	       -- That can happen if we have, say
	       -- 	  f :: C [a]   => ...
	       -- 	  g :: C (F a) => ...
	       -- where F is a type function and (F a ~ [a])
	       -- Then unification might succeed with a coercion.  But it's much
	       -- much simpler to require that such signatures have identical contexts
	       checkTc (all isIdentityCoercion cois)
		       (ptext SLIT("Mutually dependent functions have syntactically distinct contexts"))
	     }
800

801
802
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
803
  = do	{ gbl_tvs <- tcGetGlobalTyVars
804
	; sig_tvs_s <- mapM (check_sig gbl_tvs) sigs
805
806
807
808
809
810
811
812
813
814
815

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
816
	; return all_tvs }
817
  where
818
819
820
821
822
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
823
824
	   ; when (any (`elemVarSet` gbl_tvs) tvs')
	          (bleatEscapedTvs gbl_tvs tvs tvs')
825
826
827
828
829
830
831
832
833
834
835
836
837
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
838
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
839
840
841
842
843
844
845
846
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
847
		Just sig_tv' -> bomb_out sig_tv sig_tv'
848
849
850

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

851
    bomb_out sig_tv1 sig_tv2
852
853
854
855
856
857
858
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
859
       where
860
\end{code}
861

862

863
@getTyVarsToGen@ decides what type variables to generalise over.
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

879
880
881
882
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

883
884
885
886
887
888
889
890
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
891
892
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
893

894
895
896
897
898
899
900
901
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

902
903
904
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
905

906
907
908
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
909

910
911
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
912

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
943
944
945
946

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

947
948
949
950
951
952
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
953

954
955
956
957
958
959
960
961
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


962
963
964

%************************************************************************
%*									*
965
		Signatures
966
967
968
%*									*
%************************************************************************

969
Type signatures are tricky.  See Note [Signature skolems] in TcType
970

971
972
973
974
975
976
977
978
979
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Note [Scoped tyvars]
~~~~~~~~~~~~~~~~~~~~
The -XScopedTypeVariables flag brings lexically-scoped type variables
into scope for any explicitly forall-quantified type variables:
	f :: forall a. a -> a
	f x = e
Then 'a' is in scope inside 'e'.

However, we do *not* support this 
  - For pattern bindings e.g
	f :: forall a. a->a
	(f,g) = e

  - For multiple function bindings, unless Opt_RelaxedPolyRec is on
   	f :: forall a. a -> a
	f = g
   	g :: forall b. b -> b
	g = ...f...
    Reason: we use mutable variables for 'a' and 'b', since they may
    unify to each other, and that means the scoped type variable would
    not stand for a completely rigid variable.
For faster browsing, not all history is shown. View entire blame