TcBinds.lhs 42.7 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 5 6 7
%
\section[TcBinds]{TcBinds}

\begin{code}
8 9
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
10 11
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
12
		 badBootDeclErr ) where
13

14
#include "HsVersions.h"
15

ross's avatar
ross committed
16
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
17
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
18

Simon Marlow's avatar
Simon Marlow committed
19 20 21
import DynFlags
import HsSyn
import TcHsSyn
22

23
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
import VarEnv
import TysPrim
import Id
import IdInfo
import Var ( TyVar )
import Name
39
import NameSet
40
import NameEnv
41
import VarSet
Simon Marlow's avatar
Simon Marlow committed
42
import SrcLoc
43
import Bag
Simon Marlow's avatar
Simon Marlow committed
44 45 46
import ErrUtils
import Digraph
import Maybes
47
import List
Simon Marlow's avatar
Simon Marlow committed
48 49
import Util
import BasicTypes
50
import Outputable
51
\end{code}
52

53

54 55 56 57 58 59
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

60
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
61 62 63 64 65 66 67 68 69 70
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

71
The real work is done by @tcBindWithSigsAndThen@.
72 73 74 75 76 77 78 79 80 81

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

82 83 84
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

85
\begin{code}
86
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
87 88 89
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
90
tcTopBinds binds
91
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
92
	; return (foldr (unionBags . snd) emptyBag prs, env) }
93
	-- The top level bindings are flattened into a giant 
94
	-- implicitly-mutually-recursive LHsBinds
95

96
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
97 98
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
99 100
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
101
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
102
  where
103
    tc_boot_sig (TypeSig (L _ name) ty)
104
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
105 106
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
107
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
108

109 110 111
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

112 113 114
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
115

116 117 118
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
119

120 121 122
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
123

124 125 126
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
127 128 129

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
130 131
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
132 133 134 135
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
136
    tc_ip_bind (IPBind ip expr)
137
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
138
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
139
  	tcMonoExpr expr ty			`thenM` \ expr' ->
140 141
  	returnM (ip_inst, (IPBind ip' expr'))

142 143 144 145 146
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

147 148 149
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

150
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
151
  = do 	{   	-- Typecheck the signature
152
	; let { prag_fn = mkPragFun sigs
153
	      ; ty_sigs = filter isVanillaLSig sigs
154
	      ; sig_fn  = mkTcSigFun ty_sigs }
155 156

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
157 158 159 160 161
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
162

163 164
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
165
	; gla_exts     <- doptM Opt_GlasgowExts
166
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
167
			     tc_val_binds gla_exts top_lvl sig_fn prag_fn 
168
					  binds thing_inside
169

170
	; return (ValBindsOut binds' sigs, thing) }
171

172
------------------------
173
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
174
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
175 176 177 178
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

179
tc_val_binds gla_exts top_lvl sig_fn prag_fn [] thing_inside
180 181 182
  = do	{ thing <- thing_inside
	; return ([], thing) }

183
tc_val_binds gla_exts top_lvl sig_fn prag_fn (group : groups) thing_inside
184
  = do	{ (group', (groups', thing))
185 186
		<- tc_group gla_exts top_lvl sig_fn prag_fn group $ 
		   tc_val_binds gla_exts top_lvl sig_fn prag_fn groups thing_inside
187
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
188

189
------------------------
190
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
191
	 -> (RecFlag, LHsBinds Name) -> TcM thing
192 193 194 195 196 197
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

198 199
tc_group gla_exts top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
    	-- A single non-recursive binding
200 201
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
202
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
203 204
	; return ([(NonRecursive, b) | b <- binds], thing) }

205 206 207 208 209 210 211
tc_group gla_exts top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not gla_exts	-- Recursive group, normal Haskell 98 route
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
212
	-- strongly-connected-component analysis, this time omitting 
213
	-- any references to variables with type signatures.
214
	--
215 216
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
217
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
218 219 220
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
221 222
		-- Rec them all together
  where
223 224 225 226 227
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
228

229 230
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
231

232
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
  	-- For the top level don't bother will all this bindInstsOfLocalFuns stuff. 
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
252 253 254 255 256 257 258 259

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
260 261
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
262 263 264 265 266 267 268 269 270 271 272 273 274
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
275 276
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
277

278
------------------------
279
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
280
	    -> RecFlag			-- Whether the group is really recursive
281 282
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
283
	    -> LHsBinds Name
284
	    -> TcM ([LHsBinds TcId], [TcId])
285 286 287 288 289

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
290 291 292
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
293
-- 
294 295
-- Knows nothing about the scope of the bindings

296
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
297
  = let 
298
	bind_list    = bagToList binds
299 300
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
301 302 303
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
304
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
305
    setSrcSpan loc				$
306
    recoverM (recoveryCode binder_names sig_fn)	$ do 
307

308 309
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
310 311

   	-- TYPECHECK THE BINDINGS
312
  ; ((binds', mono_bind_infos), lie_req) 
313
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
314
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
315

316 317 318 319
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
320 321 322 323 324
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
325 326
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
327
			-- ToDo: prags for unlifted bindings
328

329 330
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
331 332

    else do	-- The normal lifted case: GENERALISE
333
  { dflags <- getDOpts 
334
  ; (tyvars_to_gen, dicts, dict_binds)
335
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
336
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
337

338
	-- BUILD THE POLYMORPHIC RESULT IDs
339 340
  ; let dict_ids = map instToId dicts
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen (map idType dict_ids))
341
		    mono_bind_infos
sof's avatar
sof committed
342

343
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
344
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
345

346
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
347 348 349
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

350
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
351 352 353 354 355 356
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
357 358 359 360 361 362 363 364 365 366 367
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

368
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
369 370 371 372 373 374 375 376 377 378 379 380 381
  = do	{ (tvs, poly_id) <- mk_poly_id mb_sig

	; poly_id' <- zonkId poly_id
	; prags <- tcPrags poly_id' (prag_fn poly_name)
		-- tcPrags requires a zonked poly_id

	; return (tvs, poly_id', mono_id, prags) }
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

    mk_poly_id Nothing    = return (inferred_tvs, mkLocalId poly_name poly_ty)
    mk_poly_id (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			       ; return (tvs,  sig_id sig) }
382

383
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
384 385 386 387 388 389 390

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
391 392
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
393 394 395 396 397 398 399 400 401 402 403 404 405
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
406 407
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
408 409 410
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
411

412

413 414
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
415
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
416
	; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
417 418
	; extendLIEs lie
	; let const_dicts = map instToId lie
419
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
420 421
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
422 423
  
--------------
424 425 426
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
427
recoveryCode binder_names sig_fn
428
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
429
	; poly_ids <- mapM mk_dummy binder_names
430
	; return ([], poly_ids) }
431
  where
432 433 434
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
435 436 437 438

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

439

440 441 442
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
443 444
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
445 446 447 448 449
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
450
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
451
	  	  (strictBindErr "Top-level" unlifted mbind)
452
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
453
	  	  (strictBindErr "Recursive" unlifted mbind)
454
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
455 456 457 458 459
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
460
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
461 462
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
463
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
					 (badStrictSig unlifted sig)
465
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
466 467

strictBindErr flavour unlifted mbind
468 469
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
470 471 472 473 474 475 476 477 478 479
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
480 481
\end{code}

482

483 484
%************************************************************************
%*									*
485
\subsection{tcMonoBind}
486 487 488
%*									*
%************************************************************************

489
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
490 491
The signatures have been dealt with already.

492
\begin{code}
493 494
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
495 496 497
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
498 499
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

500 501
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
502
	    sig_fn 		-- Single function binding,
503
	    NonRecursive	-- binder isn't mentioned in RHS,
504
  | Nothing <- sig_fn name	-- ...with no type signature
505 506 507 508 509 510
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
511
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
512

513 514 515 516 517 518 519 520
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
521

522
	; mono_name <- newLocalName name
523
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
524 525
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
526
					      fun_co_fn = co_fn, fun_tick = Nothing })),
527 528
		  [(name, Nothing, mono_id)]) }

529 530 531 532
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
533
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
534 535 536 537
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
538
    do	{ tc_sig <- tcInstSig True name scoped_tvs
539 540 541 542 543 544 545 546 547 548 549
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
		    	       tcMatchesFun mono_name matches mono_ty

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
550 551
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
552 553 554
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

555 556
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
557

558
	-- Bring the monomorphic Ids, into scope for the RHSs
559
	; let mono_info  = getMonoBindInfo tc_binds
560 561 562
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
563

564
	; binds' <- tcExtendIdEnv2    rhs_id_env $
565 566 567 568
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

590 591 592 593 594 595 596 597 598 599
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

600
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
601
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
602
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
603 604 605 606 607 608
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
609 610 611
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
612
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
613 614 615 616 617 618 619 620 621
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
622

623
	; let nm_sig_prs  = names `zip` mb_sigs
624 625 626 627
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
628
	      sig_tau_fn  = lookupNameEnv tau_sig_env
629

630
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
631 632 633 634 635 636 637 638 639 640
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
641

642 643 644 645 646
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


647
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
648 649
	-- AbsBind, VarBind impossible

650 651
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
652
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
653 654 655
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
				    	    (idType mono_id)
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
656 657
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
658 659 660

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
661 662 663
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
664 665 666


---------------------
667
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
668
getMonoBindInfo tc_binds
669
  = foldr (get_info . unLoc) [] tc_binds
670 671 672 673 674 675 676 677
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
678
		Generalisation
679 680 681 682
%*									*
%************************************************************************

\begin{code}
683 684
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
685
	   -> [MonoBindInfo] -> [Inst]
686 687 688
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

689 690
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
691 692
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
693 694

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
695 696
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
697
	  	  (restrictedBindCtxtErr bndrs)
698

699 700
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
701
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
702
						tau_tvs lie_req
703

704
   	-- Check that signature type variables are OK
705
	; final_qtvs <- checkSigsTyVars qtvs sigs
706

707
	; return (final_qtvs, [], binds) }
708

709 710 711 712
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
713
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
714 715
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
716
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
717 718
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
719
		loc = sig_loc (head sigs)
720

721 722
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
723
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
724 725
	
   	-- Check that signature type variables are OK
726
	; final_qtvs <- checkSigsTyVars qtvs sigs
727

728
	; returnM (final_qtvs, sig_lie, binds) }
729
  where
730 731
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
732 733 734
    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
		-- NB: exactTyVarsOfType; see Note [Silly type synonym] 
		--     near defn of TcType.exactTyVarsOfType
735
    is_mono_sig sig = null (sig_theta sig)
736
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
737

738
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
739
		            sig_theta = theta, sig_loc = loc }) mono_id
740 741
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
742
\end{code}
743

744 745 746
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
747

748 749 750 751 752 753 754 755 756
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
757
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
758
-- Post-condition: the returned Insts are full zonked
759 760
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
761 762
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
763 764 765 766
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
767
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
768 769 770
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

771 772
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
773 774 775 776 777 778 779 780 781 782 783 784 785 786
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
787
  where
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
808
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
809 810 811 812 813 814 815 816
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
817
		Just sig_tv' -> bomb_out sig_tv sig_tv'
818 819 820

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

821
    bomb_out sig_tv1 sig_tv2
822 823 824 825 826 827 828
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
829
       where
SamB's avatar
SamB committed
830
\end{code}
831

832

833
@getTyVarsToGen@ decides what type variables to generalise over.
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

849 850 851 852
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

853 854 855 856 857 858 859 860
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
861 862
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
863

864 865 866 867 868 869 870 871
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

872 873 874
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
875

876 877 878
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
879

880 881
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
913 914 915 916

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

917 918 919 920 921 922
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
923

924 925 926 927 928 929 930 931
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


932 933 934

%************************************************************************
%*									*
935
		Signatures
936 937 938
%*									*
%************************************************************************

939
Type signatures are tricky.  See Note [Signature skolems] in TcType
940

941 942 943 944 945 946 947 948 949
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

950
\begin{code}
951 952 953 954
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
955

956
mkTcSigFun :: [LSig Name] -> TcSigFun
957 958 959
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
960
mkTcSigFun sigs = lookupNameEnv env
961
  where
962 963
    env = mkNameEnv [(name, hsExplicitTvs lhs_ty)
		    | L span (TypeSig (L _ name) lhs_ty) <- sigs]
964 965 966
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
967
	-- See Note [Only scoped tyvars are in the TyVarEnv]
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

---------------
data TcSigInfo
  = TcSigInfo {
	sig_id     :: TcId,		--  *Polymorphic* binder for this value...

	sig_scoped :: [Name],		-- Names for any scoped type variables
					-- Invariant: correspond 1-1 with an initial
					-- segment of sig_tvs (see Note [Scoped])

	sig_tvs    :: [TcTyVar],	-- Instantiated type variables
					-- See Note [Instantiate sig]

	sig_theta  :: TcThetaType,	-- Instantiated theta
	sig_tau    :: TcTauType,	-- Instantiated tau
	sig_loc    :: InstLoc	 	-- The location of the signature
    }

986 987 988 989 990 991 992 993 994 995 996 997 998

--	Note [Only scoped tyvars are in the TyVarEnv]
-- We are careful to keep only the *lexically scoped* type variables in
-- the type environment.  Why?  After all, the renamer has ensured
-- that only legal occurrences occur, so we could put all type variables
-- into the type env.
--
-- But we want to check that two distinct lexically scoped type variables
-- do not map to the same internal type variable.  So we need to know which
-- the lexically-scoped ones are... and at the moment we do that by putting
-- only the lexically scoped ones into the environment.


999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
-- 	Note [Scoped]
-- There may be more instantiated type variables than scoped 
-- ones.  For example:
--	type T a = forall b. b -> (a,b)
--	f :: forall c. T c
-- Here, the signature for f will have one scoped type variable, c,
-- but two instantiated type variables, c' and b'.  
--
-- We assume that the scoped ones are at the *front* of sig_tvs,
-- and remember the names from the original HsForAllTy in sig_scoped

-- 	Note [Instantiate sig]
1011
-- It's vital to instantiate a type signature with fresh variables.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026