TcPat.hs 51.2 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5 6

TcPat: Typechecking patterns
Austin Seipp's avatar
Austin Seipp committed
7
-}
8

9
{-# LANGUAGE CPP, RankNTypes #-}
Ian Lynagh's avatar
Ian Lynagh committed
10

11 12
module TcPat ( tcLetPat, TcSigFun
             , TcPragEnv, lookupPragEnv, emptyPragEnv
13 14 15
             , TcSigInfo(..), TcIdSigInfo(..), TcPatSynInfo(..), TcIdSigBndr(..)
             , findScopedTyVars, isPartialSig, noCompleteSig
             , completeIdSigPolyId, completeSigPolyId_maybe, completeIdSigPolyId_maybe
16
             , LetBndrSpec(..), addInlinePrags
17
             , tcPat, tcPats, newNoSigLetBndr
18
             , addDataConStupidTheta, badFieldCon, polyPatSig ) where
19

20
#include "HsVersions.h"
21

22
import {-# SOURCE #-}   TcExpr( tcSyntaxOp, tcInferRho)
23 24 25

import HsSyn
import TcHsSyn
26
import TcRnMonad
27 28 29 30
import Inst
import Id
import Var
import Name
31
import NameSet
32
import NameEnv
33 34
import TcEnv
import TcMType
35
import TcValidity( arityErr )
36 37 38 39
import TcType
import TcUnify
import TcHsType
import TysWiredIn
40
import TcEvidence
41 42
import TyCon
import DataCon
cactus's avatar
cactus committed
43 44
import PatSyn
import ConLike
45 46
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
47
import DynFlags
48 49
import SrcLoc
import Util
sof's avatar
sof committed
50
import Outputable
51
import FastString
52
import Maybes( orElse )
Ian Lynagh's avatar
Ian Lynagh committed
53
import Control.Monad
54

Austin Seipp's avatar
Austin Seipp committed
55 56 57
{-
************************************************************************
*                                                                      *
58
                External interface
Austin Seipp's avatar
Austin Seipp committed
59 60 61
*                                                                      *
************************************************************************
-}
62

63
tcLetPat :: TcSigFun -> LetBndrSpec
64 65 66
         -> LPat Name -> TcSigmaType
         -> TcM a
         -> TcM (LPat TcId, a)
67
tcLetPat sig_fn no_gen pat pat_ty thing_inside
68
  = tc_lpat pat pat_ty penv thing_inside
69
  where
70
    penv = PE { pe_lazy = True
71
              , pe_ctxt = LetPat sig_fn no_gen }
72 73

-----------------
74
tcPats :: HsMatchContext Name
75 76
       -> [LPat Name]            -- Patterns,
       -> [TcSigmaType]          --   and their types
77
       -> TcM a                  --   and the checker for the body
78
       -> TcM ([LPat TcId], a)
79 80 81

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
82
-- do the thing inside, use any existentially-bound dictionaries to
83 84 85 86 87
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
88 89
--   3. Check the body
--   4. Check that no existentials escape
90

91
tcPats ctxt pats pat_tys thing_inside
92 93
  = tc_lpats penv pats pat_tys thing_inside
  where
94
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
95

96
tcPat :: HsMatchContext Name
97
      -> LPat Name -> TcSigmaType
98 99
      -> TcM a                 -- Checker for body, given
                               -- its result type
100
      -> TcM (LPat TcId, a)
101
tcPat ctxt pat pat_ty thing_inside
102 103
  = tc_lpat pat pat_ty penv thing_inside
  where
104
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
105

106

107
-----------------
108
data PatEnv
109 110
  = PE { pe_lazy :: Bool        -- True <=> lazy context, so no existentials allowed
       , pe_ctxt :: PatCtxt     -- Context in which the whole pattern appears
111
       }
112 113 114

data PatCtxt
  = LamPat   -- Used for lambdas, case etc
115
       (HsMatchContext Name)
116

117
  | LetPat   -- Used only for let(rec) pattern bindings
118
             -- See Note [Typing patterns in pattern bindings]
119 120 121
       TcSigFun        -- Tells type sig if any
       LetBndrSpec     -- True <=> no generalisation of this let

122 123 124
data LetBndrSpec
  = LetLclBndr            -- The binder is just a local one;
                          -- an AbsBinds will provide the global version
125

126
  | LetGblBndr TcPragEnv  -- Generalisation plan is NoGen, so there isn't going
127
                          -- to be an AbsBinds; So we must bind the global version
128
                          -- of the binder right away.
129
                          -- Oh, and here is the inline-pragma information
130

131 132 133
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }

134 135 136
inPatBind :: PatEnv -> Bool
inPatBind (PE { pe_ctxt = LetPat {} }) = True
inPatBind (PE { pe_ctxt = LamPat {} }) = False
137 138

---------------
139
type TcPragEnv = NameEnv [LSig Name]
140
type TcSigFun  = Name -> Maybe TcSigInfo
141

142 143 144 145 146 147
emptyPragEnv :: TcPragEnv
emptyPragEnv = emptyNameEnv

lookupPragEnv :: TcPragEnv -> Name -> [LSig Name]
lookupPragEnv prag_fn n = lookupNameEnv prag_fn n `orElse` []

148 149
data TcSigInfo = TcIdSig     TcIdSigInfo
               | TcPatSynSig TcPatSynInfo
thomasw's avatar
thomasw committed
150

151 152 153
data TcIdSigInfo
  = TISI {
        sig_bndr   :: TcIdSigBndr,
154

155
        sig_tvs    :: [(Maybe Name, TcTyVar)],
156 157
                           -- Instantiated type and kind variables
                           -- Just n <=> this skolem is lexically in scope with name n
158
                           -- See Note [Binding scoped type variables]
159

Simon Peyton Jones's avatar
Simon Peyton Jones committed
160
        sig_theta  :: TcThetaType,  -- Instantiated theta
161
        sig_tau    :: TcSigmaType,  -- Instantiated tau
162
                                    -- See Note [sig_tau may be polymorphic]
163

164 165
        sig_ctxt   :: UserTypeCtxt, -- FunSigCtxt or CheckSigCtxt
        sig_loc    :: SrcSpan       -- Location of the type signature
166
    }
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

data TcIdSigBndr   -- See Note [Complete and partial type signatures]
  = CompleteSig    -- A complete signature with no wildards,
                   -- so the complete polymorphic type is known.
        TcId          -- The polymoprhic Id with that type

  | PartialSig     -- A partial type signature (i.e. includes one or more
                   -- wildcards). In this case it doesn't make sense to give
                   -- the polymorphic Id, because we are going to /infer/ its
                   -- type, so we can't make the polymorphic Id ab-initio
       { sig_name  :: Name              -- Name of the function
       , sig_hs_ty :: LHsType Name      -- The original partial signatur
       , sig_nwcs  :: [(Name, TcTyVar)] -- Instantiated wildcard variables
       , sig_cts   :: Maybe SrcSpan     -- Just loc <=> An extra-constraints wildcard was present
       }                                --              at location loc
                                        --   e.g.   f :: (Eq a, _) => a -> a
                                        -- Any extra constraints inferred during
                                        -- type-checking will be added to the sig_theta.
185 186 187 188 189 190 191 192 193 194

data TcPatSynInfo
  = TPSI {
        patsig_name  :: Name,
        patsig_tau   :: TcSigmaType,
        patsig_ex    :: [TcTyVar],
        patsig_prov  :: TcThetaType,
        patsig_univ  :: [TcTyVar],
        patsig_req   :: TcThetaType
    }
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
findScopedTyVars  -- See Note [Binding scoped type variables]
  :: LHsType Name             -- The HsType
  -> TcType                   -- The corresponding Type:
                              --   uses same Names as the HsType
  -> [TcTyVar]                -- The instantiated forall variables of the Type
  -> [(Maybe Name, TcTyVar)]  -- In 1-1 correspondence with the instantiated vars
findScopedTyVars hs_ty sig_ty inst_tvs
  = zipWith find sig_tvs inst_tvs
  where
    find sig_tv inst_tv
      | tv_name `elemNameSet` scoped_names = (Just tv_name, inst_tv)
      | otherwise                          = (Nothing,      inst_tv)
      where
        tv_name = tyVarName sig_tv

    scoped_names = mkNameSet (hsExplicitTvs hs_ty)
    (sig_tvs,_)  = tcSplitForAllTys sig_ty

214 215
instance NamedThing TcIdSigInfo where
    getName (TISI { sig_bndr = bndr }) = getName bndr
216

217 218 219 220 221 222 223
instance NamedThing TcIdSigBndr where
    getName (CompleteSig id)              = idName id
    getName (PartialSig { sig_name = n }) = n

instance NamedThing TcSigInfo where
    getName (TcIdSig     idsi) = getName     idsi
    getName (TcPatSynSig tpsi) = patsig_name tpsi
thomasw's avatar
thomasw committed
224

225
instance Outputable TcSigInfo where
226 227 228 229 230 231 232
  ppr (TcIdSig     idsi) = ppr idsi
  ppr (TcPatSynSig tpsi) = text "TcPatSynInfo" <+> ppr tpsi

instance Outputable TcIdSigInfo where
    ppr (TISI { sig_bndr = bndr, sig_tvs = tyvars
              , sig_theta = theta, sig_tau = tau })
        = ppr bndr <+> dcolon <+>
thomasw's avatar
thomasw committed
233 234
          vcat [ pprSigmaType (mkSigmaTy (map snd tyvars) theta tau)
               , ppr (map fst tyvars) ]
235 236 237

instance Outputable TcIdSigBndr where
  ppr s_bndr = ppr (getName s_bndr)
238 239 240 241

instance Outputable TcPatSynInfo where
    ppr (TPSI{ patsig_name = name}) = ppr name

242 243 244 245 246 247 248 249
isPartialSig :: TcIdSigInfo -> Bool
isPartialSig (TISI { sig_bndr = PartialSig {} }) = True
isPartialSig _                                   = False

-- | No signature or a partial signature
noCompleteSig :: Maybe TcSigInfo -> Bool
noCompleteSig (Just (TcIdSig sig)) = isPartialSig sig
noCompleteSig _                    = True
thomasw's avatar
thomasw committed
250 251 252

-- Helper for cases when we know for sure we have a complete type
-- signature, e.g. class methods.
253 254 255 256 257 258 259
completeIdSigPolyId :: TcIdSigInfo -> TcId
completeIdSigPolyId (TISI { sig_bndr = CompleteSig id }) = id
completeIdSigPolyId _ = panic "completeSigPolyId"

completeIdSigPolyId_maybe :: TcIdSigInfo -> Maybe TcId
completeIdSigPolyId_maybe (TISI { sig_bndr = CompleteSig id }) = Just id
completeIdSigPolyId_maybe _                                    = Nothing
260

261
completeSigPolyId_maybe :: TcSigInfo -> Maybe TcId
262 263
completeSigPolyId_maybe (TcIdSig sig)    = completeIdSigPolyId_maybe sig
completeSigPolyId_maybe (TcPatSynSig {}) = Nothing
264

Austin Seipp's avatar
Austin Seipp committed
265
{-
266 267 268 269 270 271 272
Note [Binding scoped type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type variables *brought into lexical scope* by a type signature may
be a subset of the *quantified type variables* of the signatures, for two reasons:

* With kind polymorphism a signature like
    f :: forall f a. f a -> f a
273
  may actually give rise to
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    f :: forall k. forall (f::k -> *) (a:k). f a -> f a
  So the sig_tvs will be [k,f,a], but only f,a are scoped.
  NB: the scoped ones are not necessarily the *inital* ones!

* Even aside from kind polymorphism, tere may be more instantiated
  type variables than lexically-scoped ones.  For example:
        type T a = forall b. b -> (a,b)
        f :: forall c. T c
  Here, the signature for f will have one scoped type variable, c,
  but two instantiated type variables, c' and b'.

The function findScopedTyVars takes
  * hs_ty:    the original HsForAllTy
  * sig_ty:   the corresponding Type (which is guaranteed to use the same Names
              as the HsForAllTy)
  * inst_tvs: the skolems instantiated from the forall's in sig_ty
It returns a [(Maybe Name, TcTyVar)], in 1-1 correspondence with inst_tvs
but with a (Just n) for the lexically scoped name of each in-scope tyvar.
292

293 294 295 296 297 298 299
Note [sig_tau may be polymorphic]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that "sig_tau" might actually be a polymorphic type,
if the original function had a signature like
   forall a. Eq a => forall b. Ord b => ....
But that's ok: tcMatchesFun (called by tcRhs) can deal with that
It happens, too!  See Note [Polymorphic methods] in TcClassDcl.
300

301 302 303 304 305
Note [Existential check]
~~~~~~~~~~~~~~~~~~~~~~~~
Lazy patterns can't bind existentials.  They arise in two ways:
  * Let bindings      let { C a b = e } in b
  * Twiddle patterns  f ~(C a b) = e
306
The pe_lazy field of PatEnv says whether we are inside a lazy
307
pattern (perhaps deeply)
308

309 310 311 312 313
If we aren't inside a lazy pattern then we can bind existentials,
but we need to be careful about "extra" tyvars. Consider
    (\C x -> d) : pat_ty -> res_ty
When looking for existential escape we must check that the existential
bound by C don't unify with the free variables of pat_ty, OR res_ty
314
(or of course the environment).   Hence we need to keep track of the
315
res_ty free vars.
316

thomasw's avatar
thomasw committed
317 318
Note [Complete and partial type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Simon Peyton Jones's avatar
Simon Peyton Jones committed
319 320
A type signature is partial when it contains one or more wildcards
(= type holes).  The wildcard can either be:
thomasw's avatar
thomasw committed
321 322 323 324
* A (type) wildcard occurring in sig_theta or sig_tau. These are
  stored in sig_nwcs.
      f :: Bool -> _
      g :: Eq _a => _a -> _a -> Bool
325
* Or an extra-constraints wildcard, stored in sig_cts:
thomasw's avatar
thomasw committed
326 327 328 329 330
      h :: (Num a, _) => a -> a

A type signature is a complete type signature when there are no
wildcards in the type signature, i.e. iff sig_nwcs is empty and
sig_extra_cts is Nothing.
331

Austin Seipp's avatar
Austin Seipp committed
332 333
************************************************************************
*                                                                      *
334
                Binders
Austin Seipp's avatar
Austin Seipp committed
335 336 337
*                                                                      *
************************************************************************
-}
338

339
tcPatBndr :: PatEnv -> Name -> TcSigmaType -> TcM (TcCoercion, TcId)
340 341 342 343
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
tcPatBndr (PE { pe_ctxt = LetPat lookup_sig no_gen}) bndr_name pat_ty
344
          -- See Note [Typing patterns in pattern bindings]
345 346 347
  | LetGblBndr prags   <- no_gen
  , Just (TcIdSig sig) <- lookup_sig bndr_name
  , Just poly_id <- completeIdSigPolyId_maybe sig
348
  = do { bndr_id <- addInlinePrags poly_id (lookupPragEnv prags bndr_name)
349
       ; traceTc "tcPatBndr(gbl,sig)" (ppr bndr_id $$ ppr (idType bndr_id))
batterseapower's avatar
batterseapower committed
350 351
       ; co <- unifyPatType (idType bndr_id) pat_ty
       ; return (co, bndr_id) }
352 353

  | otherwise
354
  = do { bndr_id <- newNoSigLetBndr no_gen bndr_name pat_ty
355
       ; traceTc "tcPatBndr(no-sig)" (ppr bndr_id $$ ppr (idType bndr_id))
356
       ; return (mkTcNomReflCo pat_ty, bndr_id) }
357 358

tcPatBndr (PE { pe_ctxt = _lam_or_proc }) bndr_name pat_ty
359
  = return (mkTcNomReflCo pat_ty, mkLocalId bndr_name pat_ty)
360

361 362
------------
newNoSigLetBndr :: LetBndrSpec -> Name -> TcType -> TcM TcId
363
-- In the polymorphic case (no_gen = LetLclBndr), generate a "monomorphic version"
364 365
--    of the Id; the original name will be bound to the polymorphic version
--    by the AbsBinds
366
-- In the monomorphic case (no_gen = LetBglBndr) there is no AbsBinds, and we
367
--    use the original name directly
368
newNoSigLetBndr LetLclBndr name ty
369
  =do  { mono_name <- newLocalName name
370
       ; return (mkLocalId mono_name ty) }
371
newNoSigLetBndr (LetGblBndr prags) name ty
372
  = addInlinePrags (mkLocalId name ty) (lookupPragEnv prags name)
373 374 375 376

----------
addInlinePrags :: TcId -> [LSig Name] -> TcM TcId
addInlinePrags poly_id prags
377 378 379 380 381 382
  | inl@(L _ prag) : inls <- inl_prags
  = do { traceTc "addInlinePrag" (ppr poly_id $$ ppr prag)
       ; unless (null inls) (warn_multiple_inlines inl inls)
       ; return (poly_id `setInlinePragma` prag) }
  | otherwise
  = return poly_id
383
  where
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    inl_prags = [L loc prag | L loc (InlineSig _ prag) <- prags]

    warn_multiple_inlines _ [] = return ()

    warn_multiple_inlines inl1@(L loc prag1) (inl2@(L _ prag2) : inls)
       | inlinePragmaActivation prag1 == inlinePragmaActivation prag2
       , isEmptyInlineSpec (inlinePragmaSpec prag1)
       =    -- Tiresome: inl1 is put there by virtue of being in a hs-boot loop
            -- and inl2 is a user NOINLINE pragma; we don't want to complain
         warn_multiple_inlines inl2 inls
       | otherwise
       = setSrcSpan loc $
         addWarnTc (hang (ptext (sLit "Multiple INLINE pragmas for") <+> ppr poly_id)
                       2 (vcat (ptext (sLit "Ignoring all but the first")
                                : map pp_inl (inl1:inl2:inls))))

    pp_inl (L loc prag) = ppr prag <+> parens (ppr loc)
401

Austin Seipp's avatar
Austin Seipp committed
402
{-
403 404 405 406 407 408 409 410
Note [Typing patterns in pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are typing a pattern binding
    pat = rhs
Then the PatCtxt will be (LetPat sig_fn let_bndr_spec).

There can still be signatures for the binders:
     data T = MkT (forall a. a->a) Int
411
     x :: forall a. a->a
412 413 414 415 416 417 418 419 420 421
     y :: Int
     MkT x y = <rhs>

Two cases, dealt with by the LetPat case of tcPatBndr

 * If we are generalising (generalisation plan is InferGen or
   CheckGen), then the let_bndr_spec will be LetLclBndr.  In that case
   we want to bind a cloned, local version of the variable, with the
   type given by the pattern context, *not* by the signature (even if
   there is one; see Trac #7268). The mkExport part of the
Gabor Greif's avatar
Gabor Greif committed
422
   generalisation step will do the checking and impedance matching
423 424 425 426 427 428 429 430
   against the signature.

 * If for some some reason we are not generalising (plan = NoGen), the
   LetBndrSpec will be LetGblBndr.  In that case we must bind the
   global version of the Id, and do so with precisely the type given
   in the signature.  (Then we unify with the type from the pattern
   context type.

431

Austin Seipp's avatar
Austin Seipp committed
432 433
************************************************************************
*                                                                      *
434
                The main worker functions
Austin Seipp's avatar
Austin Seipp committed
435 436
*                                                                      *
************************************************************************
437

438 439
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
440
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
441
so that tcPat can extend the environment for the thing_inside, but also
442 443 444 445
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
446
want the error-context for the pattern to scope over the RHS.
447
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
Austin Seipp's avatar
Austin Seipp committed
448
-}
449 450

--------------------
451
type Checker inp out =  forall r.
452 453 454 455
                          inp
                       -> PatEnv
                       -> TcM r
                       -> TcM (out, r)
456 457

tcMultiple :: Checker inp out -> Checker [inp] [out]
458
tcMultiple tc_pat args penv thing_inside
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  = do  { err_ctxt <- getErrCtxt
        ; let loop _ []
                = do { res <- thing_inside
                     ; return ([], res) }

              loop penv (arg:args)
                = do { (p', (ps', res))
                                <- tc_pat arg penv $
                                   setErrCtxt err_ctxt $
                                   loop penv args
                -- setErrCtxt: restore context before doing the next pattern
                -- See note [Nesting] above

                     ; return (p':ps', res) }

        ; loop penv args }
475 476

--------------------
477 478 479 480 481
tc_lpat :: LPat Name
        -> TcSigmaType
        -> PatEnv
        -> TcM a
        -> TcM (LPat TcId, a)
482
tc_lpat (L span pat) pat_ty penv thing_inside
483
  = setSrcSpan span $
484
    do  { (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
485
                                          thing_inside
486
        ; return (L span pat', res) }
487 488

tc_lpats :: PatEnv
489 490 491 492
         -> [LPat Name] -> [TcSigmaType]
         -> TcM a
         -> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside
Simon Peyton Jones's avatar
Simon Peyton Jones committed
493
  = ASSERT2( equalLength pats tys, ppr pats $$ ppr tys )
494
    tcMultiple (\(p,t) -> tc_lpat p t)
495
                (zipEqual "tc_lpats" pats tys)
496
                penv thing_inside
497 498

--------------------
499 500 501 502 503 504
tc_pat  :: PatEnv
        -> Pat Name
        -> TcSigmaType  -- Fully refined result type
        -> TcM a                -- Thing inside
        -> TcM (Pat TcId,       -- Translated pattern
                a)              -- Result of thing inside
505

506
tc_pat penv (VarPat name) pat_ty thing_inside
507
  = do  { (co, id) <- tcPatBndr penv name pat_ty
batterseapower's avatar
batterseapower committed
508 509
        ; res <- tcExtendIdEnv1 name id thing_inside
        ; return (mkHsWrapPatCo co (VarPat id) pat_ty, res) }
510 511

tc_pat penv (ParPat pat) pat_ty thing_inside
512 513
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (ParPat pat', res) }
514 515

tc_pat penv (BangPat pat) pat_ty thing_inside
516 517
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (BangPat pat', res) }
518

519
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
520 521 522 523
  = do  { (pat', (res, pat_ct))
                <- tc_lpat pat pat_ty (makeLazy penv) $
                   captureConstraints thing_inside
                -- Ignore refined penv', revert to penv
524

525 526
        ; emitConstraints pat_ct
        -- captureConstraints/extendConstraints:
527
        --   see Note [Hopping the LIE in lazy patterns]
528

529 530
        -- Check there are no unlifted types under the lazy pattern
        ; when (any (isUnLiftedType . idType) $ collectPatBinders pat') $
531 532
               lazyUnliftedPatErr lpat

533 534 535
        -- Check that the expected pattern type is itself lifted
        ; pat_ty' <- newFlexiTyVarTy liftedTypeKind
        ; _ <- unifyType pat_ty pat_ty'
536

537
        ; return (LazyPat pat', res) }
538

539
tc_pat _ (WildPat _) pat_ty thing_inside
540 541
  = do  { res <- thing_inside
        ; return (WildPat pat_ty, res) }
542

543
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
544
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
545
        ; (pat', res) <- tcExtendIdEnv1 name bndr_id $
546 547 548 549 550 551 552 553 554 555 556 557 558
                         tc_lpat pat (idType bndr_id) penv thing_inside
            -- NB: if we do inference on:
            --          \ (y@(x::forall a. a->a)) = e
            -- we'll fail.  The as-pattern infers a monotype for 'y', which then
            -- fails to unify with the polymorphic type for 'x'.  This could
            -- perhaps be fixed, but only with a bit more work.
            --
            -- If you fix it, don't forget the bindInstsOfPatIds!
        ; return (mkHsWrapPatCo co (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }

tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside
  = do  {
         -- Morally, expr must have type `forall a1...aN. OPT' -> B`
559 560 561 562
         -- where overall_pat_ty is an instance of OPT'.
         -- Here, we infer a rho type for it,
         -- which replaces the leading foralls and constraints
         -- with fresh unification variables.
563 564
        ; (expr',expr'_inferred) <- tcInferRho expr

565
         -- next, we check that expr is coercible to `overall_pat_ty -> pat_ty`
566
         -- NOTE: this forces pat_ty to be a monotype (because we use a unification
567 568 569 570
         -- variable to find it).  this means that in an example like
         -- (view -> f)    where view :: _ -> forall b. b
         -- we will only be able to use view at one instantation in the
         -- rest of the view
571 572 573
        ; (expr_co, pat_ty) <- tcInfer $ \ pat_ty ->
                unifyType expr'_inferred (mkFunTy overall_pat_ty pat_ty)

574
         -- pattern must have pat_ty
575 576
        ; (pat', res) <- tc_lpat pat pat_ty penv thing_inside

577
        ; return (ViewPat (mkLHsWrapCo expr_co expr') pat' overall_pat_ty, res) }
578

579 580
-- Type signatures in patterns
-- See Note [Pattern coercions] below
581
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
thomasw's avatar
thomasw committed
582 583 584
  = do  { (inner_ty, tv_binds, nwc_binds, wrap) <- tcPatSig (inPatBind penv)
                                                            sig_ty pat_ty
        ; (pat', res) <- tcExtendTyVarEnv2 (tv_binds ++ nwc_binds) $
585
                         tc_lpat pat inner_ty penv thing_inside
586
        ; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
587 588 589

------------------------
-- Lists, tuples, arrays
590
tc_pat penv (ListPat pats _ Nothing) pat_ty thing_inside
591
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTyR pat_ty
592
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
593 594
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty Nothing) pat_ty, res)
595 596 597
        }

tc_pat penv (ListPat pats _ (Just (_,e))) pat_ty thing_inside
598
  = do  { list_pat_ty <- newFlexiTyVarTy liftedTypeKind
599
        ; e' <- tcSyntaxOp ListOrigin e (mkFunTy pat_ty list_pat_ty)
600
        ; (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTyR list_pat_ty
601
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
602 603
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty (Just (pat_ty,e'))) list_pat_ty, res)
604
        }
605

606
tc_pat penv (PArrPat pats _) pat_ty thing_inside
607
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTyR pat_ty
608 609 610
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
611
        }
612

613
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
614
  = do  { let tc = tupleTyCon boxity (length pats)
615
        ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConAppR tc) pat_ty
616
        ; (pats', res) <- tc_lpats penv pats arg_tys thing_inside
617

618
        ; dflags <- getDynFlags
619

620 621 622 623 624
        -- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
        -- so that we can experiment with lazy tuple-matching.
        -- This is a pretty odd place to make the switch, but
        -- it was easy to do.
        ; let
625 626
              unmangled_result = TuplePat pats' boxity arg_tys
                                 -- pat_ty /= pat_ty iff coi /= IdCo
627 628
              possibly_mangled_result
                | gopt Opt_IrrefutableTuples dflags &&
629
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
630
                | otherwise                 = unmangled_result
631

632 633
        ; ASSERT( length arg_tys == length pats )      -- Syntactically enforced
          return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
634
        }
635 636 637

------------------------
-- Data constructors
638 639
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
  = tcConPat penv con pat_ty arg_pats thing_inside
640 641 642

------------------------
-- Literal patterns
643
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
644 645 646 647 648
  = do  { let lit_ty = hsLitType simple_lit
        ; co <- unifyPatType lit_ty pat_ty
                -- coi is of kind: pat_ty ~ lit_ty
        ; res <- thing_inside
        ; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty
649
                 , res) }
650 651 652

------------------------
-- Overloaded patterns: n, and n+k
Alan Zimmerman's avatar
Alan Zimmerman committed
653
tc_pat _ (NPat (L l over_lit) mb_neg eq) pat_ty thing_inside
654 655 656 657 658 659 660 661 662 663
  = do  { let orig = LiteralOrigin over_lit
        ; lit'    <- newOverloadedLit orig over_lit pat_ty
        ; eq'     <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
        ; mb_neg' <- case mb_neg of
                        Nothing  -> return Nothing      -- Positive literal
                        Just neg ->     -- Negative literal
                                        -- The 'negate' is re-mappable syntax
                            do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
                               ; return (Just neg') }
        ; res <- thing_inside
Alan Zimmerman's avatar
Alan Zimmerman committed
664
        ; return (NPat (L l lit') mb_neg' eq', res) }
665

Alan Zimmerman's avatar
Alan Zimmerman committed
666
tc_pat penv (NPlusKPat (L nm_loc name) (L loc lit) ge minus) pat_ty thing_inside
667
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
668
        ; let pat_ty' = idType bndr_id
669 670
              orig    = LiteralOrigin lit
        ; lit' <- newOverloadedLit orig lit pat_ty'
671

672 673 674
        -- The '>=' and '-' parts are re-mappable syntax
        ; ge'    <- tcSyntaxOp orig ge    (mkFunTys [pat_ty', pat_ty'] boolTy)
        ; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
Alan Zimmerman's avatar
Alan Zimmerman committed
675
        ; let pat' = NPlusKPat (L nm_loc bndr_id) (L loc lit') ge' minus'
676

677 678 679 680
        -- The Report says that n+k patterns must be in Integral
        -- We may not want this when using re-mappable syntax, though (ToDo?)
        ; icls <- tcLookupClass integralClassName
        ; instStupidTheta orig [mkClassPred icls [pat_ty']]
681

682 683 684 685
        ; res <- tcExtendIdEnv1 name bndr_id thing_inside
        ; return (mkHsWrapPatCo co pat' pat_ty, res) }

tc_pat _ _other_pat _ _ = panic "tc_pat"        -- ConPatOut, SigPatOut
686 687

----------------
688
unifyPatType :: TcType -> TcType -> TcM TcCoercion
689 690 691 692 693 694
-- In patterns we want a coercion from the
-- context type (expected) to the actual pattern type
-- But we don't want to reverse the args to unifyType because
-- that controls the actual/expected stuff in error messages
unifyPatType actual_ty expected_ty
  = do { coi <- unifyType actual_ty expected_ty
695
       ; return (mkTcSymCo coi) }
696

Austin Seipp's avatar
Austin Seipp committed
697
{-
698 699 700 701
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern.  E.g.
702
        f ~(C x) = 3
703
We can't discharge the Num constraint from dictionaries bound by
704
the pattern C!
705

706
So we have to make the constraints from thing_inside "hop around"
707
the pattern.  Hence the captureConstraints and emitConstraints.
708 709 710

The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
711 712 713
        data T a where { T1 :: Int -> T Int; ... }
        f :: T a -> Int -> a
        f ~(T1 i) y = y
714
It's obviously not sound to refine a to Int in the right
715
hand side, because the argument might not match T1 at all!
716 717 718 719

Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring

720

Austin Seipp's avatar
Austin Seipp committed
721 722
************************************************************************
*                                                                      *
723 724
        Most of the work for constructors is here
        (the rest is in the ConPatIn case of tc_pat)
Austin Seipp's avatar
Austin Seipp committed
725 726
*                                                                      *
************************************************************************
727

728 729 730 731 732 733 734 735 736 737 738
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

739
As explained by [Wrappers for data instance tycons] in MkIds.hs, the
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

755
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
756

757
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
758 759 760 761 762 763

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

764
Now it might appear seem as if we could have used the previous GADT type
765 766 767 768 769 770 771 772 773 774 775 776
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

777 778 779
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
Austin Seipp's avatar
Austin Seipp committed
780
-}
781

782
--      Running example:
783
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
784
--       with scrutinee of type (T ty)
785

786 787 788 789
tcConPat :: PatEnv -> Located Name
         -> TcRhoType           -- Type of the pattern
         -> HsConPatDetails Name -> TcM a
         -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
790 791 792 793 794 795 796 797 798 799
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
  = do  { con_like <- tcLookupConLike con_name
        ; case con_like of
            RealDataCon data_con -> tcDataConPat penv con_lname data_con
                                                 pat_ty arg_pats thing_inside
            PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
                                             pat_ty arg_pats thing_inside
        }

tcDataConPat :: PatEnv -> Located Name -> DataCon
800 801 802
             -> TcRhoType               -- Type of the pattern
             -> HsConPatDetails Name -> TcM a
             -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
803
tcDataConPat penv (L con_span con_name) data_con pat_ty arg_pats thing_inside
804 805 806
  = do  { let tycon = dataConTyCon data_con
                  -- For data families this is the representation tycon
              (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
807
                = dataConFullSig data_con
cactus's avatar
cactus committed
808
              header = L con_span (RealDataCon data_con)
809

810 811 812 813
          -- Instantiate the constructor type variables [a->ty]
          -- This may involve doing a family-instance coercion,
          -- and building a wrapper
        ; (wrap, ctxt_res_tys) <- matchExpectedPatTy (matchExpectedConTy tycon) pat_ty
814

815 816
          -- Add the stupid theta
        ; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
817

818
        ; checkExistentials ex_tvs penv
819 820
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
                               (zipTopTvSubst univ_tvs ctxt_res_tys) ex_tvs
821 822
                     -- Get location from monad, not from ex_tvs

823
        ; let -- pat_ty' = mkTyConApp tycon ctxt_res_tys
824
              -- pat_ty' is type of the actual constructor application
825
              -- pat_ty' /= pat_ty iff coi /= IdCo
Simon Peyton Jones's avatar
Simon Peyton Jones committed
826

827
              arg_tys' = substTys tenv arg_tys
828

Simon Peyton Jones's avatar
Simon Peyton Jones committed
829
        ; traceTc "tcConPat" (vcat [ ppr con_name, ppr univ_tvs, ppr ex_tvs, ppr eq_spec
830
                                   , ppr ex_tvs', ppr ctxt_res_tys, ppr arg_tys' ])
831 832
        ; if null ex_tvs && null eq_spec && null theta
          then do { -- The common case; no class bindings etc
833
                    -- (see Note [Arrows and patterns])
834 835 836 837
                    (arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys'
                                                  arg_pats penv thing_inside
                  ; let res_pat = ConPatOut { pat_con = header,
                                              pat_tvs = [], pat_dicts = [],
838
                                              pat_binds = emptyTcEvBinds,
839
                                              pat_args = arg_pats',
840
                                              pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
841
                                              pat_wrap = idHsWrapper }
842

843
                  ; return (mkHsWrapPat wrap res_pat pat_ty, res) }
844

845
          else do   -- The general case, with existential,
846
                    -- and local equality constraints
847
        { let theta'   = substTheta tenv (eqSpecPreds eq_spec ++ theta)
848 849
                           -- order is *important* as we generate the list of
                           -- dictionary binders from theta'
850
              no_equalities = not (any isEqPred theta')
851
              skol_info = case pe_ctxt penv of
cactus's avatar
cactus committed
852
                            LamPat mc -> PatSkol (RealDataCon data_con) mc
853
                            LetPat {} -> UnkSkol -- Doesn't matter
854

855 856
        ; gadts_on    <- xoptM Opt_GADTs
        ; families_on <- xoptM Opt_TypeFamilies
857
        ; checkTc (no_equalities || gadts_on || families_on)
sivteck's avatar
sivteck committed
858 859
                  (text "A pattern match on a GADT requires the" <+>
                   text "GADTs or TypeFamilies language extension")
860 861 862
                  -- Trac #2905 decided that a *pattern-match* of a GADT
                  -- should require the GADT language flag.
                  -- Re TypeFamilies see also #7156
863

864
        ; given <- newEvVars theta'
865
        ; (ev_binds, (arg_pats', res))
866
             <- checkConstraints skol_info ex_tvs' given $
cactus's avatar
cactus committed
867
                tcConArgs (RealDataCon data_con) a