OptCoercion.hs 32.4 KB
Newer Older
1
-- (c) The University of Glasgow 2006
2

3
{-# LANGUAGE CPP #-}
4 5 6
 -- This module used to take 10GB of memory to compile with the new
 -- (Nov '15) pattern-match check. In order to be able to compile it,
 -- do not enable -ffull-guard-reasoning. Instead, simplify the guards
7
 -- (default behaviour when guards are too many).
Ian Lynagh's avatar
Ian Lynagh committed
8

9
module OptCoercion ( optCoercion, checkAxInstCo ) where
10 11 12

#include "HsVersions.h"

13
import TyCoRep
14
import Coercion
15 16
import Type hiding( substTyVarBndr, substTy, extendTCvSubst )
import TcType       ( exactTyCoVarsOfType )
17
import TyCon
18
import CoAxiom
19 20
import VarSet
import VarEnv
21
import StaticFlags      ( opt_NoOptCoercion )
22
import Outputable
23
import FamInstEnv ( flattenTys )
24
import Pair
25
import ListSetOps ( getNth )
26
import FastString
27
import Util
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
28 29
import Unify
import InstEnv
Icelandjack's avatar
Icelandjack committed
30
import Control.Monad   ( zipWithM )
31

32
{-
33 34
%************************************************************************
%*                                                                      *
35
                 Optimising coercions
36 37
%*                                                                      *
%************************************************************************
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
Note [Optimising coercion optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Looking up a coercion's role or kind is linear in the size of the
coercion. Thus, doing this repeatedly during the recursive descent
of coercion optimisation is disastrous. We must be careful to avoid
doing this if at all possible.

Because it is generally easy to know a coercion's components' roles
from the role of the outer coercion, we pass down the known role of
the input in the algorithm below. We also keep functions opt_co2
and opt_co3 separate from opt_co4, so that the former two do Phantom
checks that opt_co4 can avoid. This is a big win because Phantom coercions
rarely appear within non-phantom coercions -- only in some TyConAppCos
and some AxiomInstCos. We handle these cases specially by calling
opt_co2.
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

Note [Optimising InstCo]
~~~~~~~~~~~~~~~~~~~~~~~~
When we have (InstCo (ForAllCo tv h g) g2), we want to optimise.

Let's look at the typing rules.

h : k1 ~ k2
tv:k1 |- g : t1 ~ t2
-----------------------------
ForAllCo tv h g : (all tv:k1.t1) ~ (all tv:k2.t2[tv |-> tv |> sym h])

g1 : (all tv:k1.t1') ~ (all tv:k2.t2')
g2 : s1 ~ s2
--------------------
InstCo g1 g2 : t1'[tv |-> s1] ~ t2'[tv |-> s2]

We thus want some coercion proving this:

  (t1[tv |-> s1]) ~ (t2[tv |-> s2 |> sym h])

If we substitute the *type* tv for the *coercion*
(g2 `mkCoherenceRightCo` sym h) in g, we'll get this result exactly.
This is bizarre,
though, because we're substituting a type variable with a coercion. However,
this operation already exists: it's called *lifting*, and defined in Coercion.
We just need to enhance the lifting operation to be able to deal with
an ambient substitution, which is why a LiftingContext stores a TCvSubst.

83
-}
84

85
optCoercion :: TCvSubst -> Coercion -> NormalCo
86
-- ^ optCoercion applies a substitution to a coercion,
87
--   *and* optimises it to reduce its size
88
optCoercion env co
89
  | opt_NoOptCoercion = substCo env co
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  | debugIsOn
  = let out_co = opt_co1 lc False co
        (Pair in_ty1  in_ty2,  in_role)  = coercionKindRole co
        (Pair out_ty1 out_ty2, out_role) = coercionKindRole out_co
    in
    ASSERT2( substTy env in_ty1 `eqType` out_ty1 &&
             substTy env in_ty2 `eqType` out_ty2 &&
             in_role == out_role
           , text "optCoercion changed types!"
             $$ hang (text "in_co:") 2 (ppr co)
             $$ hang (text "in_ty1:") 2 (ppr in_ty1)
             $$ hang (text "in_ty2:") 2 (ppr in_ty2)
             $$ hang (text "out_co:") 2 (ppr out_co)
             $$ hang (text "out_ty1:") 2 (ppr out_ty1)
             $$ hang (text "out_ty2:") 2 (ppr out_ty2)
             $$ hang (text "subst:") 2 (ppr env) )
    out_co

108 109 110
  | otherwise         = opt_co1 lc False co
  where
    lc = mkSubstLiftingContext env
111

112
type NormalCo    = Coercion
113
  -- Invariants:
114 115 116 117 118 119
  --  * The substitution has been fully applied
  --  * For trans coercions (co1 `trans` co2)
  --       co1 is not a trans, and neither co1 nor co2 is identity

type NormalNonIdCo = NormalCo  -- Extra invariant: not the identity

120 121 122 123 124 125
-- | Do we apply a @sym@ to the result?
type SymFlag = Bool

-- | Do we force the result to be representational?
type ReprFlag = Bool

126 127 128
-- | Optimize a coercion, making no assumptions. All coercions in
-- the lifting context are already optimized (and sym'd if nec'y)
opt_co1 :: LiftingContext
129 130
        -> SymFlag
        -> Coercion -> NormalCo
131
opt_co1 env sym co = opt_co2 env sym (coercionRole co) co
132

133 134
-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's role. No other assumptions.
135
opt_co2 :: LiftingContext
136 137 138
        -> SymFlag
        -> Role   -- ^ The role of the input coercion
        -> Coercion -> NormalCo
139 140
opt_co2 env sym Phantom co = opt_phantom env sym co
opt_co2 env sym r       co = opt_co3 env sym Nothing r co
141 142 143

-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's non-Phantom role.
144 145 146
opt_co3 :: LiftingContext -> SymFlag -> Maybe Role -> Role -> Coercion -> NormalCo
opt_co3 env sym (Just Phantom)          _ co = opt_phantom env sym co
opt_co3 env sym (Just Representational) r co = opt_co4_wrap env sym True  r co
147
  -- if mrole is Just Nominal, that can't be a downgrade, so we can ignore
148
opt_co3 env sym _                       r co = opt_co4_wrap env sym False r co
149 150 151

-- See Note [Optimising coercion optimisation]
-- | Optimize a non-phantom coercion.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
opt_co4, opt_co4_wrap :: LiftingContext -> SymFlag -> ReprFlag -> Role -> Coercion -> NormalCo

opt_co4_wrap = opt_co4
{-
opt_co4_wrap env sym rep r co
  = pprTrace "opt_co4_wrap {"
    ( vcat [ text "Sym:" <+> ppr sym
           , text "Rep:" <+> ppr rep
           , text "Role:" <+> ppr r
           , text "Co:" <+> ppr co ]) $
    ASSERT( r == coercionRole co )
    let result = opt_co4 env sym rep r co in
    pprTrace "opt_co4_wrap }" (ppr co $$ text "---" $$ ppr result) $
    result
-}
167 168

opt_co4 env _   rep r (Refl _r ty)
169 170 171 172
  = ASSERT2( r == _r, text "Expected role:" <+> ppr r $$
                      text "Found role:" <+> ppr _r   $$
                      text "Type:" <+> ppr ty )
    liftCoSubst (chooseRole rep r) env ty
173

174 175 176 177 178
opt_co4 env sym rep r (SymCo co)  = opt_co4_wrap env (not sym) rep r co
  -- surprisingly, we don't have to do anything to the env here. This is
  -- because any "lifting" substitutions in the env are tied to ForAllCos,
  -- which treat their left and right sides differently. We don't want to
  -- exchange them.
179 180 181 182 183 184 185 186 187 188 189

opt_co4 env sym rep r g@(TyConAppCo _r tc cos)
  = ASSERT( r == _r )
    case (rep, r) of
      (True, Nominal) ->
        mkTyConAppCo Representational tc
                     (zipWith3 (opt_co3 env sym)
                               (map Just (tyConRolesX Representational tc))
                               (repeat Nominal)
                               cos)
      (False, Nominal) ->
190
        mkTyConAppCo Nominal tc (map (opt_co4_wrap env sym False Nominal) cos)
191 192 193
      (_, Representational) ->
                      -- must use opt_co2 here, because some roles may be P
                      -- See Note [Optimising coercion optimisation]
194
        mkTyConAppCo r tc (zipWith (opt_co2 env sym)
195 196 197 198
                                   (tyConRolesX r tc)  -- the current roles
                                   cos)
      (_, Phantom) -> pprPanic "opt_co4 sees a phantom!" (ppr g)

199 200 201 202 203 204 205 206
opt_co4 env sym rep r (AppCo co1 co2)
  = mkAppCo (opt_co4_wrap env sym rep r co1)
            (opt_co4_wrap env sym False Nominal co2)

opt_co4 env sym rep r (ForAllCo tv k_co co)
  = case optForAllCoBndr env sym tv k_co of
      (env', tv', k_co') -> mkForAllCo tv' k_co' $
                            opt_co4_wrap env' sym rep r co
207 208
     -- Use the "mk" functions to check for nested Refls

209
opt_co4 env sym rep r (CoVarCo cv)
210 211
  | Just co <- lookupCoVar (lcTCvSubst env) cv
  = opt_co4_wrap (zapLiftingContext env) sym rep r co
212

213
  | Just cv1 <- lookupInScope (lcInScopeSet env) cv
214
  = ASSERT( isCoVar cv1 ) wrapRole rep r $ wrapSym sym (CoVarCo cv1)
215 216 217 218
                -- cv1 might have a substituted kind!

  | otherwise = WARN( True, ptext (sLit "opt_co: not in scope:") <+> ppr cv $$ ppr env)
                ASSERT( isCoVar cv )
219
                wrapRole rep r $ wrapSym sym (CoVarCo cv)
220

221
opt_co4 env sym rep r (AxiomInstCo con ind cos)
222 223 224 225
    -- Do *not* push sym inside top-level axioms
    -- e.g. if g is a top-level axiom
    --   g a : f a ~ a
    -- then (sym (g ty)) /= g (sym ty) !!
226 227
  = ASSERT( r == coAxiomRole con )
    wrapRole rep (coAxiomRole con) $
228
    wrapSym sym $
229 230
                       -- some sub-cos might be P: use opt_co2
                       -- See Note [Optimising coercion optimisation]
231
    AxiomInstCo con ind (zipWith (opt_co2 env False)
232 233
                                 (coAxBranchRoles (coAxiomNthBranch con ind))
                                 cos)
234 235
      -- Note that the_co does *not* have sym pushed into it

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
236
opt_co4 env sym rep r (UnivCo prov _r t1 t2)
237
  = ASSERT( r == _r )
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
238
    opt_univ env sym prov (chooseRole rep r) t1 t2
239

240 241 242 243
opt_co4 env sym rep r (TransCo co1 co2)
                      -- sym (g `o` h) = sym h `o` sym g
  | sym       = opt_trans in_scope co2' co1'
  | otherwise = opt_trans in_scope co1' co2'
244
  where
245 246 247 248
    co1' = opt_co4_wrap env sym rep r co1
    co2' = opt_co4_wrap env sym rep r co2
    in_scope = lcInScopeSet env

249

250
opt_co4 env sym rep r co@(NthCo {}) = opt_nth_co env sym rep r co
251

252
opt_co4 env sym rep r (LRCo lr co)
253
  | Just pr_co <- splitAppCo_maybe co
254
  = ASSERT( r == Nominal )
255
    opt_co4_wrap env sym rep Nominal (pick_lr lr pr_co)
256
  | Just pr_co <- splitAppCo_maybe co'
257 258
  = ASSERT( r == Nominal )
    if rep
259 260
    then opt_co4_wrap (zapLiftingContext env) False True Nominal (pick_lr lr pr_co)
    else pick_lr lr pr_co
261
  | otherwise
262
  = wrapRole rep Nominal $ LRCo lr co'
263
  where
264
    co' = opt_co4_wrap env sym False Nominal co
265

266 267
    pick_lr CLeft  (l, _) = l
    pick_lr CRight (_, r) = r
268

269 270 271 272 273 274 275
-- See Note [Optimising InstCo]
opt_co4 env sym rep r (InstCo co1 arg)
    -- forall over type...
  | Just (tv, kind_co, co_body) <- splitForAllCo_maybe co1
  = opt_co4_wrap (extendLiftingContext env tv
                    (arg' `mkCoherenceRightCo` mkSymCo kind_co))
                 sym rep r co_body
276

277 278 279 280 281 282 283 284 285 286
    -- See if it is a forall after optimization
    -- If so, do an inefficient one-variable substitution, then re-optimize

    -- forall over type...
  | Just (tv', kind_co', co_body') <- splitForAllCo_maybe co1'
  = opt_co4_wrap (extendLiftingContext (zapLiftingContext env) tv'
                    (arg' `mkCoherenceRightCo` mkSymCo kind_co'))
            False False r' co_body'

  | otherwise = InstCo co1' arg'
287
  where
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    co1' = opt_co4_wrap env sym rep r co1
    r'   = chooseRole rep r
    arg' = opt_co4_wrap env sym False Nominal arg

opt_co4 env sym rep r (CoherenceCo co1 co2)
  | TransCo col1 cor1 <- co1
  = opt_co4_wrap env sym rep r (mkTransCo (mkCoherenceCo col1 co2) cor1)

  | TransCo col1' cor1' <- co1'
  = if sym then opt_trans in_scope col1'
                  (optCoercion (zapTCvSubst (lcTCvSubst env))
                               (mkCoherenceRightCo cor1' co2'))
           else opt_trans in_scope (mkCoherenceCo col1' co2') cor1'

  | otherwise
  = wrapSym sym $ CoherenceCo (opt_co4_wrap env False rep r co1) co2'
  where co1' = opt_co4_wrap env sym   rep   r       co1
        co2' = opt_co4_wrap env False False Nominal co2
        in_scope = lcInScopeSet env

opt_co4 env sym _rep r (KindCo co)
  = ASSERT( r == Nominal )
    let kco' = promoteCoercion co in
    case kco' of
      KindCo co' -> promoteCoercion (opt_co1 env sym co')
      _          -> opt_co4_wrap env sym False Nominal kco'
  -- This might be able to be optimized more to do the promotion
  -- and substitution/optimization at the same time
316

317 318
opt_co4 env sym _ r (SubCo co)
  = ASSERT( r == Representational )
319
    opt_co4_wrap env sym True Nominal co
320

321 322
-- This could perhaps be optimized more.
opt_co4 env sym rep r (AxiomRuleCo co cs)
323 324
  = ASSERT( r == coaxrRole co )
    wrapRole rep r $
325
    wrapSym sym $
326
    AxiomRuleCo co (zipWith (opt_co2 env False) (coaxrAsmpRoles co) cs)
327

328
-------------
329 330
-- | Optimize a phantom coercion. The input coercion may not necessarily
-- be a phantom, but the output sure will be.
331
opt_phantom :: LiftingContext -> SymFlag -> Coercion -> NormalCo
332
opt_phantom env sym co
333
  = opt_univ env sym (PhantomProv (mkKindCo co)) Phantom ty1 ty2
334 335 336
  where
    Pair ty1 ty2 = coercionKind co

337 338 339 340 341 342 343 344 345 346 347
opt_univ :: LiftingContext -> SymFlag -> UnivCoProvenance -> Role
         -> Type -> Type -> Coercion
opt_univ env sym (PhantomProv h) _r ty1 ty2
  | sym       = mkPhantomCo h' ty2' ty1'
  | otherwise = mkPhantomCo h' ty1' ty2'
  where
    h' = opt_co4 env sym False Nominal h
    ty1' = substTy (lcSubstLeft  env) ty1
    ty2' = substTy (lcSubstRight env) ty2

opt_univ env sym prov role oty1 oty2
348 349 350
  | Just (tc1, tys1) <- splitTyConApp_maybe oty1
  , Just (tc2, tys2) <- splitTyConApp_maybe oty2
  , tc1 == tc2
351 352 353 354 355 356 357
      -- NB: prov must not be the two interesting ones (ProofIrrel & Phantom);
      -- Phantom is already taken care of, and ProofIrrel doesn't relate tyconapps
  = let roles    = tyConRolesX role tc1
        arg_cos  = zipWith3 (mkUnivCo prov) roles tys1 tys2
        arg_cos' = zipWith (opt_co4 env sym False) roles arg_cos
    in
    mkTyConAppCo role tc1 arg_cos'
358

359
  -- can't optimize the AppTy case because we can't build the kind coercions.
360 361 362

  | Just (tv1, ty1) <- splitForAllTy_maybe oty1
  , Just (tv2, ty2) <- splitForAllTy_maybe oty2
363 364 365 366 367 368 369 370 371 372
      -- NB: prov isn't interesting here either
  = let k1   = tyVarKind tv1
        k2   = tyVarKind tv2
        eta  = mkUnivCo prov Nominal k1 k2
          -- eta gets opt'ed soon, but not yet.
        ty2' = substTyWith [tv2] [TyVarTy tv1 `mkCastTy` eta] ty2

        (env', tv1', eta') = optForAllCoBndr env sym tv1 eta
    in
    mkForAllCo tv1' eta' (opt_univ env' sym prov role ty1 ty2')
373 374

  | otherwise
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  = let ty1 = substTy (lcSubstLeft  env) oty1
        ty2 = substTy (lcSubstRight env) oty2
        (a, b) | sym       = (ty2, ty1)
               | otherwise = (ty1, ty2)
    in
    mkUnivCo prov' role a b

  where
    prov' = case prov of
      UnsafeCoerceProv   -> prov
      PhantomProv kco    -> PhantomProv $ opt_co4_wrap env sym False Nominal kco
      ProofIrrelProv kco -> ProofIrrelProv $ opt_co4_wrap env sym False Nominal kco
      PluginProv _       -> prov
      HoleProv h         -> pprPanic "opt_univ fell into a hole" (ppr h)

390

391 392 393 394 395
-------------
-- NthCo must be handled separately, because it's the one case where we can't
-- tell quickly what the component coercion's role is from the containing
-- coercion. To avoid repeated coercionRole calls as opt_co1 calls opt_co2,
-- we just look for nested NthCo's, which can happen in practice.
396
opt_nth_co :: LiftingContext -> SymFlag -> ReprFlag -> Role -> Coercion -> NormalCo
397 398 399 400 401 402 403 404 405
opt_nth_co env sym rep r = go []
  where
    go ns (NthCo n co) = go (n:ns) co
      -- previous versions checked if the tycon is decomposable. This
      -- is redundant, because a non-decomposable tycon under an NthCo
      -- is entirely bogus. See docs/core-spec/core-spec.pdf.
    go ns co
      = opt_nths ns co

406 407 408 409 410 411 412 413 414 415 416 417 418
      -- try to resolve 1 Nth
    push_nth n (Refl r1 ty)
      | Just (tc, args) <- splitTyConApp_maybe ty
      = Just (Refl (nthRole r1 tc n) (args `getNth` n))
      | n == 0
      , Just (tv, _) <- splitForAllTy_maybe ty
      = Just (Refl Nominal (tyVarKind tv))
    push_nth n (TyConAppCo _ _ cos)
      = Just (cos `getNth` n)
    push_nth 0 (ForAllCo _ eta _)
      = Just eta
    push_nth _ _ = Nothing

419
      -- input coercion is *not* yet sym'd or opt'd
420 421 422 423
    opt_nths [] co = opt_co4_wrap env sym rep r co
    opt_nths (n:ns) co
      | Just co' <- push_nth n co
      = opt_nths ns co'
424 425 426 427 428 429 430

      -- here, the co isn't a TyConAppCo, so we opt it, hoping to get
      -- a TyConAppCo as output. We don't know the role, so we use
      -- opt_co1. This is slightly annoying, because opt_co1 will call
      -- coercionRole, but as long as we don't have a long chain of
      -- NthCo's interspersed with some other coercion former, we should
      -- be OK.
431
    opt_nths ns co = opt_nths' ns (opt_co1 env sym co)
432 433 434 435 436

      -- input coercion *is* sym'd and opt'd
    opt_nths' [] co
      = if rep && (r == Nominal)
            -- propagate the SubCo:
437
        then opt_co4_wrap (zapLiftingContext env) False True r co
438
        else co
439 440 441
    opt_nths' (n:ns) co
      | Just co' <- push_nth n co
      = opt_nths' ns co'
442 443 444 445 446
    opt_nths' ns co = wrapRole rep r (mk_nths ns co)

    mk_nths [] co = co
    mk_nths (n:ns) co = mk_nths ns (mkNthCo n co)

447
-------------
448 449
opt_transList :: InScopeSet -> [NormalCo] -> [NormalCo] -> [NormalCo]
opt_transList is = zipWith (opt_trans is)
450

451 452
opt_trans :: InScopeSet -> NormalCo -> NormalCo -> NormalCo
opt_trans is co1 co2
453
  | isReflCo co1 = co2
454
  | otherwise    = opt_trans1 is co1 co2
455

456
opt_trans1 :: InScopeSet -> NormalNonIdCo -> NormalCo -> NormalCo
457
-- First arg is not the identity
458
opt_trans1 is co1 co2
459
  | isReflCo co2 = co1
460
  | otherwise    = opt_trans2 is co1 co2
461

462
opt_trans2 :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> NormalCo
463
-- Neither arg is the identity
464
opt_trans2 is (TransCo co1a co1b) co2
465
    -- Don't know whether the sub-coercions are the identity
466
  = opt_trans is co1a (opt_trans is co1b co2)
467

468
opt_trans2 is co1 co2
469
  | Just co <- opt_trans_rule is co1 co2
470 471
  = co

472 473
opt_trans2 is co1 (TransCo co2a co2b)
  | Just co1_2a <- opt_trans_rule is co1 co2a
474 475
  = if isReflCo co1_2a
    then co2b
476
    else opt_trans1 is co1_2a co2b
477

478
opt_trans2 _ co1 co2
479 480 481 482
  = mkTransCo co1 co2

------
-- Optimize coercions with a top-level use of transitivity.
483
opt_trans_rule :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo
484

485
-- Push transitivity through matching destructors
486
opt_trans_rule is in_co1@(NthCo d1 co1) in_co2@(NthCo d2 co2)
487 488 489
  | d1 == d2
  , co1 `compatible_co` co2
  = fireTransRule "PushNth" in_co1 in_co2 $
490
    mkNthCo d1 (opt_trans is co1 co2)
491

492 493 494 495 496 497
opt_trans_rule is in_co1@(LRCo d1 co1) in_co2@(LRCo d2 co2)
  | d1 == d2
  , co1 `compatible_co` co2
  = fireTransRule "PushLR" in_co1 in_co2 $
    mkLRCo d1 (opt_trans is co1 co2)

498
-- Push transitivity inside instantiation
499
opt_trans_rule is in_co1@(InstCo co1 ty1) in_co2@(InstCo co2 ty2)
500
  | ty1 `eqCoercion` ty2
501 502
  , co1 `compatible_co` co2
  = fireTransRule "TrPushInst" in_co1 in_co2 $
503
    mkInstCo (opt_trans is co1 co2) ty1
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
opt_trans_rule is in_co1@(UnivCo p1 r1 tyl1 _tyr1)
                  in_co2@(UnivCo p2 r2 _tyl2 tyr2)
  | Just prov' <- opt_trans_prov p1 p2
  = ASSERT( r1 == r2 )
    fireTransRule "UnivCo" in_co1 in_co2 $
    mkUnivCo prov' r1 tyl1 tyr2
  where
    -- if the provenances are different, opt'ing will be very confusing
    opt_trans_prov UnsafeCoerceProv      UnsafeCoerceProv      = Just UnsafeCoerceProv
    opt_trans_prov (PhantomProv kco1)    (PhantomProv kco2)
      = Just $ PhantomProv $ opt_trans is kco1 kco2
    opt_trans_prov (ProofIrrelProv kco1) (ProofIrrelProv kco2)
      = Just $ ProofIrrelProv $ opt_trans is kco1 kco2
    opt_trans_prov (PluginProv str1)     (PluginProv str2)     | str1 == str2 = Just p1
    opt_trans_prov _ _ = Nothing

521
-- Push transitivity down through matching top-level constructors.
522
opt_trans_rule is in_co1@(TyConAppCo r1 tc1 cos1) in_co2@(TyConAppCo r2 tc2 cos2)
523
  | tc1 == tc2
524 525
  = ASSERT( r1 == r2 )
    fireTransRule "PushTyConApp" in_co1 in_co2 $
526
    mkTyConAppCo r1 tc1 (opt_transList is cos1 cos2)
527

528
opt_trans_rule is in_co1@(AppCo co1a co1b) in_co2@(AppCo co2a co2b)
529
  = fireTransRule "TrPushApp" in_co1 in_co2 $
530 531
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
532

533
-- Eta rules
534
opt_trans_rule is co1@(TyConAppCo r tc cos1) co2
535 536 537
  | Just cos2 <- etaTyConAppCo_maybe tc co2
  = ASSERT( length cos1 == length cos2 )
    fireTransRule "EtaCompL" co1 co2 $
538
    mkTyConAppCo r tc (opt_transList is cos1 cos2)
539

540
opt_trans_rule is co1 co2@(TyConAppCo r tc cos2)
541 542 543
  | Just cos1 <- etaTyConAppCo_maybe tc co1
  = ASSERT( length cos1 == length cos2 )
    fireTransRule "EtaCompR" co1 co2 $
544
    mkTyConAppCo r tc (opt_transList is cos1 cos2)
545

546 547 548
opt_trans_rule is co1@(AppCo co1a co1b) co2
  | Just (co2a,co2b) <- etaAppCo_maybe co2
  = fireTransRule "EtaAppL" co1 co2 $
549 550
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
551 552 553 554

opt_trans_rule is co1 co2@(AppCo co2a co2b)
  | Just (co1a,co1b) <- etaAppCo_maybe co1
  = fireTransRule "EtaAppR" co1 co2 $
555 556
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
557

558
-- Push transitivity inside forall
559
opt_trans_rule is co1 co2
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  | ForAllCo tv1 eta1 r1 <- co1
  , Just (tv2,eta2,r2) <- etaForAllCo_maybe co2
  = push_trans tv1 eta1 r1 tv2 eta2 r2

  | ForAllCo tv2 eta2 r2 <- co2
  , Just (tv1,eta1,r1) <- etaForAllCo_maybe co1
  = push_trans tv1 eta1 r1 tv2 eta2 r2

  where
  push_trans tv1 eta1 r1 tv2 eta2 r2
    = fireTransRule "EtaAllTy" co1 co2 $
      mkForAllCo tv1 (opt_trans is eta1 eta2) (opt_trans is' r1 r2')
    where
      is' = is `extendInScopeSet` tv1
      r2' = substCoWith [tv2] [TyVarTy tv1] r2
575 576

-- Push transitivity inside axioms
577
opt_trans_rule is co1 co2
578

579
  -- See Note [Why call checkAxInstCo during optimisation]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
580
  -- TrPushSymAxR
581
  | Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
582
  , True <- sym
583
  , Just cos2 <- matchAxiom sym con ind co2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
584 585 586
  , let newAxInst = AxiomInstCo con ind (opt_transList is (map mkSymCo cos2) cos1)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushSymAxR" co1 co2 $ SymCo newAxInst
587

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
588 589 590
  -- TrPushAxR
  | Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
  , False <- sym
591
  , Just cos2 <- matchAxiom sym con ind co2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
592 593 594 595 596 597 598
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushAxR" co1 co2 newAxInst

  -- TrPushSymAxL
  | Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
  , True <- sym
599
  , Just cos1 <- matchAxiom (not sym) con ind co1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
600 601 602 603
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos2 (map mkSymCo cos1))
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushSymAxL" co1 co2 $ SymCo newAxInst

604
  -- TrPushAxL
605
  | Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
606
  , False <- sym
607
  , Just cos1 <- matchAxiom (not sym) con ind co1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
608 609 610
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushAxL" co1 co2 newAxInst
611 612

  -- TrPushAxSym/TrPushSymAx
613 614
  | Just (sym1, con1, ind1, cos1) <- co1_is_axiom_maybe
  , Just (sym2, con2, ind2, cos2) <- co2_is_axiom_maybe
615
  , con1 == con2
616
  , ind1 == ind2
617
  , sym1 == not sym2
618
  , let branch = coAxiomNthBranch con1 ind1
619
        qtvs = coAxBranchTyVars branch ++ coAxBranchCoVars branch
620 621
        lhs  = coAxNthLHS con1 ind1
        rhs  = coAxBranchRHS branch
622
        pivot_tvs = exactTyCoVarsOfType (if sym2 then rhs else lhs)
623 624 625
  , all (`elemVarSet` pivot_tvs) qtvs
  = fireTransRule "TrPushAxSym" co1 co2 $
    if sym2
626 627 628 629
       -- TrPushAxSym
    then liftCoSubstWith role qtvs (opt_transList is cos1 (map mkSymCo cos2)) lhs
       -- TrPushSymAx
    else liftCoSubstWith role qtvs (opt_transList is (map mkSymCo cos1) cos2) rhs
630 631 632
  where
    co1_is_axiom_maybe = isAxiom_maybe co1
    co2_is_axiom_maybe = isAxiom_maybe co2
633
    role = coercionRole co1 -- should be the same as coercionRole co2!
634

635 636 637 638 639 640
opt_trans_rule is co1 co2
  | Just (lco, lh) <- isCohRight_maybe co1
  , Just (rco, rh) <- isCohLeft_maybe co2
  , (coercionType lh) `eqType` (coercionType rh)
  = opt_trans_rule is lco rco

641
opt_trans_rule _ co1 co2        -- Identity rule
642
  | (Pair ty1 _, r) <- coercionKindRole co1
643 644 645
  , Pair _ ty2 <- coercionKind co2
  , ty1 `eqType` ty2
  = fireTransRule "RedTypeDirRefl" co1 co2 $
646
    Refl r ty2
647

648
opt_trans_rule _ _ _ = Nothing
649 650 651 652 653 654

fireTransRule :: String -> Coercion -> Coercion -> Coercion -> Maybe Coercion
fireTransRule _rule _co1 _co2 res
  = -- pprTrace ("Trans rule fired: " ++ _rule) (vcat [ppr _co1, ppr _co2, ppr res]) $
    Just res

655
{-
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
656 657 658 659 660 661 662 663 664
Note [Conflict checking with AxiomInstCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following type family and axiom:

type family Equal (a :: k) (b :: k) :: Bool
type instance where
  Equal a a = True
  Equal a b = False
--
665 666 667
Equal :: forall k::*. k -> k -> Bool
axEqual :: { forall k::*. forall a::k. Equal k a a ~ True
           ; forall k::*. forall a::k. forall b::k. Equal k a b ~ False }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
668

669 670 671 672 673 674
We wish to disallow (axEqual[1] <*> <Int> <Int). (Recall that the index is
0-based, so this is the second branch of the axiom.) The problem is that, on
the surface, it seems that (axEqual[1] <*> <Int> <Int>) :: (Equal * Int Int ~
False) and that all is OK. But, all is not OK: we want to use the first branch
of the axiom in this case, not the second. The problem is that the parameters
of the first branch can unify with the supplied coercions, thus meaning that
Jan Stolarek's avatar
Jan Stolarek committed
675 676
the first branch should be taken. See also Note [Apartness] in
types/FamInstEnv.hs.
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

Note [Why call checkAxInstCo during optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible that otherwise-good-looking optimisations meet with disaster
in the presence of axioms with multiple equations. Consider

type family Equal (a :: *) (b :: *) :: Bool where
  Equal a a = True
  Equal a b = False
type family Id (a :: *) :: * where
  Id a = a

axEq :: { [a::*].       Equal a a ~ True
        ; [a::*, b::*]. Equal a b ~ False }
axId :: [a::*]. Id a ~ a

co1 = Equal (axId[0] Int) (axId[0] Bool)
  :: Equal (Id Int) (Id Bool) ~  Equal Int Bool
co2 = axEq[1] <Int> <Bool>
  :: Equal Int Bool ~ False

We wish to optimise (co1 ; co2). We end up in rule TrPushAxL, noting that
co2 is an axiom and that matchAxiom succeeds when looking at co1. But, what
happens when we push the coercions inside? We get

co3 = axEq[1] (axId[0] Int) (axId[0] Bool)
  :: Equal (Id Int) (Id Bool) ~ False

which is bogus! This is because the type system isn't smart enough to know
that (Id Int) and (Id Bool) are Surely Apart, as they're headed by type
families. At the time of writing, I (Richard Eisenberg) couldn't think of
a way of detecting this any more efficient than just building the optimised
coercion and checking.
710
-}
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
711 712

-- | Check to make sure that an AxInstCo is internally consistent.
713
-- Returns the conflicting branch, if it exists
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
714
-- See Note [Conflict checking with AxiomInstCo]
715
checkAxInstCo :: Coercion -> Maybe CoAxBranch
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
716
-- defined here to avoid dependencies in Coercion
717 718
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in CoreLint
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
719
checkAxInstCo (AxiomInstCo ax ind cos)
720 721 722 723 724 725 726 727
  = let branch       = coAxiomNthBranch ax ind
        tvs          = coAxBranchTyVars branch
        cvs          = coAxBranchCoVars branch
        incomps      = coAxBranchIncomps branch
        (tys, cotys) = splitAtList tvs (map (pFst . coercionKind) cos)
        co_args      = map stripCoercionTy cotys
        subst        = zipOpenTCvSubst tvs tys `composeTCvSubst`
                       zipOpenTCvSubstCoVars cvs co_args
728
        target   = Type.substTys subst (coAxBranchLHS branch)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
729
        in_scope = mkInScopeSet $
730
                   unionVarSets (map (tyCoVarsOfTypes . coAxBranchLHS) incomps)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
731 732
        flattened_target = flattenTys in_scope target in
    check_no_conflict flattened_target incomps
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
733
  where
734 735
    check_no_conflict :: [Type] -> [CoAxBranch] -> Maybe CoAxBranch
    check_no_conflict _    [] = Nothing
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
736 737 738 739
    check_no_conflict flat (b@CoAxBranch { cab_lhs = lhs_incomp } : rest)
         -- See Note [Apartness] in FamInstEnv
      | SurelyApart <- tcUnifyTysFG instanceBindFun flat lhs_incomp
      = check_no_conflict flat rest
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
740
      | otherwise
741
      = Just b
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
742 743
checkAxInstCo _ = Nothing

744

745
-----------
746
wrapSym :: SymFlag -> Coercion -> Coercion
747 748 749
wrapSym sym co | sym       = SymCo co
               | otherwise = co

750 751 752
-- | Conditionally set a role to be representational
wrapRole :: ReprFlag
         -> Role         -- ^ current role
753
         -> Coercion -> Coercion
754 755 756 757 758 759 760 761 762 763
wrapRole False _       = id
wrapRole True  current = downgradeRole Representational current

-- | If we require a representational role, return that. Otherwise,
-- return the "default" role provided.
chooseRole :: ReprFlag
           -> Role    -- ^ "default" role
           -> Role
chooseRole True _ = Representational
chooseRole _    r = r
764

765
-----------
766
isAxiom_maybe :: Coercion -> Maybe (Bool, CoAxiom Branched, Int, [Coercion])
767
isAxiom_maybe (SymCo co)
768 769 770 771
  | Just (sym, con, ind, cos) <- isAxiom_maybe co
  = Just (not sym, con, ind, cos)
isAxiom_maybe (AxiomInstCo con ind cos)
  = Just (False, con, ind, cos)
772 773 774
isAxiom_maybe _ = Nothing

matchAxiom :: Bool -- True = match LHS, False = match RHS
775 776
           -> CoAxiom br -> Int -> Coercion -> Maybe [Coercion]
matchAxiom sym ax@(CoAxiom { co_ax_tc = tc }) ind co
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
  | CoAxBranch { cab_tvs = qtvs
               , cab_cvs = []   -- can't infer these, so fail if there are any
               , cab_roles = roles
               , cab_lhs = lhs
               , cab_rhs = rhs } <- coAxiomNthBranch ax ind
  , Just subst <- liftCoMatch (mkVarSet qtvs)
                              (if sym then (mkTyConApp tc lhs) else rhs)
                              co
  , all (`isMappedByLC` subst) qtvs
  = zipWithM (liftCoSubstTyVar subst) roles qtvs

  | otherwise
  = Nothing

-------------
-- destruct a CoherenceCo
isCohLeft_maybe :: Coercion -> Maybe (Coercion, Coercion)
isCohLeft_maybe (CoherenceCo co1 co2) = Just (co1, co2)
isCohLeft_maybe _                     = Nothing

-- destruct a (sym (co1 |> co2)).
-- if isCohRight_maybe co = Just (co1, co2), then (sym co1) `mkCohRightCo` co2 = co
isCohRight_maybe :: Coercion -> Maybe (Coercion, Coercion)
isCohRight_maybe (SymCo (CoherenceCo co1 co2)) = Just (mkSymCo co1, co2)
isCohRight_maybe _                             = Nothing
802 803 804 805 806

-------------
compatible_co :: Coercion -> Coercion -> Bool
-- Check whether (co1 . co2) will be well-kinded
compatible_co co1 co2
807
  = x1 `eqType` x2
808 809 810 811 812
  where
    Pair _ x1 = coercionKind co1
    Pair x2 _ = coercionKind co2

-------------
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
{-
etaForAllCo_maybe
~~~~~~~~~~~~~~~~~
Suppose we have

  g : all a1:k1.t1  ~  all a2:k2.t2

but g is *not* a ForAllCo. We want to eta-expand it. So, we do this:

  g' = all a1:(ForAllKindCo g).(InstCo g (a1 `mkCoherenceRightCo` ForAllKindCo g))

Call the kind coercion h1 and the body coercion h2. We can see that

  h2 : t1 ~ t2[a2 |-> (a1 |> h2)]

According to the typing rule for ForAllCo, we get that

  g' : all a1:k1.t1  ~  all a1:k2.(t2[a2 |-> (a1 |> h2)][a1 |-> a1 |> sym h2])

or

  g' : all a1:k1.t1  ~  all a1:k2.(t2[a2 |-> a1])

as desired.
-}
etaForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
-- Try to make the coercion be of form (forall tv:kind_co. co)
840
etaForAllCo_maybe co
841 842
  | ForAllCo tv kind_co r <- co
  = Just (tv, kind_co, r)
843 844 845

  | Pair ty1 ty2  <- coercionKind co
  , Just (tv1, _) <- splitForAllTy_maybe ty1
846 847 848 849
  , isForAllTy ty2
  , let kind_co = mkNthCo 0 co
  = Just ( tv1, kind_co
         , mkInstCo co (mkNomReflCo (TyVarTy tv1) `mkCoherenceRightCo` kind_co) )
850 851 852 853

  | otherwise
  = Nothing

854 855 856 857 858 859 860
etaAppCo_maybe :: Coercion -> Maybe (Coercion,Coercion)
-- If possible, split a coercion
--   g :: t1a t1b ~ t2a t2b
-- into a pair of coercions (left g, right g)
etaAppCo_maybe co
  | Just (co1,co2) <- splitAppCo_maybe co
  = Just (co1,co2)
861
  | (Pair ty1 ty2, Nominal) <- coercionKindRole co
862 863
  , Just (_,t1) <- splitAppTy_maybe ty1
  , Just (_,t2) <- splitAppTy_maybe ty2
864 865 866
  , let isco1 = isCoercionTy t1
  , let isco2 = isCoercionTy t2
  , isco1 == isco2
867 868 869 870
  = Just (LRCo CLeft co, LRCo CRight co)
  | otherwise
  = Nothing

871
etaTyConAppCo_maybe :: TyCon -> Coercion -> Maybe [Coercion]
872
-- If possible, split a coercion
873
--       g :: T s1 .. sn ~ T t1 .. tn
874
-- into [ Nth 0 g :: s1~t1, ..., Nth (n-1) g :: sn~tn ]
875
etaTyConAppCo_maybe tc (TyConAppCo _ tc2 cos2)
876 877 878
  = ASSERT( tc == tc2 ) Just cos2

etaTyConAppCo_maybe tc co
879
  | mightBeUnsaturatedTyCon tc
880 881 882 883 884
  , Pair ty1 ty2     <- coercionKind co
  , Just (tc1, tys1) <- splitTyConApp_maybe ty1
  , Just (tc2, tys2) <- splitTyConApp_maybe ty2
  , tc1 == tc2
  , let n = length tys1
885
  = ASSERT( tc == tc1 )
886
    ASSERT( n == length tys2 )
887
    Just (decomposeCo n co)
888 889 890 891 892 893
    -- NB: n might be <> tyConArity tc
    -- e.g.   data family T a :: * -> *
    --        g :: T a b ~ T c d

  | otherwise
  = Nothing
894

895
{-
896 897
Note [Eta for AppCo]
~~~~~~~~~~~~~~~~~~~~
898
Suppose we have
899 900 901 902 903
   g :: s1 t1 ~ s2 t2

Then we can't necessarily make
   left  g :: s1 ~ s2
   right g :: t1 ~ t2
Gabor Greif's avatar
typos  
Gabor Greif committed
904
because it's possible that
905 906 907 908 909
   s1 :: * -> *         t1 :: *
   s2 :: (*->*) -> *    t2 :: * -> *
and in that case (left g) does not have the same
kind on either side.

910
It's enough to check that
911 912 913 914 915
  kind t1 = kind t2
because if g is well-kinded then
  kind (s1 t2) = kind (s2 t2)
and these two imply
  kind s1 = kind s2
916

917
-}
918 919 920 921 922

optForAllCoBndr :: LiftingContext -> Bool
                -> TyVar -> Coercion -> (LiftingContext, TyVar, Coercion)
optForAllCoBndr env sym
  = substForAllCoBndrCallbackLC sym (opt_co4_wrap env sym False Nominal) env