DsBinds.hs 55.6 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1
2
3
4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Simon Marlow's avatar
Simon Marlow committed
5
6

Pattern-matching bindings (HsBinds and MonoBinds)
7

8
9
10
Handles @HsBinds@; those at the top level require different handling,
in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at
lower levels it is preserved with @let@/@letrec@s).
Austin Seipp's avatar
Austin Seipp committed
11
-}
12

13
{-# LANGUAGE CPP #-}
14
{-# LANGUAGE TypeFamilies #-}
Ian Lynagh's avatar
Ian Lynagh committed
15

16
module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec,
17
                 dsHsWrapper, dsTcEvBinds, dsTcEvBinds_s, dsEvBinds, dsMkUserRule
18
  ) where
19

20
21
#include "HsVersions.h"

22
23
import {-# SOURCE #-}   DsExpr( dsLExpr )
import {-# SOURCE #-}   Match( matchWrapper )
24

25
import DsMonad
Simon Marlow's avatar
Simon Marlow committed
26
import DsGRHSs
27
import DsUtils
28

29
30
import HsSyn            -- lots of things
import CoreSyn          -- lots of things
31
import Literal          ( Literal(MachStr) )
32
import CoreOpt          ( simpleOptExpr )
33
import OccurAnal        ( occurAnalyseExpr )
34
import MkCore
Simon Marlow's avatar
Simon Marlow committed
35
import CoreUtils
36
import CoreArity ( etaExpand )
37
import CoreUnfold
38
import CoreFVs
39
import Digraph
40

41
import PrelNames
42
import TyCon
43
import TcEvidence
44
import TcType
45
import Type
46
import Coercion
Eric Seidel's avatar
Eric Seidel committed
47
import TysWiredIn ( typeNatKind, typeSymbolKind )
Simon Marlow's avatar
Simon Marlow committed
48
import Id
49
import MkId(proxyHashId)
50
import Class
51
import Name
52
import VarSet
Simon Marlow's avatar
Simon Marlow committed
53
import Rules
54
import VarEnv
55
import Outputable
56
import Module
Simon Marlow's avatar
Simon Marlow committed
57
58
import SrcLoc
import Maybes
59
import OrdList
Simon Marlow's avatar
Simon Marlow committed
60
import Bag
Richard Eisenberg's avatar
Richard Eisenberg committed
61
import BasicTypes
Ian Lynagh's avatar
Ian Lynagh committed
62
import DynFlags
Simon Marlow's avatar
Simon Marlow committed
63
import FastString
64
import Util
65
import MonadUtils
66
import qualified GHC.LanguageExtensions as LangExt
67
import Control.Monad
68

69
{-**********************************************************************
Austin Seipp's avatar
Austin Seipp committed
70
*                                                                      *
71
           Desugaring a MonoBinds
Austin Seipp's avatar
Austin Seipp committed
72
*                                                                      *
73
**********************************************************************-}
74

75
76
-- | Desugar top level binds, strict binds are treated like normal
-- binds since there is no good time to force before first usage.
77
dsTopLHsBinds :: LHsBinds GhcTc -> DsM (OrdList (Id,CoreExpr))
Richard Eisenberg's avatar
Richard Eisenberg committed
78
79
80
81
82
83
dsTopLHsBinds binds
     -- see Note [Strict binds checks]
  | not (isEmptyBag unlifted_binds) || not (isEmptyBag bang_binds)
  = do { mapBagM_ (top_level_err "bindings for unlifted types") unlifted_binds
       ; mapBagM_ (top_level_err "strict pattern bindings")    bang_binds
       ; return nilOL }
84

Richard Eisenberg's avatar
Richard Eisenberg committed
85
86
87
88
89
90
  | otherwise
  = do { (force_vars, prs) <- dsLHsBinds binds
       ; when debugIsOn $
         do { xstrict <- xoptM LangExt.Strict
            ; MASSERT2( null force_vars || xstrict, ppr binds $$ ppr force_vars ) }
              -- with -XStrict, even top-level vars are listed as force vars.
91

Richard Eisenberg's avatar
Richard Eisenberg committed
92
93
94
95
96
97
98
99
100
101
       ; return (toOL prs) }

  where
    unlifted_binds = filterBag (isUnliftedHsBind . unLoc) binds
    bang_binds     = filterBag (isBangedPatBind  . unLoc) binds

    top_level_err desc (L loc bind)
      = putSrcSpanDs loc $
        errDs (hang (text "Top-level" <+> text desc <+> text "aren't allowed:")
                  2 (ppr bind))
102

103

Richard Eisenberg's avatar
Richard Eisenberg committed
104
-- | Desugar all other kind of bindings, Ids of strict binds are returned to
105
-- later be forced in the binding group body, see Note [Desugar Strict binds]
106
dsLHsBinds :: LHsBinds GhcTc -> DsM ([Id], [(Id,CoreExpr)])
Richard Eisenberg's avatar
Richard Eisenberg committed
107
108
109
dsLHsBinds binds
  = do { MASSERT( allBag (not . isUnliftedHsBind . unLoc) binds )
       ; ds_bs <- mapBagM dsLHsBind binds
110
111
112
       ; return (foldBag (\(a, a') (b, b') -> (a ++ b, a' ++ b'))
                         id ([], []) ds_bs) }

Richard Eisenberg's avatar
Richard Eisenberg committed
113
------------------------
114
dsLHsBind :: LHsBind GhcTc
115
116
117
118
119
120
          -> DsM ([Id], [(Id,CoreExpr)])
dsLHsBind (L loc bind) = do dflags <- getDynFlags
                            putSrcSpanDs loc $ dsHsBind dflags bind

-- | Desugar a single binding (or group of recursive binds).
dsHsBind :: DynFlags
121
         -> HsBind GhcTc
122
123
124
125
126
127
128
129
130
131
         -> DsM ([Id], [(Id,CoreExpr)])
         -- ^ The Ids of strict binds, to be forced in the body of the
         -- binding group see Note [Desugar Strict binds] and all
         -- bindings and their desugared right hand sides.

dsHsBind dflags
         (VarBind { var_id = var
                  , var_rhs = expr
                  , var_inline = inline_regardless })
  = do  { core_expr <- dsLExpr expr
132
133
                -- Dictionary bindings are always VarBinds,
                -- so we only need do this here
134
        ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr
135
                   | otherwise         = var
136
        ; let core_bind@(id,_) = makeCorePair dflags var' False 0 core_expr
137
              force_var = if xopt LangExt.Strict dflags
138
139
140
141
142
143
                          then [id]
                          else []
        ; return (force_var, [core_bind]) }

dsHsBind dflags
         (FunBind { fun_id = L _ fun, fun_matches = matches
144
                  , fun_co_fn = co_fn, fun_tick = tick })
145
 = do   { (args, body) <- matchWrapper
Ben Gamari's avatar
Ben Gamari committed
146
                           (mkPrefixFunRhs (noLoc $ idName fun))
147
                           Nothing matches
Simon Peyton Jones's avatar
Simon Peyton Jones committed
148
        ; core_wrap <- dsHsWrapper co_fn
149
        ; let body' = mkOptTickBox tick body
Simon Peyton Jones's avatar
Simon Peyton Jones committed
150
151
              rhs   = core_wrap (mkLams args body')
              core_binds@(id,_) = makeCorePair dflags fun False 0 rhs
152
              force_var =
153
                if xopt LangExt.Strict dflags
154
155
156
                   && matchGroupArity matches == 0 -- no need to force lambdas
                then [id]
                else []
157
        ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -}
158
           return (force_var, [core_binds]) }
159

160
161
dsHsBind dflags
         (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty
162
                  , pat_ticks = (rhs_tick, var_ticks) })
163
  = do  { body_expr <- dsGuarded grhss ty
164
        ; let body' = mkOptTickBox rhs_tick body_expr
165
              pat'  = decideBangHood dflags pat
166
        ; (force_var,sel_binds) <- mkSelectorBinds var_ticks pat body'
167
168
          -- We silently ignore inline pragmas; no makeCorePair
          -- Not so cool, but really doesn't matter
169
170
        ; let force_var' = if isBangedLPat pat'
                           then [force_var]
171
172
                           else []
        ; return (force_var', sel_binds) }
sof's avatar
sof committed
173

174
        -- A common case: one exported variable, only non-strict binds
175
        -- Non-recursive bindings come through this way
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
176
177
        -- So do self-recursive bindings
        -- Bindings with complete signatures are AbsBindsSigs, below
178
179
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
180
181
                   , abs_exports = [export]
                   , abs_ev_binds = ev_binds, abs_binds = binds })
182
  | ABE { abe_wrap = wrap, abe_poly = global
183
        , abe_mono = local, abe_prags = prags } <- export
184
185
186
  , not (xopt LangExt.Strict dflags)             -- Handle strict binds
  , not (anyBag (isBangedPatBind . unLoc) binds) --        in the next case
  = -- See Note [AbsBinds wrappers] in HsBinds
187
    addDictsDs (toTcTypeBag (listToBag dicts)) $
188
         -- addDictsDs: push type constraints deeper for pattern match check
Richard Eisenberg's avatar
Richard Eisenberg committed
189
    do { (_, bind_prs) <- dsLHsBinds binds
190
       ; ds_binds <- dsTcEvBinds_s ev_binds
Simon Peyton Jones's avatar
Simon Peyton Jones committed
191
       ; core_wrap <- dsHsWrapper wrap -- Usually the identity
192

Simon Peyton Jones's avatar
Simon Peyton Jones committed
193
194
195
       ; let rhs = core_wrap $
                   mkLams tyvars $ mkLams dicts $
                   mkCoreLets ds_binds $
196
                   mkLetRec bind_prs $
Simon Peyton Jones's avatar
Simon Peyton Jones committed
197
                   Var local
198
       ; (spec_binds, rules) <- dsSpecs rhs prags
199

200
201
202
       ; let   global'  = addIdSpecialisations global rules
               main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                        (dictArity dicts) rhs
203

204
       ; return ([], main_bind : fromOL spec_binds) }
sof's avatar
sof committed
205

206
207
208
209
210
211
        -- Another common case: no tyvars, no dicts
        -- In this case we can have a much simpler desugaring
dsHsBind dflags
         (AbsBinds { abs_tvs = [], abs_ev_vars = []
                   , abs_exports = exports
                   , abs_ev_binds = ev_binds, abs_binds = binds })
Richard Eisenberg's avatar
Richard Eisenberg committed
212
  = do { (force_vars, bind_prs) <- dsLHsBinds binds
213
214
215
216
       ; let mk_bind (ABE { abe_wrap = wrap
                          , abe_poly = global
                          , abe_mono = local
                          , abe_prags = prags })
Simon Peyton Jones's avatar
Simon Peyton Jones committed
217
              = do { core_wrap <- dsHsWrapper wrap
218
219
                   ; return (makeCorePair dflags global
                                          (isDefaultMethod prags)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
220
                                          0 (core_wrap (Var local))) }
221
222
223
224
225
       ; main_binds <- mapM mk_bind exports

       ; ds_binds <- dsTcEvBinds_s ev_binds
       ; return (force_vars, flattenBinds ds_binds ++ bind_prs ++ main_binds) }

226
227
dsHsBind dflags
         (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts
228
229
                   , abs_exports = exports, abs_ev_binds = ev_binds
                   , abs_binds = binds })
230
         -- See Note [Desugaring AbsBinds]
231
232
  = addDictsDs (toTcTypeBag (listToBag dicts)) $
         -- addDictsDs: push type constraints deeper for pattern match check
Richard Eisenberg's avatar
Richard Eisenberg committed
233
     do { (local_force_vars, bind_prs) <- dsLHsBinds binds
234
        ; let core_bind = Rec [ makeCorePair dflags (add_inline lcl_id) False 0 rhs
235
                              | (lcl_id, rhs) <- bind_prs ]
236
                -- Monomorphic recursion possible, hence Rec
237
              new_force_vars = get_new_force_vars local_force_vars
238
              locals       = map abe_mono exports
239
240
              all_locals   = locals ++ new_force_vars
              tup_expr     = mkBigCoreVarTup all_locals
241
              tup_ty       = exprType tup_expr
242
        ; ds_binds <- dsTcEvBinds_s ev_binds
243
244
        ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $
                             mkCoreLets ds_binds $
245
                             mkLet core_bind $
246
                             tup_expr
247

248
        ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs)
249

250
251
252
253
254
        -- Find corresponding global or make up a new one: sometimes
        -- we need to make new export to desugar strict binds, see
        -- Note [Desugar Strict binds]
        ; (exported_force_vars, extra_exports) <- get_exports local_force_vars

255
        ; let mk_bind (ABE { abe_wrap = wrap
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
256
                           , abe_poly = global
257
                           , abe_mono = local, abe_prags = spec_prags })
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
258
                         -- See Note [AbsBinds wrappers] in HsBinds
259
                = do { tup_id  <- newSysLocalDs tup_ty
Simon Peyton Jones's avatar
Simon Peyton Jones committed
260
261
262
263
264
                     ; core_wrap <- dsHsWrapper wrap
                     ; let rhs = core_wrap $ mkLams tyvars $ mkLams dicts $
                                 mkTupleSelector all_locals local tup_id $
                                 mkVarApps (Var poly_tup_id) (tyvars ++ dicts)
                           rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs
265
266
                     ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags
                     ; let global' = (global `setInlinePragma` defaultInlinePragma)
267
268
269
                                             `addIdSpecialisations` rules
                           -- Kill the INLINE pragma because it applies to
                           -- the user written (local) function.  The global
270
                           -- Id is just the selector.  Hmm.
271
                     ; return ((global', rhs) : fromOL spec_binds) }
272

273
        ; export_binds_s <- mapM mk_bind (exports ++ extra_exports)
274

275
276
277
        ; return (exported_force_vars
                 ,(poly_tup_id, poly_tup_rhs) :
                   concat export_binds_s) }
278
  where
279
    inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with
280
281
282
                             -- the inline pragma from the source
                             -- The type checker put the inline pragma
                             -- on the *global* Id, so we need to transfer it
283
284
285
286
    inline_env
      = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag)
                 | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports
                 , let prag = idInlinePragma gbl_id ]
287
288

    add_inline :: Id -> Id    -- tran
289
290
    add_inline lcl_id = lookupVarEnv inline_env lcl_id
                        `orElse` lcl_id
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
    global_env :: IdEnv Id -- Maps local Id to its global exported Id
    global_env =
      mkVarEnv [ (local, global)
               | ABE { abe_mono = local, abe_poly = global } <- exports
               ]

    -- find variables that are not exported
    get_new_force_vars lcls =
      foldr (\lcl acc -> case lookupVarEnv global_env lcl of
                           Just _ -> acc
                           Nothing -> lcl:acc)
            [] lcls

    -- find exports or make up new exports for force variables
306
    get_exports :: [Id] -> DsM ([Id], [ABExport GhcTc])
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    get_exports lcls =
      foldM (\(glbls, exports) lcl ->
              case lookupVarEnv global_env lcl of
                Just glbl -> return (glbl:glbls, exports)
                Nothing   -> do export <- mk_export lcl
                                let glbl = abe_poly export
                                return (glbl:glbls, export:exports))
            ([],[]) lcls

    mk_export local =
      do global <- newSysLocalDs
                     (exprType (mkLams tyvars (mkLams dicts (Var local))))
         return (ABE {abe_poly = global
                     ,abe_mono = local
                     ,abe_wrap = WpHole
                     ,abe_prags = SpecPrags []})

324
-- AbsBindsSig is a combination of AbsBinds and FunBind
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
325
326
327
328
329
330
331
332
333
334
dsHsBind dflags (AbsBindsSig { abs_tvs = tyvars, abs_ev_vars = dicts
                             , abs_sig_export  = global
                             , abs_sig_prags   = prags
                             , abs_sig_ev_bind = ev_bind
                             , abs_sig_bind    = bind })
  | L bind_loc FunBind { fun_matches = matches
                       , fun_co_fn   = co_fn
                       , fun_tick    = tick } <- bind
  = putSrcSpanDs bind_loc $
    addDictsDs (toTcTypeBag (listToBag dicts)) $
335
             -- addDictsDs: push type constraints deeper for pattern match check
336
    do { (args, body) <- matchWrapper
Ben Gamari's avatar
Ben Gamari committed
337
                           (mkPrefixFunRhs (noLoc $ idName global))
338
                           Nothing matches
Simon Peyton Jones's avatar
Simon Peyton Jones committed
339
340
341
342
       ; core_wrap <- dsHsWrapper co_fn
       ; let body'   = mkOptTickBox tick body
             fun_rhs = core_wrap (mkLams args body')
             force_vars
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
               | xopt LangExt.Strict dflags
               , matchGroupArity matches == 0 -- no need to force lambdas
               = [global]
               | otherwise
               = []

       ; ds_binds <- dsTcEvBinds ev_bind
       ; let rhs = mkLams tyvars $
                   mkLams dicts $
                   mkCoreLets ds_binds $
                   fun_rhs

       ; (spec_binds, rules) <- dsSpecs rhs prags
       ; let global' = addIdSpecialisations global rules
             main_bind = makeCorePair dflags global' (isDefaultMethod prags)
                                      (dictArity dicts) rhs

       ; return (force_vars, main_bind : fromOL spec_binds) }

  | otherwise
  = pprPanic "dsHsBind: AbsBindsSig" (ppr bind)

365
366
dsHsBind _ (PatSynBind{}) = panic "dsHsBind: PatSynBind"

Gergő Érdi's avatar
Gergő Érdi committed
367

368
369

-- | This is where we apply INLINE and INLINABLE pragmas. All we need to
370
371
372
373
374
375
-- do is to attach the unfolding information to the Id.
--
-- Other decisions about whether to inline are made in
-- `calcUnfoldingGuidance` but the decision about whether to then expose
-- the unfolding in the interface file is made in `TidyPgm.addExternal`
-- using this information.
376
------------------------
377
378
makeCorePair :: DynFlags -> Id -> Bool -> Arity -> CoreExpr
             -> (Id, CoreExpr)
379
makeCorePair dflags gbl_id is_default_method dict_arity rhs
380
  | is_default_method                 -- Default methods are *always* inlined
381
382
  = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs)

383
384
  | otherwise
  = case inlinePragmaSpec inline_prag of
385
386
387
          EmptyInlineSpec -> (gbl_id, rhs)
          NoInline        -> (gbl_id, rhs)
          Inlinable       -> (gbl_id `setIdUnfolding` inlinable_unf, rhs)
388
          Inline          -> inline_pair
389

390
391
  where
    inline_prag   = idInlinePragma gbl_id
392
    inlinable_unf = mkInlinableUnfolding dflags rhs
393
394
    inline_pair
       | Just arity <- inlinePragmaSat inline_prag
395
396
        -- Add an Unfolding for an INLINE (but not for NOINLINE)
        -- And eta-expand the RHS; see Note [Eta-expanding INLINE things]
397
       , let real_arity = dict_arity + arity
398
        -- NB: The arity in the InlineRule takes account of the dictionaries
399
       = ( gbl_id `setIdUnfolding` mkInlineUnfoldingWithArity real_arity rhs
400
401
402
403
         , etaExpand real_arity rhs)

       | otherwise
       = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $
404
         (gbl_id `setIdUnfolding` mkInlineUnfolding rhs, rhs)
405
406
407
408

dictArity :: [Var] -> Arity
-- Don't count coercion variables in arity
dictArity dicts = count isId dicts
409

Austin Seipp's avatar
Austin Seipp committed
410
{-
411
412
Note [Desugaring AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~
413
414
415
416
417
418
419
420
In the general AbsBinds case we desugar the binding to this:

       tup a (d:Num a) = let fm = ...gm...
                             gm = ...fm...
                         in (fm,gm)
       f a d = case tup a d of { (fm,gm) -> fm }
       g a d = case tup a d of { (fm,gm) -> fm }

421
422
423
424
425
Note [Rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~
Common special case: no type or dictionary abstraction
This is a bit less trivial than you might suppose
The naive way woudl be to desguar to something like
426
427
        f_lcl = ...f_lcl...     -- The "binds" from AbsBinds
        M.f = f_lcl             -- Generated from "exports"
428
But we don't want that, because if M.f isn't exported,
429
430
it'll be inlined unconditionally at every call site (its rhs is
trivial).  That would be ok unless it has RULES, which would
431
432
433
thereby be completely lost.  Bad, bad, bad.

Instead we want to generate
434
435
436
        M.f = ...f_lcl...
        f_lcl = M.f
Now all is cool. The RULES are attached to M.f (by SimplCore),
437
438
439
440
and f_lcl is rapidly inlined away.

This does not happen in the same way to polymorphic binds,
because they desugar to
441
        M.f = /\a. let f_lcl = ...f_lcl... in f_lcl
442
Although I'm a bit worried about whether full laziness might
443
float the f_lcl binding out and then inline M.f at its call site
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

Note [Specialising in no-dict case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even if there are no tyvars or dicts, we may have specialisation pragmas.
Class methods can generate
      AbsBinds [] [] [( ... spec-prag]
         { AbsBinds [tvs] [dicts] ...blah }
So the overloading is in the nested AbsBinds. A good example is in GHC.Float:

  class  (Real a, Fractional a) => RealFrac a  where
    round :: (Integral b) => a -> b

  instance  RealFrac Float  where
    {-# SPECIALIZE round :: Float -> Int #-}

459
The top-level AbsBinds for $cround has no tyvars or dicts (because the
460
461
462
463
464
465
466
instance does not).  But the method is locally overloaded!

Note [Abstracting over tyvars only]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When abstracting over type variable only (not dictionaries), we don't really need to
built a tuple and select from it, as we do in the general case. Instead we can take

467
468
469
470
471
        AbsBinds [a,b] [ ([a,b], fg, fl, _),
                         ([b],   gg, gl, _) ]
                { fl = e1
                  gl = e2
                   h = e3 }
472
473
474

and desugar it to

475
476
477
        fg = /\ab. let B in e1
        gg = /\b. let a = () in let B in S(e2)
        h  = /\ab. let B in e3
478
479

where B is the *non-recursive* binding
480
481
482
        fl = fg a b
        gl = gg b
        h  = h a b    -- See (b); note shadowing!
483
484

Notice (a) g has a different number of type variables to f, so we must
485
486
             use the mkArbitraryType thing to fill in the gaps.
             We use a type-let to do that.
487

488
489
490
491
         (b) The local variable h isn't in the exports, and rather than
             clone a fresh copy we simply replace h by (h a b), where
             the two h's have different types!  Shadowing happens here,
             which looks confusing but works fine.
492

493
494
495
496
         (c) The result is *still* quadratic-sized if there are a lot of
             small bindings.  So if there are more than some small
             number (10), we filter the binding set B by the free
             variables of the particular RHS.  Tiresome.
497
498

Why got to this trouble?  It's a common case, and it removes the
499
quadratic-sized tuple desugaring.  Less clutter, hopefully faster
500
501
502
503
compilation, especially in a case where there are a *lot* of
bindings.


504
505
506
507
508
509
510
511
Note [Eta-expanding INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   foo :: Eq a => a -> a
   {-# INLINE foo #-}
   foo x = ...

If (foo d) ever gets floated out as a common sub-expression (which can
512
happen as a result of method sharing), there's a danger that we never
513
514
515
516
get to do the inlining, which is a Terribly Bad thing given that the
user said "inline"!

To avoid this we pre-emptively eta-expand the definition, so that foo
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
517
has the arity with which it is declared in the source code.  In this
518
example it has arity 2 (one for the Eq and one for x). Doing this
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
519
should mean that (foo d) is a PAP and we don't share it.
520
521
522

Note [Nested arities]
~~~~~~~~~~~~~~~~~~~~~
523
524
525
526
527
528
529
530
531
532
533
534
535
536
For reasons that are not entirely clear, method bindings come out looking like
this:

  AbsBinds [] [] [$cfromT <= [] fromT]
    $cfromT [InlPrag=INLINE] :: T Bool -> Bool
    { AbsBinds [] [] [fromT <= [] fromT_1]
        fromT :: T Bool -> Bool
        { fromT_1 ((TBool b)) = not b } } }

Note the nested AbsBind.  The arity for the InlineRule on $cfromT should be
gotten from the binding for fromT_1.

It might be better to have just one level of AbsBinds, but that requires more
thought!
537
538
539
540


Note [Desugar Strict binds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
541
See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Desugaring strict variable bindings looks as follows (core below ==>)

  let !x = rhs
  in  body
==>
  let x = rhs
  in x `seq` body -- seq the variable

and if it is a pattern binding the desugaring looks like

  let !pat = rhs
  in body
==>
  let x = rhs -- bind the rhs to a new variable
      pat = x
  in x `seq` body -- seq the new variable

if there is no variable in the pattern desugaring looks like

  let False = rhs
  in body
==>
  let x = case rhs of {False -> (); _ -> error "Match failed"}
  in x `seq` body

In order to force the Ids in the binding group they are passed around
in the dsHsBind family of functions, and later seq'ed in DsExpr.ds_val_bind.

Consider a recursive group like this

  letrec
     f : g = rhs[f,g]
  in <body>

Without `Strict`, we get a translation like this:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (fm,gm)

  in let f = /\a. case t a of (fm,_) -> fm
  in let g = /\a. case t a of (_,gm) -> gm
  in <body>

Here `tm` is the monomorphic binding for `rhs`.

With `Strict`, we want to force `tm`, but NOT `fm` or `gm`.
Alas, `tm` isn't in scope in the `in <body>` part.

Gabor Greif's avatar
Gabor Greif committed
594
The simplest thing is to return it in the polymorphic
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
tuple `t`, thus:

  let t = /\a. letrec tm = rhs[fm,gm]
                      fm = case t of fm:_ -> fm
                      gm = case t of _:gm -> gm
                in
                (tm, fm, gm)

  in let f = /\a. case t a of (_,fm,_) -> fm
  in let g = /\a. case t a of (_,_,gm) -> gm
  in let tm = /\a. case t a of (tm,_,_) -> tm
  in tm `seq` <body>


See https://ghc.haskell.org/trac/ghc/wiki/StrictPragma for a more
detailed explanation of the desugaring of strict bindings.

Richard Eisenberg's avatar
Richard Eisenberg committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
Note [Strict binds checks]
~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several checks around properly formed strict bindings. They
all link to this Note. These checks must be here in the desugarer because
we cannot know whether or not a type is unlifted until after zonking, due
to levity polymorphism. These checks all used to be handled in the typechecker
in checkStrictBinds (before Jan '17).

We define an "unlifted bind" to be any bind that binds an unlifted id. Note that

  x :: Char
  (# True, x #) = blah

is *not* an unlifted bind. Unlifted binds are detected by HsUtils.isUnliftedHsBind.

Define a "banged bind" to have a top-level bang. Detected by HsPat.isBangedPatBind.
Define a "strict bind" to be either an unlifted bind or a banged bind.

The restrictions are:
  1. Strict binds may not be top-level. Checked in dsTopLHsBinds.

  2. Unlifted binds must also be banged. (There is no trouble to compile an unbanged
     unlifted bind, but an unbanged bind looks lazy, and we don't want users to be
     surprised by the strictness of an unlifted bind.) Checked in first clause
     of DsExpr.ds_val_bind.

  3. Unlifted binds may not have polymorphism (#6078). (That is, no quantified type
     variables or constraints.) Checked in first clause
     of DsExpr.ds_val_bind.

  4. Unlifted binds may not be recursive. Checked in second clause of ds_val_bind.

Austin Seipp's avatar
Austin Seipp committed
644
-}
645

646
------------------------
647
dsSpecs :: CoreExpr     -- Its rhs
648
        -> TcSpecPrags
649
650
        -> DsM ( OrdList (Id,CoreExpr)  -- Binding for specialised Ids
               , [CoreRule] )           -- Rules for the Global Ids
651
-- See Note [Handling SPECIALISE pragmas] in TcBinds
652
653
654
655
656
657
dsSpecs _ IsDefaultMethod = return (nilOL, [])
dsSpecs poly_rhs (SpecPrags sps)
  = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps
       ; let (spec_binds_s, rules) = unzip pairs
       ; return (concatOL spec_binds_s, rules) }

658
659
660
dsSpec :: Maybe CoreExpr        -- Just rhs => RULE is for a local binding
                                -- Nothing => RULE is for an imported Id
                                --            rhs is in the Id's unfolding
661
662
663
       -> Located TcSpecPrag
       -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule))
dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl))
664
  | isJust (isClassOpId_maybe poly_id)
665
  = putSrcSpanDs loc $
666
667
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for class method selector"
                          <+> quotes (ppr poly_id))
668
       ; return Nothing  }  -- There is no point in trying to specialise a class op
669
670
                            -- Moreover, classops don't (currently) have an inl_sat arity set
                            -- (it would be Just 0) and that in turn makes makeCorePair bleat
671

672
673
  | no_act_spec && isNeverActive rule_act
  = putSrcSpanDs loc $
674
675
    do { warnDs NoReason (text "Ignoring useless SPECIALISE pragma for NOINLINE function:"
                          <+> quotes (ppr poly_id))
676
       ; return Nothing  }  -- Function is NOINLINE, and the specialiation inherits that
677
                            -- See Note [Activation pragmas for SPECIALISE]
678

679
  | otherwise
680
  = putSrcSpanDs loc $
681
682
    do { uniq <- newUnique
       ; let poly_name = idName poly_id
683
684
             spec_occ  = mkSpecOcc (getOccName poly_name)
             spec_name = mkInternalName uniq spec_occ (getSrcSpan poly_name)
Simon Peyton Jones's avatar
Simon Peyton Jones committed
685
686
687
688
689
690
691
692
693
694
             (spec_bndrs, spec_app) = collectHsWrapBinders spec_co
               -- spec_co looks like
               --         \spec_bndrs. [] spec_args
               -- perhaps with the body of the lambda wrapped in some WpLets
               -- E.g. /\a \(d:Eq a). let d2 = $df d in [] (Maybe a) d2

       ; core_app <- dsHsWrapper spec_app

       ; let ds_lhs  = core_app (Var poly_id)
             spec_ty = mkLamTypes spec_bndrs (exprType ds_lhs)
695
696
697
       ; -- pprTrace "dsRule" (vcat [ text "Id:" <+> ppr poly_id
         --                         , text "spec_co:" <+> ppr spec_co
         --                         , text "ds_rhs:" <+> ppr ds_lhs ]) $
Simon Peyton Jones's avatar
Simon Peyton Jones committed
698
         case decomposeRuleLhs spec_bndrs ds_lhs of {
699
           Left msg -> do { warnDs NoReason msg; return Nothing } ;
700
           Right (rule_bndrs, _fn, args) -> do
701

702
       { dflags <- getDynFlags
703
       ; this_mod <- getModule
Simon Peyton Jones's avatar
Simon Peyton Jones committed
704
       ; let fn_unf    = realIdUnfolding poly_id
Simon Peyton Jones's avatar
Simon Peyton Jones committed
705
             spec_unf  = specUnfolding spec_bndrs core_app arity_decrease fn_unf
706
707
708
             spec_id   = mkLocalId spec_name spec_ty
                            `setInlinePragma` inl_prag
                            `setIdUnfolding`  spec_unf
Simon Peyton Jones's avatar
Simon Peyton Jones committed
709
710
             arity_decrease = count isValArg args - count isId spec_bndrs

711
       ; rule <- dsMkUserRule this_mod is_local_id
Ian Lynagh's avatar
Ian Lynagh committed
712
                        (mkFastString ("SPEC " ++ showPpr dflags poly_name))
713
714
                        rule_act poly_name
                        rule_bndrs args
Simon Peyton Jones's avatar
Simon Peyton Jones committed
715
                        (mkVarApps (Var spec_id) spec_bndrs)
716

Simon Peyton Jones's avatar
Simon Peyton Jones committed
717
       ; let spec_rhs = mkLams spec_bndrs (core_app poly_rhs)
718

719
720
-- Commented out: see Note [SPECIALISE on INLINE functions]
--       ; when (isInlinePragma id_inl)
721
--              (warnDs $ text "SPECIALISE pragma on INLINE function probably won't fire:"
722
--                        <+> quotes (ppr poly_name))
Simon Peyton Jones's avatar
Simon Peyton Jones committed
723
724
725
726
727

       ; return (Just (unitOL (spec_id, spec_rhs), rule))
            -- NB: do *not* use makeCorePair on (spec_id,spec_rhs), because
            --     makeCorePair overwrites the unfolding, which we have
            --     just created using specUnfolding
728
729
730
731
       } } }
  where
    is_local_id = isJust mb_poly_rhs
    poly_rhs | Just rhs <-  mb_poly_rhs
732
             = rhs          -- Local Id; this is its rhs
733
734
             | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id)
             = unfolding    -- Imported Id; this is its unfolding
735
736
737
                            -- Use realIdUnfolding so we get the unfolding
                            -- even when it is a loop breaker.
                            -- We want to specialise recursive functions!
738
             | otherwise = pprPanic "dsImpSpecs" (ppr poly_id)
739
                            -- The type checker has checked that it *has* an unfolding
740

741
742
743
744
745
    id_inl = idInlinePragma poly_id

    -- See Note [Activation pragmas for SPECIALISE]
    inl_prag | not (isDefaultInlinePragma spec_inl)    = spec_inl
             | not is_local_id  -- See Note [Specialising imported functions]
746
                                 -- in OccurAnal
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
             , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma
             | otherwise                               = id_inl
     -- Get the INLINE pragma from SPECIALISE declaration, or,
     -- failing that, from the original Id

    spec_prag_act = inlinePragmaActivation spec_inl

    -- See Note [Activation pragmas for SPECIALISE]
    -- no_act_spec is True if the user didn't write an explicit
    -- phase specification in the SPECIALISE pragma
    no_act_spec = case inlinePragmaSpec spec_inl of
                    NoInline -> isNeverActive  spec_prag_act
                    _        -> isAlwaysActive spec_prag_act
    rule_act | no_act_spec = inlinePragmaActivation id_inl   -- Inherit
             | otherwise   = spec_prag_act                   -- Specified by user


764
765
766
767
768
769
dsMkUserRule :: Module -> Bool -> RuleName -> Activation
       -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> DsM CoreRule
dsMkUserRule this_mod is_local name act fn bndrs args rhs = do
    let rule = mkRule this_mod False is_local name act fn bndrs args rhs
    dflags <- getDynFlags
    when (isOrphan (ru_orphan rule) && wopt Opt_WarnOrphans dflags) $
770
        warnDs (Reason Opt_WarnOrphans) (ruleOrphWarn rule)
771
772
773
    return rule

ruleOrphWarn :: CoreRule -> SDoc
774
ruleOrphWarn rule = text "Orphan rule:" <+> ppr rule
775

776
777
778
779
780
781
782
783
784
785
786
787
788
{- Note [SPECIALISE on INLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to warn that using SPECIALISE for a function marked INLINE
would be a no-op; but it isn't!  Especially with worker/wrapper split
we might have
   {-# INLINE f #-}
   f :: Ord a => Int -> a -> ...
   f d x y = case x of I# x' -> $wf d x' y

We might want to specialise 'f' so that we in turn specialise '$wf'.
We can't even /name/ '$wf' in the source code, so we can't specialise
it even if we wanted to.  Trac #10721 is a case in point.

789
790
791
792
793
794
795
796
Note [Activation pragmas for SPECIALISE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
From a user SPECIALISE pragma for f, we generate
  a) A top-level binding    spec_fn = rhs
  b) A RULE                 f dOrd = spec_fn

We need two pragma-like things:

797
* spec_fn's inline pragma: inherited from f's inline pragma (ignoring
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
                           activation on SPEC), unless overriden by SPEC INLINE

* Activation of RULE: from SPECIALISE pragma (if activation given)
                      otherwise from f's inline pragma

This is not obvious (see Trac #5237)!

Examples      Rule activation   Inline prag on spec'd fn
---------------------------------------------------------------------
SPEC [n] f :: ty            [n]   Always, or NOINLINE [n]
                                  copy f's prag

NOINLINE f
SPEC [n] f :: ty            [n]   NOINLINE
                                  copy f's prag

NOINLINE [k] f
SPEC [n] f :: ty            [n]   NOINLINE [k]
                                  copy f's prag

INLINE [k] f
819
SPEC [n] f :: ty            [n]   INLINE [k]
820
821
822
823
824
825
826
827
828
829
                                  copy f's prag

SPEC INLINE [n] f :: ty     [n]   INLINE [n]
                                  (ignore INLINE prag on f,
                                  same activation for rule and spec'd fn)

NOINLINE [k] f
SPEC f :: ty                [n]   INLINE [k]


Austin Seipp's avatar
Austin Seipp committed
830
831
************************************************************************
*                                                                      *
832
\subsection{Adding inline pragmas}
Austin Seipp's avatar
Austin Seipp committed
833
834
835
*                                                                      *
************************************************************************
-}
836

837
decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr])
unknown's avatar
unknown committed
838
839
-- (decomposeRuleLhs bndrs lhs) takes apart the LHS of a RULE,
-- The 'bndrs' are the quantified binders of the rules, but decomposeRuleLhs
840
-- may add some extra dictionary binders (see Note [Free dictionaries])
unknown's avatar
unknown committed
841
--
842
-- Returns an error message if the LHS isn't of the expected shape
843
844
845
846
847
-- Note [Decomposing the left-hand side of a RULE]
decomposeRuleLhs orig_bndrs orig_lhs
  | not (null unbound)    -- Check for things unbound on LHS
                          -- See Note [Unused spec binders]
  = Left (vcat (map dead_msg unbound))
848
849
850
  | Var funId <- fun2
  , Just con <- isDataConId_maybe funId
  = Left (constructor_msg con) -- See Note [No RULES on datacons]
851
  | Just (fn_id, args) <- decompose fun2 args2
852
  , let extra_bndrs = mk_extra_bndrs fn_id args
853
854
855
856
857
858
  = -- pprTrace "decmposeRuleLhs" (vcat [ text "orig_bndrs:" <+> ppr orig_bndrs
    --                                  , text "orig_lhs:" <+> ppr orig_lhs
    --                                  , text "lhs1:"     <+> ppr lhs1
    --                                  , text "extra_dict_bndrs:" <+> ppr extra_dict_bndrs
    --                                  , text "fn_id:" <+> ppr fn_id
    --                                  , text "args:"   <+> ppr args]) $
859
    Right (orig_bndrs ++ extra_bndrs, fn_id, args)
860

861
  | otherwise
862
  = Left bad_shape_msg
863
 where
864
865
866
867
   lhs1         = drop_dicts orig_lhs
   lhs2         = simpleOptExpr lhs1  -- See Note [Simplify rule LHS]
   (fun2,args2) = collectArgs lhs2

868
869
   lhs_fvs    = exprFreeVars lhs2
   unbound    = filterOut (`elemVarSet` lhs_fvs) orig_bndrs
870

871
   orig_bndr_set = mkVarSet orig_bndrs
872

873
874
875
876
877
878
879
880
881
882
883
884
885
        -- Add extra tyvar binders: Note [Free tyvars in rule LHS]
        -- and extra dict binders: Note [Free dictionaries in rule LHS]
   mk_extra_bndrs fn_id args
     = toposortTyVars unbound_tvs ++ unbound_dicts
     where
       unbound_tvs   = [ v | v <- unbound_vars, isTyVar v ]
       unbound_dicts = [ mkLocalId (localiseName (idName d)) (idType d)
                       | d <- unbound_vars, isDictId d ]
       unbound_vars  = [ v | v <- exprsFreeVarsList args
                           , not (v `elemVarSet` orig_bndr_set)
                           , not (v == fn_id) ]
         -- fn_id: do not quantify over the function itself, which may
         -- itself be a dictionary (in pathological cases, Trac #10251)
886
887
888
889
890
891

   decompose (Var fn_id) args
      | not (fn_id `elemVarSet` orig_bndr_set)
      = Just (fn_id, args)

   decompose _ _ = Nothing
892

893
   bad_shape_msg = hang (text "RULE left-hand side too complicated to desugar")
894
895
                      2 (vcat [ text "Optimised lhs:" <+> ppr lhs2
                              , text "Orig lhs:" <+> ppr orig_lhs])
896
897
   dead_msg bndr = hang (sep [ text "Forall'd" <+> pp_bndr bndr
                             , text "is not bound in RULE lhs"])
898
899
900
                      2 (vcat [ text "Orig bndrs:" <+> ppr orig_bndrs
                              , text "Orig lhs:" <+> ppr orig_lhs
                              , text "optimised lhs:" <+> ppr lhs2 ])
901
   pp_bndr bndr
902
903
904
    | isTyVar bndr                      = text "type variable" <+> quotes (ppr bndr)
    | Just pred <- evVarPred_maybe bndr = text "constraint" <+> quotes (ppr pred)
    | otherwise                         = text "variable" <+> quotes (ppr bndr)
905

906
907
908
909
910
   constructor_msg con = vcat
     [ text "A constructor," <+> ppr con <>
         text ", appears as outermost match in RULE lhs."
     , text "This rule will be ignored." ]

911
   drop_dicts :: CoreExpr -> CoreExpr
912
   drop_dicts e
913
914
915
       = wrap_lets needed bnds body
     where
       needed = orig_bndr_set `minusVarSet` exprFreeVars body
916
       (bnds, body) = split_lets (occurAnalyseExpr e)
917
           -- The occurAnalyseExpr drops dead bindings which is
918
919
           -- crucial to ensure that every binding is used later;
           -- which in turn makes wrap_lets work right
920
921

   split_lets :: CoreExpr -> ([(DictId,CoreExpr)], CoreExpr)
922
923
   split_lets (Let (NonRec d r) body)
     | isDictId d
924
     = ((d,r):bs, body')
925
926
927
928
929
930
931
932
933
     where (bs, body') = split_lets body

    -- handle "unlifted lets" too, needed for "map/coerce"
   split_lets (Case r d _ [(DEFAULT, _, body)])
     | isCoVar d
     = ((d,r):bs, body')
     where (bs, body') = split_lets body

   split_lets e = ([], e)
934
935
936
937

   wrap_lets :: VarSet -> [(DictId,CoreExpr)] -> CoreExpr -> CoreExpr
   wrap_lets _ [] body = body
   wrap_lets needed ((d, r) : bs) body
938
     | rhs_fvs `intersectsVarSet` needed = mkCoreLet (NonRec d r) (wrap_lets needed' bs body)
939
940
941
942
     | otherwise                         = wrap_lets needed bs body
     where
       rhs_fvs = exprFreeVars r
       needed' = (needed `minusVarSet` rhs_fvs) `extendVarSet` d
943

Austin Seipp's avatar
Austin Seipp committed
944
{-
945
Note [Decomposing the left-hand side of a RULE]
946
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
947
There are several things going on here.
948
949
* drop_dicts: see Note [Drop dictionary bindings on rule LHS]
* simpleOptExpr: see Note [Simplify rule LHS]
950
* extra_dict_bndrs: see Note [Free dictionaries]
951

952
953
954
955
956
957
958
959
960
961
962
963
964
Note [Free tyvars on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data T a = C

  foo :: T a -> Int
  foo C = 1

  {-# RULES "myrule"  foo C = 1 #-}

After type checking the LHS becomes (foo alpha (C alpha)), where alpha
is an unbound meta-tyvar.  The zonker in TcHsSyn is careful not to
turn the free alpha into Any (as it usually does).  Instead it turns it
965
into a TyVar 'a'.  See TcHsSyn Note [Zonking the LHS of a RULE].
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

Now we must quantify over that 'a'.  It's /really/ inconvenient to do that
in the zonker, because the HsExpr data type is very large.  But it's /easy/
to do it here in the desugarer.

Moreover, we have to do something rather similar for dictionaries;
see Note [Free dictionaries on rule LHS].   So that's why we look for
type variables free on the LHS, and quantify over them.

Note [Free dictionaries on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict,
which is presumably in scope at the function definition site, we can quantify
over it too.  *Any* dict with that type will do.

So for example when you have
        f :: Eq a => a -> a
        f = <rhs>
        ... SPECIALISE f :: Int -> Int ...

Then we get the SpecPrag
        SpecPrag (f Int dInt)

And from that we want the rule

        RULE forall dInt. f Int dInt = f_spec
        f_spec = let f = <rhs> in f Int dInt

But be careful!  That dInt might be GHC.Base.$fOrdInt, which is an External
Name, and you can't bind them in a lambda or forall without getting things
confused.   Likewise it might have an InlineRule or something, which would be
utterly bogus. So we really make a fresh Id, with the same unique and type
as the old one, but with an Internal name and no IdInfo.

1000
1001
Note [Drop dictionary bindings on rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1002
drop_dicts drops dictionary bindings on the LHS where possible.
1003
1004
   E.g.  let d:Eq [Int] = $fEqList $fEqInt in f d
     --> f d
1005
   Reasoning here is that there is only one d:Eq [Int], and so we can
1006
1007
1008
1009
   quantify over it. That makes 'd' free in the LHS, but that is later
   picked up by extra_dict_bndrs (Note [Dead spec binders]).

   NB 1: We can only drop the binding if the RHS doesn't bind
1010
         one of the orig_bndrs, which we assume occur on RHS.
1011
1012
1013
1014
1015
1016
         Example
            f :: (Eq a) => b -> a -> a
            {-# SPECIALISE f :: Eq a => b -> [a] -> [a] #-}
         Here we want to end up with
            RULE forall d:Eq a.  f ($dfEqList d) = f_spec d
         Of course, the ($dfEqlist d) in the pattern makes it less likely
1017
         to match, but there is no other way to get d:Eq a
1018

1019
   NB 2: We do drop_dicts *before* simplOptEpxr, so that we expect all
1020
1021
1022
1023
1024
1025
         the evidence bindings to be wrapped around the outside of the
         LHS.  (After simplOptExpr they'll usually have been inlined.)
         dsHsWrapper does dependency analysis, so that civilised ones
         will be simple NonRec bindings.  We don't handle recursive
         dictionaries!

Gabor Greif's avatar
Gabor Greif committed
1026
    NB3: In the common case of a non-overloaded, but perhaps-polymorphic
1027
1028
1029
1030
1031
1032
         specialisation, we don't need to bind *any* dictionaries for use
         in the RHS. For example (Trac #8331)
             {-# SPECIALIZE INLINE useAbstractMonad :: ReaderST s Int #-}
             useAbstractMonad :: MonadAbstractIOST m => m Int
         Here, deriving (MonadAbstractIOST (ReaderST s)) is a lot of code
         but the RHS uses no dictionaries, so we want to end up with
1033
             RULE forall s (d :: MonadAbstractIOST (ReaderT s)).
1034
1035
                useAbstractMonad (ReaderT s) d = $suseAbstractMonad s

1036
1037
1038
   Trac #8848 is a good example of where there are some intersting
   dictionary bindings to discard.

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
The drop_dicts algorithm is based on these observations:

  * Given (let d = rhs in e) where d is a DictId,
    matching 'e' will bind e's free variables.

  * So we want to keep the binding if one of the needed variables (for
    which we need a binding) is in fv(rhs) but not already in fv(e).

  * The "needed variables" are simply the orig_bndrs.  Consider
       f :: (Eq a, Show b) => a -> b -> String
Austin Seipp's avatar
Austin Seipp committed
1049
       ... SPECIALISE f :: (Show b) => Int -> b -> String ...
1050
1051
1052
1053
1054
1055
    Then orig_bndrs includes the *quantified* dictionaries of the type
    namely (dsb::Show b), but not the one for Eq Int

So we work inside out, applying the above criterion at each step.


1056
1057
1058
1059
Note [Simplify rule LHS]
~~~~~~~~~~~~~~~~~~~~~~~~
simplOptExpr occurrence-analyses and simplifies the LHS:

1060
   (a) Inline any remaining dictionary bindings (which hopefully
1061
1062
       occur just once)

1063
   (b) Substitute trivial lets, so that they don't get in the way.
1064
       Note that we substitute the function too; we might
1065
1066
       have this as a LHS:  let f71 = M.f Int in f71

1067
   (c) Do eta reduction.  To see why, consider the fold/build rule,
1068
1069
1070
1071
       which without simplification looked like:
          fold k z (build (/\a. g a))  ==>  ...
       This doesn't match unless you do eta reduction on the build argument.
       Similarly for a LHS like
1072
         augment g (build h)
1073
       we do not want to get
1074
         augment (\a. g a) (build h)
1075
1076
       otherwise we don't match when given an argument like
          augment (\a. h a a) (build h)
1077

1078
Note [Matching seqId]
1079
1080
~~~~~~~~~~~~~~~~~~~
The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack
1081
and this code turns it back into an application of seq!
1082
1083
See Note [Rules for seq] in MkId for the details.

1084
1085
1086
Note [Unused spec binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
1087
        f :: a -> a
Austin Seipp's avatar
Austin Seipp committed
1088
        ... SPECIALISE f :: Eq a => a -> a ...
1089
1090
It's true that this *is* a more specialised type, but the rule
we get is something like this:
1091
1092
        f_spec d = f
        RULE: f = f_spec d
Gabor Greif's avatar
typos    
Gabor Greif committed
1093
1094
Note that the rule is bogus, because it mentions a 'd' that is
not bound on the LHS!  But it's a silly specialisation anyway, because
1095
1096
1097
1098
the constraint is unused.  We could bind 'd' to (error "unused")
but it seems better to reject the program because it's almost certainly
a mistake.  That's what the isDeadBinder call detects.

1099