TcPat.hs 48.2 KB
Newer Older
Austin Seipp's avatar
Austin Seipp committed
1 2 3 4
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

5 6

TcPat: Typechecking patterns
Austin Seipp's avatar
Austin Seipp committed
7
-}
8

9
{-# LANGUAGE CPP, RankNTypes #-}
Ian Lynagh's avatar
Ian Lynagh committed
10

11
module TcPat ( tcLetPat, TcSigFun, TcPragFun
12
             , TcSigInfo(..), TcPatSynInfo(..)
thomasw's avatar
thomasw committed
13
             , findScopedTyVars, isPartialSig
14
             , LetBndrSpec(..), addInlinePrags, warnPrags
15
             , tcPat, tcPats, newNoSigLetBndr
16
             , addDataConStupidTheta, badFieldCon, polyPatSig ) where
17

18
#include "HsVersions.h"
19

20
import {-# SOURCE #-}   TcExpr( tcSyntaxOp, tcInferRho)
21 22 23

import HsSyn
import TcHsSyn
24
import TcRnMonad
25 26 27 28
import Inst
import Id
import Var
import Name
29
import NameSet
30 31
import TcEnv
import TcMType
32
import TcValidity( arityErr )
33 34 35 36
import TcType
import TcUnify
import TcHsType
import TysWiredIn
37
import TcEvidence
38 39
import TyCon
import DataCon
cactus's avatar
cactus committed
40 41
import PatSyn
import ConLike
42 43
import PrelNames
import BasicTypes hiding (SuccessFlag(..))
44
import DynFlags
45 46
import SrcLoc
import Util
sof's avatar
sof committed
47
import Outputable
48
import FastString
Ian Lynagh's avatar
Ian Lynagh committed
49
import Control.Monad
50

Austin Seipp's avatar
Austin Seipp committed
51 52 53
{-
************************************************************************
*                                                                      *
54
                External interface
Austin Seipp's avatar
Austin Seipp committed
55 56 57
*                                                                      *
************************************************************************
-}
58

59
tcLetPat :: TcSigFun -> LetBndrSpec
60 61 62
         -> LPat Name -> TcSigmaType
         -> TcM a
         -> TcM (LPat TcId, a)
63
tcLetPat sig_fn no_gen pat pat_ty thing_inside
64
  = tc_lpat pat pat_ty penv thing_inside
65
  where
66
    penv = PE { pe_lazy = True
67
              , pe_ctxt = LetPat sig_fn no_gen }
68 69

-----------------
70
tcPats :: HsMatchContext Name
71 72
       -> [LPat Name]            -- Patterns,
       -> [TcSigmaType]          --   and their types
73
       -> TcM a                  --   and the checker for the body
74
       -> TcM ([LPat TcId], a)
75 76 77

-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
78
-- do the thing inside, use any existentially-bound dictionaries to
79 80 81 82 83
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures

--   1. Initialise the PatState
--   2. Check the patterns
84 85
--   3. Check the body
--   4. Check that no existentials escape
86

87
tcPats ctxt pats pat_tys thing_inside
88 89
  = tc_lpats penv pats pat_tys thing_inside
  where
90
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
91

92
tcPat :: HsMatchContext Name
93
      -> LPat Name -> TcSigmaType
94 95
      -> TcM a                 -- Checker for body, given
                               -- its result type
96
      -> TcM (LPat TcId, a)
97
tcPat ctxt pat pat_ty thing_inside
98 99
  = tc_lpat pat pat_ty penv thing_inside
  where
100
    penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt }
101

102

103
-----------------
104
data PatEnv
105 106
  = PE { pe_lazy :: Bool        -- True <=> lazy context, so no existentials allowed
       , pe_ctxt :: PatCtxt     -- Context in which the whole pattern appears
107
       }
108 109 110

data PatCtxt
  = LamPat   -- Used for lambdas, case etc
111
       (HsMatchContext Name)
112

113
  | LetPat   -- Used only for let(rec) pattern bindings
114
             -- See Note [Typing patterns in pattern bindings]
115 116 117
       TcSigFun        -- Tells type sig if any
       LetBndrSpec     -- True <=> no generalisation of this let

118 119 120
data LetBndrSpec
  = LetLclBndr            -- The binder is just a local one;
                          -- an AbsBinds will provide the global version
121

122
  | LetGblBndr TcPragFun  -- Generalisation plan is NoGen, so there isn't going
123
                          -- to be an AbsBinds; So we must bind the global version
124
                          -- of the binder right away.
125
                          -- Oh, and here is the inline-pragma information
126

127 128 129
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }

130 131 132
inPatBind :: PatEnv -> Bool
inPatBind (PE { pe_ctxt = LetPat {} }) = True
inPatBind (PE { pe_ctxt = LamPat {} }) = False
133 134

---------------
135 136
type TcPragFun = Name -> [LSig Name]
type TcSigFun  = Name -> Maybe TcSigInfo
137 138 139 140 141

data TcSigInfo
  = TcSigInfo {
        sig_id     :: TcId,         --  *Polymorphic* binder for this value...

142
        sig_tvs    :: [(Maybe Name, TcTyVar)],
143 144
                           -- Instantiated type and kind variables
                           -- Just n <=> this skolem is lexically in scope with name n
145
                           -- See Note [Binding scoped type variables]
146

thomasw's avatar
thomasw committed
147 148 149
        sig_nwcs   :: [(Name, TcTyVar)],
                           -- Instantiated wildcard variables

150 151
        sig_theta  :: TcThetaType,  -- Instantiated theta

thomasw's avatar
thomasw committed
152 153 154 155 156 157 158
        sig_extra_cts :: Maybe SrcSpan, -- Just loc <=> An extra-constraints
                                        -- wildcard was present. Any extra
                                        -- constraints inferred during
                                        -- type-checking will be added to the
                                        -- partial type signature. Stores the
                                        -- location of the wildcard.

159
        sig_tau    :: TcSigmaType,  -- Instantiated tau
160
                                    -- See Note [sig_tau may be polymorphic]
161

thomasw's avatar
thomasw committed
162 163
        sig_loc    :: SrcSpan,      -- The location of the signature

164
        sig_partial :: Bool,        -- True <=> a partial type signature
thomasw's avatar
thomasw committed
165
                                    -- containing wildcards
166 167 168 169 170 171 172 173 174

        sig_warn_redundant :: Bool  -- True <=> report redundant constraints
                                    --          when typechecking the value binding
                                    --          for this type signature
           -- This is usually True, but False for
           --   * Record selectors (not important here)
           --   * Class and instance methods.  Here the code may legitimately
           --     be more polymorphic than the signature generated from the
           --     class declaration
175
    }
176 177 178 179 180 181 182 183 184 185 186
  | TcPatSynInfo TcPatSynInfo

data TcPatSynInfo
  = TPSI {
        patsig_name  :: Name,
        patsig_tau   :: TcSigmaType,
        patsig_ex    :: [TcTyVar],
        patsig_prov  :: TcThetaType,
        patsig_univ  :: [TcTyVar],
        patsig_req   :: TcThetaType
    }
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
findScopedTyVars  -- See Note [Binding scoped type variables]
  :: LHsType Name             -- The HsType
  -> TcType                   -- The corresponding Type:
                              --   uses same Names as the HsType
  -> [TcTyVar]                -- The instantiated forall variables of the Type
  -> [(Maybe Name, TcTyVar)]  -- In 1-1 correspondence with the instantiated vars
findScopedTyVars hs_ty sig_ty inst_tvs
  = zipWith find sig_tvs inst_tvs
  where
    find sig_tv inst_tv
      | tv_name `elemNameSet` scoped_names = (Just tv_name, inst_tv)
      | otherwise                          = (Nothing,      inst_tv)
      where
        tv_name = tyVarName sig_tv

    scoped_names = mkNameSet (hsExplicitTvs hs_ty)
    (sig_tvs,_)  = tcSplitForAllTys sig_ty

206 207 208 209
instance NamedThing TcSigInfo where
    getName TcSigInfo{ sig_id = id } = idName id
    getName (TcPatSynInfo tpsi) = patsig_name tpsi

210
instance Outputable TcSigInfo where
thomasw's avatar
thomasw committed
211
    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau })
212 213
        = ppr id <+> dcolon <+> vcat [ pprSigmaType (mkSigmaTy (map snd tyvars) theta tau)
                                     , ppr (map fst tyvars) ]
214 215 216 217 218
    ppr (TcPatSynInfo tpsi) = text "TcPatSynInfo" <+> ppr tpsi

instance Outputable TcPatSynInfo where
    ppr (TPSI{ patsig_name = name}) = ppr name

thomasw's avatar
thomasw committed
219 220
isPartialSig :: TcSigInfo -> Bool
isPartialSig = sig_partial
221

Austin Seipp's avatar
Austin Seipp committed
222
{-
223 224 225 226 227 228 229
Note [Binding scoped type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type variables *brought into lexical scope* by a type signature may
be a subset of the *quantified type variables* of the signatures, for two reasons:

* With kind polymorphism a signature like
    f :: forall f a. f a -> f a
230
  may actually give rise to
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    f :: forall k. forall (f::k -> *) (a:k). f a -> f a
  So the sig_tvs will be [k,f,a], but only f,a are scoped.
  NB: the scoped ones are not necessarily the *inital* ones!

* Even aside from kind polymorphism, tere may be more instantiated
  type variables than lexically-scoped ones.  For example:
        type T a = forall b. b -> (a,b)
        f :: forall c. T c
  Here, the signature for f will have one scoped type variable, c,
  but two instantiated type variables, c' and b'.

The function findScopedTyVars takes
  * hs_ty:    the original HsForAllTy
  * sig_ty:   the corresponding Type (which is guaranteed to use the same Names
              as the HsForAllTy)
  * inst_tvs: the skolems instantiated from the forall's in sig_ty
It returns a [(Maybe Name, TcTyVar)], in 1-1 correspondence with inst_tvs
but with a (Just n) for the lexically scoped name of each in-scope tyvar.
249

250 251 252 253 254 255 256
Note [sig_tau may be polymorphic]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that "sig_tau" might actually be a polymorphic type,
if the original function had a signature like
   forall a. Eq a => forall b. Ord b => ....
But that's ok: tcMatchesFun (called by tcRhs) can deal with that
It happens, too!  See Note [Polymorphic methods] in TcClassDcl.
257

258 259 260 261 262
Note [Existential check]
~~~~~~~~~~~~~~~~~~~~~~~~
Lazy patterns can't bind existentials.  They arise in two ways:
  * Let bindings      let { C a b = e } in b
  * Twiddle patterns  f ~(C a b) = e
263
The pe_lazy field of PatEnv says whether we are inside a lazy
264
pattern (perhaps deeply)
265

266 267 268 269 270
If we aren't inside a lazy pattern then we can bind existentials,
but we need to be careful about "extra" tyvars. Consider
    (\C x -> d) : pat_ty -> res_ty
When looking for existential escape we must check that the existential
bound by C don't unify with the free variables of pat_ty, OR res_ty
271
(or of course the environment).   Hence we need to keep track of the
272
res_ty free vars.
273

274

Austin Seipp's avatar
Austin Seipp committed
275 276
************************************************************************
*                                                                      *
277
                Binders
Austin Seipp's avatar
Austin Seipp committed
278 279 280
*                                                                      *
************************************************************************
-}
281

282
tcPatBndr :: PatEnv -> Name -> TcSigmaType -> TcM (TcCoercion, TcId)
283 284 285 286
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
tcPatBndr (PE { pe_ctxt = LetPat lookup_sig no_gen}) bndr_name pat_ty
287 288 289 290
          -- See Note [Typing patterns in pattern bindings]
  | LetGblBndr prags <- no_gen
  , Just sig <- lookup_sig bndr_name
  = do { bndr_id <- addInlinePrags (sig_id sig) (prags bndr_name)
291
       ; traceTc "tcPatBndr(gbl,sig)" (ppr bndr_id $$ ppr (idType bndr_id))
batterseapower's avatar
batterseapower committed
292 293
       ; co <- unifyPatType (idType bndr_id) pat_ty
       ; return (co, bndr_id) }
294 295

  | otherwise
296
  = do { bndr_id <- newNoSigLetBndr no_gen bndr_name pat_ty
297
       ; traceTc "tcPatBndr(no-sig)" (ppr bndr_id $$ ppr (idType bndr_id))
298
       ; return (mkTcNomReflCo pat_ty, bndr_id) }
299 300

tcPatBndr (PE { pe_ctxt = _lam_or_proc }) bndr_name pat_ty
301
  = return (mkTcNomReflCo pat_ty, mkLocalId bndr_name pat_ty)
302

303 304
------------
newNoSigLetBndr :: LetBndrSpec -> Name -> TcType -> TcM TcId
305
-- In the polymorphic case (no_gen = LetLclBndr), generate a "monomorphic version"
306 307
--    of the Id; the original name will be bound to the polymorphic version
--    by the AbsBinds
308
-- In the monomorphic case (no_gen = LetBglBndr) there is no AbsBinds, and we
309
--    use the original name directly
310
newNoSigLetBndr LetLclBndr name ty
311
  =do  { mono_name <- newLocalName name
312
       ; return (mkLocalId mono_name ty) }
313
newNoSigLetBndr (LetGblBndr prags) name ty
314
  = addInlinePrags (mkLocalId name ty) (prags name)
315 316 317 318

----------
addInlinePrags :: TcId -> [LSig Name] -> TcM TcId
addInlinePrags poly_id prags
319
  = do { traceTc "addInlinePrags" (ppr poly_id $$ ppr prags)
320
       ; tc_inl inl_sigs }
321 322 323 324 325
  where
    inl_sigs = filter isInlineLSig prags
    tc_inl [] = return poly_id
    tc_inl (L loc (InlineSig _ prag) : other_inls)
       = do { unless (null other_inls) (setSrcSpan loc warn_dup_inline)
326
            ; traceTc "addInlinePrag" (ppr poly_id $$ ppr prag)
327 328 329 330 331 332 333 334 335 336 337 338
            ; return (poly_id `setInlinePragma` prag) }
    tc_inl _ = panic "tc_inl"

    warn_dup_inline = warnPrags poly_id inl_sigs $
                      ptext (sLit "Duplicate INLINE pragmas for")

warnPrags :: Id -> [LSig Name] -> SDoc -> TcM ()
warnPrags id bad_sigs herald
  = addWarnTc (hang (herald <+> quotes (ppr id))
                  2 (ppr_sigs bad_sigs))
  where
    ppr_sigs sigs = vcat (map (ppr . getLoc) sigs)
339

Austin Seipp's avatar
Austin Seipp committed
340
{-
341 342 343 344 345 346 347 348
Note [Typing patterns in pattern bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are typing a pattern binding
    pat = rhs
Then the PatCtxt will be (LetPat sig_fn let_bndr_spec).

There can still be signatures for the binders:
     data T = MkT (forall a. a->a) Int
349
     x :: forall a. a->a
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
     y :: Int
     MkT x y = <rhs>

Two cases, dealt with by the LetPat case of tcPatBndr

 * If we are generalising (generalisation plan is InferGen or
   CheckGen), then the let_bndr_spec will be LetLclBndr.  In that case
   we want to bind a cloned, local version of the variable, with the
   type given by the pattern context, *not* by the signature (even if
   there is one; see Trac #7268). The mkExport part of the
   generalisation step will do the checking and impedence matching
   against the signature.

 * If for some some reason we are not generalising (plan = NoGen), the
   LetBndrSpec will be LetGblBndr.  In that case we must bind the
   global version of the Id, and do so with precisely the type given
   in the signature.  (Then we unify with the type from the pattern
   context type.

369

Austin Seipp's avatar
Austin Seipp committed
370 371
************************************************************************
*                                                                      *
372
                The main worker functions
Austin Seipp's avatar
Austin Seipp committed
373 374
*                                                                      *
************************************************************************
375

376 377
Note [Nesting]
~~~~~~~~~~~~~~
lennart@augustsson.net's avatar
lennart@augustsson.net committed
378
tcPat takes a "thing inside" over which the pattern scopes.  This is partly
379
so that tcPat can extend the environment for the thing_inside, but also
380 381 382 383
so that constraints arising in the thing_inside can be discharged by the
pattern.

This does not work so well for the ErrCtxt carried by the monad: we don't
384
want the error-context for the pattern to scope over the RHS.
385
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
Austin Seipp's avatar
Austin Seipp committed
386
-}
387 388

--------------------
389
type Checker inp out =  forall r.
390 391 392 393
                          inp
                       -> PatEnv
                       -> TcM r
                       -> TcM (out, r)
394 395

tcMultiple :: Checker inp out -> Checker [inp] [out]
396
tcMultiple tc_pat args penv thing_inside
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  = do  { err_ctxt <- getErrCtxt
        ; let loop _ []
                = do { res <- thing_inside
                     ; return ([], res) }

              loop penv (arg:args)
                = do { (p', (ps', res))
                                <- tc_pat arg penv $
                                   setErrCtxt err_ctxt $
                                   loop penv args
                -- setErrCtxt: restore context before doing the next pattern
                -- See note [Nesting] above

                     ; return (p':ps', res) }

        ; loop penv args }
413 414

--------------------
415 416 417 418 419
tc_lpat :: LPat Name
        -> TcSigmaType
        -> PatEnv
        -> TcM a
        -> TcM (LPat TcId, a)
420
tc_lpat (L span pat) pat_ty penv thing_inside
421
  = setSrcSpan span $
422
    do  { (pat', res) <- maybeWrapPatCtxt pat (tc_pat penv pat pat_ty)
423
                                          thing_inside
424
        ; return (L span pat', res) }
425 426

tc_lpats :: PatEnv
427 428 429 430
         -> [LPat Name] -> [TcSigmaType]
         -> TcM a
         -> TcM ([LPat TcId], a)
tc_lpats penv pats tys thing_inside
Simon Peyton Jones's avatar
Simon Peyton Jones committed
431
  = ASSERT2( equalLength pats tys, ppr pats $$ ppr tys )
432
    tcMultiple (\(p,t) -> tc_lpat p t)
433
                (zipEqual "tc_lpats" pats tys)
434
                penv thing_inside
435 436

--------------------
437 438 439 440 441 442
tc_pat  :: PatEnv
        -> Pat Name
        -> TcSigmaType  -- Fully refined result type
        -> TcM a                -- Thing inside
        -> TcM (Pat TcId,       -- Translated pattern
                a)              -- Result of thing inside
443

444
tc_pat penv (VarPat name) pat_ty thing_inside
445
  = do  { (co, id) <- tcPatBndr penv name pat_ty
batterseapower's avatar
batterseapower committed
446 447
        ; res <- tcExtendIdEnv1 name id thing_inside
        ; return (mkHsWrapPatCo co (VarPat id) pat_ty, res) }
448 449

tc_pat penv (ParPat pat) pat_ty thing_inside
450 451
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (ParPat pat', res) }
452 453

tc_pat penv (BangPat pat) pat_ty thing_inside
454 455
  = do  { (pat', res) <- tc_lpat pat pat_ty penv thing_inside
        ; return (BangPat pat', res) }
456

457
tc_pat penv lpat@(LazyPat pat) pat_ty thing_inside
458 459 460 461
  = do  { (pat', (res, pat_ct))
                <- tc_lpat pat pat_ty (makeLazy penv) $
                   captureConstraints thing_inside
                -- Ignore refined penv', revert to penv
462

463 464
        ; emitConstraints pat_ct
        -- captureConstraints/extendConstraints:
465
        --   see Note [Hopping the LIE in lazy patterns]
466

467 468
        -- Check there are no unlifted types under the lazy pattern
        ; when (any (isUnLiftedType . idType) $ collectPatBinders pat') $
469 470
               lazyUnliftedPatErr lpat

471 472 473
        -- Check that the expected pattern type is itself lifted
        ; pat_ty' <- newFlexiTyVarTy liftedTypeKind
        ; _ <- unifyType pat_ty pat_ty'
474

475
        ; return (LazyPat pat', res) }
476

477 478 479
tc_pat _ p@(QuasiQuotePat _) _ _
  = pprPanic "Should never see QuasiQuotePat in type checker" (ppr p)

480
tc_pat _ (WildPat _) pat_ty thing_inside
481 482
  = do  { res <- thing_inside
        ; return (WildPat pat_ty, res) }
483

484
tc_pat penv (AsPat (L nm_loc name) pat) pat_ty thing_inside
485
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
486
        ; (pat', res) <- tcExtendIdEnv1 name bndr_id $
487 488 489 490 491 492 493 494 495 496 497 498 499
                         tc_lpat pat (idType bndr_id) penv thing_inside
            -- NB: if we do inference on:
            --          \ (y@(x::forall a. a->a)) = e
            -- we'll fail.  The as-pattern infers a monotype for 'y', which then
            -- fails to unify with the polymorphic type for 'x'.  This could
            -- perhaps be fixed, but only with a bit more work.
            --
            -- If you fix it, don't forget the bindInstsOfPatIds!
        ; return (mkHsWrapPatCo co (AsPat (L nm_loc bndr_id) pat') pat_ty, res) }

tc_pat penv (ViewPat expr pat _) overall_pat_ty thing_inside
  = do  {
         -- Morally, expr must have type `forall a1...aN. OPT' -> B`
500 501 502 503
         -- where overall_pat_ty is an instance of OPT'.
         -- Here, we infer a rho type for it,
         -- which replaces the leading foralls and constraints
         -- with fresh unification variables.
504 505
        ; (expr',expr'_inferred) <- tcInferRho expr

506
         -- next, we check that expr is coercible to `overall_pat_ty -> pat_ty`
507
         -- NOTE: this forces pat_ty to be a monotype (because we use a unification
508 509 510 511
         -- variable to find it).  this means that in an example like
         -- (view -> f)    where view :: _ -> forall b. b
         -- we will only be able to use view at one instantation in the
         -- rest of the view
512 513 514
        ; (expr_co, pat_ty) <- tcInfer $ \ pat_ty ->
                unifyType expr'_inferred (mkFunTy overall_pat_ty pat_ty)

515
         -- pattern must have pat_ty
516 517
        ; (pat', res) <- tc_lpat pat pat_ty penv thing_inside

518
        ; return (ViewPat (mkLHsWrapCo expr_co expr') pat' overall_pat_ty, res) }
519

520 521
-- Type signatures in patterns
-- See Note [Pattern coercions] below
522
tc_pat penv (SigPatIn pat sig_ty) pat_ty thing_inside
thomasw's avatar
thomasw committed
523 524 525
  = do  { (inner_ty, tv_binds, nwc_binds, wrap) <- tcPatSig (inPatBind penv)
                                                            sig_ty pat_ty
        ; (pat', res) <- tcExtendTyVarEnv2 (tv_binds ++ nwc_binds) $
526
                         tc_lpat pat inner_ty penv thing_inside
527
        ; return (mkHsWrapPat wrap (SigPatOut pat' inner_ty) pat_ty, res) }
528 529 530

------------------------
-- Lists, tuples, arrays
531
tc_pat penv (ListPat pats _ Nothing) pat_ty thing_inside
532
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy pat_ty
533
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
534 535
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty Nothing) pat_ty, res)
536 537 538
        }

tc_pat penv (ListPat pats _ (Just (_,e))) pat_ty thing_inside
539
  = do  { list_pat_ty <- newFlexiTyVarTy liftedTypeKind
540 541 542
        ; e' <- tcSyntaxOp ListOrigin e (mkFunTy pat_ty list_pat_ty)
        ; (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy list_pat_ty
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
543 544
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (ListPat pats' elt_ty (Just (pat_ty,e'))) list_pat_ty, res)
545
        }
546

547
tc_pat penv (PArrPat pats _) pat_ty thing_inside
548 549 550 551
  = do  { (coi, elt_ty) <- matchExpectedPatTy matchExpectedPArrTy pat_ty
        ; (pats', res) <- tcMultiple (\p -> tc_lpat p elt_ty)
                                     pats penv thing_inside
        ; return (mkHsWrapPat coi (PArrPat pats' elt_ty) pat_ty, res)
552
        }
553

554
tc_pat penv (TuplePat pats boxity _) pat_ty thing_inside
555
  = do  { let tc = tupleTyCon (boxityNormalTupleSort boxity) (length pats)
556
        ; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc) pat_ty
557
        ; (pats', res) <- tc_lpats penv pats arg_tys thing_inside
558

559
        ; dflags <- getDynFlags
560

561 562 563 564 565
        -- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
        -- so that we can experiment with lazy tuple-matching.
        -- This is a pretty odd place to make the switch, but
        -- it was easy to do.
        ; let
566 567
              unmangled_result = TuplePat pats' boxity arg_tys
                                 -- pat_ty /= pat_ty iff coi /= IdCo
568 569
              possibly_mangled_result
                | gopt Opt_IrrefutableTuples dflags &&
570
                  isBoxed boxity            = LazyPat (noLoc unmangled_result)
571
                | otherwise                 = unmangled_result
572

573 574
        ; ASSERT( length arg_tys == length pats )      -- Syntactically enforced
          return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
575
        }
576 577 578

------------------------
-- Data constructors
579 580
tc_pat penv (ConPatIn con arg_pats) pat_ty thing_inside
  = tcConPat penv con pat_ty arg_pats thing_inside
581 582 583

------------------------
-- Literal patterns
584
tc_pat _ (LitPat simple_lit) pat_ty thing_inside
585 586 587 588 589
  = do  { let lit_ty = hsLitType simple_lit
        ; co <- unifyPatType lit_ty pat_ty
                -- coi is of kind: pat_ty ~ lit_ty
        ; res <- thing_inside
        ; return ( mkHsWrapPatCo co (LitPat simple_lit) pat_ty
590
                 , res) }
591 592 593

------------------------
-- Overloaded patterns: n, and n+k
Alan Zimmerman's avatar
Alan Zimmerman committed
594
tc_pat _ (NPat (L l over_lit) mb_neg eq) pat_ty thing_inside
595 596 597 598 599 600 601 602 603 604
  = do  { let orig = LiteralOrigin over_lit
        ; lit'    <- newOverloadedLit orig over_lit pat_ty
        ; eq'     <- tcSyntaxOp orig eq (mkFunTys [pat_ty, pat_ty] boolTy)
        ; mb_neg' <- case mb_neg of
                        Nothing  -> return Nothing      -- Positive literal
                        Just neg ->     -- Negative literal
                                        -- The 'negate' is re-mappable syntax
                            do { neg' <- tcSyntaxOp orig neg (mkFunTy pat_ty pat_ty)
                               ; return (Just neg') }
        ; res <- thing_inside
Alan Zimmerman's avatar
Alan Zimmerman committed
605
        ; return (NPat (L l lit') mb_neg' eq', res) }
606

Alan Zimmerman's avatar
Alan Zimmerman committed
607
tc_pat penv (NPlusKPat (L nm_loc name) (L loc lit) ge minus) pat_ty thing_inside
608
  = do  { (co, bndr_id) <- setSrcSpan nm_loc (tcPatBndr penv name pat_ty)
batterseapower's avatar
batterseapower committed
609
        ; let pat_ty' = idType bndr_id
610 611
              orig    = LiteralOrigin lit
        ; lit' <- newOverloadedLit orig lit pat_ty'
612

613 614 615
        -- The '>=' and '-' parts are re-mappable syntax
        ; ge'    <- tcSyntaxOp orig ge    (mkFunTys [pat_ty', pat_ty'] boolTy)
        ; minus' <- tcSyntaxOp orig minus (mkFunTys [pat_ty', pat_ty'] pat_ty')
Alan Zimmerman's avatar
Alan Zimmerman committed
616
        ; let pat' = NPlusKPat (L nm_loc bndr_id) (L loc lit') ge' minus'
617

618 619 620 621
        -- The Report says that n+k patterns must be in Integral
        -- We may not want this when using re-mappable syntax, though (ToDo?)
        ; icls <- tcLookupClass integralClassName
        ; instStupidTheta orig [mkClassPred icls [pat_ty']]
622

623 624 625 626
        ; res <- tcExtendIdEnv1 name bndr_id thing_inside
        ; return (mkHsWrapPatCo co pat' pat_ty, res) }

tc_pat _ _other_pat _ _ = panic "tc_pat"        -- ConPatOut, SigPatOut
627 628

----------------
629
unifyPatType :: TcType -> TcType -> TcM TcCoercion
630 631 632 633 634 635
-- In patterns we want a coercion from the
-- context type (expected) to the actual pattern type
-- But we don't want to reverse the args to unifyType because
-- that controls the actual/expected stuff in error messages
unifyPatType actual_ty expected_ty
  = do { coi <- unifyType actual_ty expected_ty
636
       ; return (mkTcSymCo coi) }
637

Austin Seipp's avatar
Austin Seipp committed
638
{-
639 640 641 642
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern.  E.g.
643
        f ~(C x) = 3
644
We can't discharge the Num constraint from dictionaries bound by
645
the pattern C!
646

647
So we have to make the constraints from thing_inside "hop around"
648
the pattern.  Hence the captureConstraints and emitConstraints.
649 650 651

The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
652 653 654
        data T a where { T1 :: Int -> T Int; ... }
        f :: T a -> Int -> a
        f ~(T1 i) y = y
655 656 657 658 659 660
It's obviously not sound to refine a to Int in the right
hand side, because the arugment might not match T1 at all!

Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring

661

Austin Seipp's avatar
Austin Seipp committed
662 663
************************************************************************
*                                                                      *
664 665
        Most of the work for constructors is here
        (the rest is in the ConPatIn case of tc_pat)
Austin Seipp's avatar
Austin Seipp committed
666 667
*                                                                      *
************************************************************************
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

and a case expression

  case x :: Map (Int, c) w of MapPair m -> ...

As explained by [Wrappers for data instance tycons] in MkIds.lhs, the
worker/wrapper types for MapPair are

  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error.  Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}.  To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon).  This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}

696
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
697

698
  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
699 700 701 702 703 704

moving between representation and family type into account.  To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type.  This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.

705
Now it might appear seem as if we could have used the previous GADT type
706 707 708 709 710 711 712 713 714 715 716 717
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation.  However, that would be wrong.  Why?  The
whole point of GADT refinement is that the refinement is local to the case
alternative.  In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w].  In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.

718 719 720
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
Austin Seipp's avatar
Austin Seipp committed
721
-}
722

723
--      Running example:
724
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
725
--       with scrutinee of type (T ty)
726

727 728 729 730
tcConPat :: PatEnv -> Located Name
         -> TcRhoType           -- Type of the pattern
         -> HsConPatDetails Name -> TcM a
         -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
731 732 733 734 735 736 737 738 739 740
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
  = do  { con_like <- tcLookupConLike con_name
        ; case con_like of
            RealDataCon data_con -> tcDataConPat penv con_lname data_con
                                                 pat_ty arg_pats thing_inside
            PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
                                             pat_ty arg_pats thing_inside
        }

tcDataConPat :: PatEnv -> Located Name -> DataCon
741 742 743
             -> TcRhoType               -- Type of the pattern
             -> HsConPatDetails Name -> TcM a
             -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
744
tcDataConPat penv (L con_span con_name) data_con pat_ty arg_pats thing_inside
745 746 747
  = do  { let tycon = dataConTyCon data_con
                  -- For data families this is the representation tycon
              (univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
748
                = dataConFullSig data_con
cactus's avatar
cactus committed
749
              header = L con_span (RealDataCon data_con)
750

751 752 753 754
          -- Instantiate the constructor type variables [a->ty]
          -- This may involve doing a family-instance coercion,
          -- and building a wrapper
        ; (wrap, ctxt_res_tys) <- matchExpectedPatTy (matchExpectedConTy tycon) pat_ty
755

756 757
          -- Add the stupid theta
        ; setSrcSpan con_span $ addDataConStupidTheta data_con ctxt_res_tys
758

759
        ; checkExistentials ex_tvs penv
760 761
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX
                               (zipTopTvSubst univ_tvs ctxt_res_tys) ex_tvs
762 763
                     -- Get location from monad, not from ex_tvs

764
        ; let -- pat_ty' = mkTyConApp tycon ctxt_res_tys
765
              -- pat_ty' is type of the actual constructor application
766
              -- pat_ty' /= pat_ty iff coi /= IdCo
Simon Peyton Jones's avatar
Simon Peyton Jones committed
767

768
              arg_tys' = substTys tenv arg_tys
769

Simon Peyton Jones's avatar
Simon Peyton Jones committed
770
        ; traceTc "tcConPat" (vcat [ ppr con_name, ppr univ_tvs, ppr ex_tvs, ppr eq_spec
771
                                   , ppr ex_tvs', ppr ctxt_res_tys, ppr arg_tys' ])
772 773
        ; if null ex_tvs && null eq_spec && null theta
          then do { -- The common case; no class bindings etc
774
                    -- (see Note [Arrows and patterns])
775 776 777 778
                    (arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys'
                                                  arg_pats penv thing_inside
                  ; let res_pat = ConPatOut { pat_con = header,
                                              pat_tvs = [], pat_dicts = [],
779
                                              pat_binds = emptyTcEvBinds,
780
                                              pat_args = arg_pats',
781
                                              pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
782
                                              pat_wrap = idHsWrapper }
783

784
                  ; return (mkHsWrapPat wrap res_pat pat_ty, res) }
785

786
          else do   -- The general case, with existential,
787
                    -- and local equality constraints
788
        { let theta'   = substTheta tenv (eqSpecPreds eq_spec ++ theta)
789 790
                           -- order is *important* as we generate the list of
                           -- dictionary binders from theta'
791
              no_equalities = not (any isEqPred theta')
792
              skol_info = case pe_ctxt penv of
cactus's avatar
cactus committed
793
                            LamPat mc -> PatSkol (RealDataCon data_con) mc
794
                            LetPat {} -> UnkSkol -- Doesn't matter
795

796 797
        ; gadts_on    <- xoptM Opt_GADTs
        ; families_on <- xoptM Opt_TypeFamilies
798
        ; checkTc (no_equalities || gadts_on || families_on)
sivteck's avatar
sivteck committed
799 800
                  (text "A pattern match on a GADT requires the" <+>
                   text "GADTs or TypeFamilies language extension")
801 802 803
                  -- Trac #2905 decided that a *pattern-match* of a GADT
                  -- should require the GADT language flag.
                  -- Re TypeFamilies see also #7156
804

805
        ; given <- newEvVars theta'
806
        ; (ev_binds, (arg_pats', res))
807
             <- checkConstraints skol_info ex_tvs' given $
cactus's avatar
cactus committed
808
                tcConArgs (RealDataCon data_con) arg_tys' arg_pats penv thing_inside
809

cactus's avatar
cactus committed
810
        ; let res_pat = ConPatOut { pat_con   = header,
811 812 813 814
                                    pat_tvs   = ex_tvs',
                                    pat_dicts = given,
                                    pat_binds = ev_binds,
                                    pat_args  = arg_pats',
815
                                    pat_arg_tys = ctxt_res_tys,
cactus's avatar
cactus committed
816
                                    pat_wrap  = idHsWrapper }
817 818
        ; return (mkHsWrapPat wrap res_pat pat_ty, res)
        } }
819

cactus's avatar
cactus committed
820
tcPatSynPat :: PatEnv -> Located Name -> PatSyn
821 822 823
            -> TcRhoType                -- Type of the pattern
            -> HsConPatDetails Name -> TcM a
            -> TcM (Pat TcId, a)
cactus's avatar
cactus committed
824
tcPatSynPat penv (L con_span _) pat_syn pat_ty arg_pats thing_inside
825
  = do  { let (univ_tvs, ex_tvs, prov_theta, req_theta, arg_tys, ty) = patSynSig pat_syn
cactus's avatar
cactus committed
826

827
        ; (subst, univ_tvs') <- tcInstTyVars univ_tvs
cactus's avatar
cactus committed
828

829
        ; checkExistentials ex_tvs penv
cactus's avatar
cactus committed
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        ; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX subst ex_tvs
        ; let ty' = substTy tenv ty
              arg_tys' = substTys tenv arg_tys
              prov_theta' = substTheta tenv prov_theta
              req_theta' = substTheta tenv req_theta

        ; wrap <- coToHsWrapper <$> unifyType ty' pat_ty
        ; traceTc "tcPatSynPat" (ppr pat_syn $$
                                 ppr pat_ty $$
                                 ppr ty' $$
                                 ppr ex_tvs' $$
                                 ppr prov_theta' $$
                                 ppr req_theta' $$
                                 ppr arg_tys')

        ; prov_dicts' <- newEvVars prov_theta'

        ; let skol_info = case pe_ctxt penv of
                            LamPat mc -> PatSkol (PatSynCon pat_syn) mc
                            LetPat {} -> UnkSkol -- Doesn't matter

851
        ; req_wrap <- instCall PatOrigin (mkTyVarTys univ_tvs') req_theta'
cactus's avatar
cactus committed
852 853
        ; traceTc "instCall" (ppr req_wrap)

854
        ; traceTc "checkConstraints {" Outputable.empty
cactus's avatar
cactus committed
855 856 857 858 859 860
        ; (ev_binds, (arg_pats', res))
             <- checkConstraints skol_info ex_tvs' prov_dicts' $
                tcConArgs (PatSynCon pat_syn) arg_tys' arg_pats penv thing_inside

        ; traceTc "checkConstraints }" (ppr ev_binds)
        ; let res_pat = ConPatOut { pat_con   = L con_span $ PatSynCon pat_syn,
861 862 863 864
                                    pat_tvs   = ex_tvs',
                                    pat_dicts = prov_dicts',
                                    pat_binds = ev_binds,
                                    pat_args  = arg_pats',
865
                                    pat_arg_tys = mkTyVarTys univ_tvs',
cactus's avatar
cactus committed
866
                                    pat_wrap  = req_wrap }