Simplify.lhs 89.4 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
Ian Lynagh's avatar
Ian Lynagh committed
13 14
import Type hiding      ( substTy, extendTvSubst )
import SimplEnv
15
import SimplUtils
16
import FamInstEnv	( FamInstEnv )
17
import Id
18
import MkId		( mkImpossibleExpr, seqId )
19
import Var
20 21
import IdInfo
import Coercion
Ian Lynagh's avatar
Ian Lynagh committed
22
import FamInstEnv       ( topNormaliseType )
23
import DataCon          ( DataCon, dataConWorkId, dataConRepStrictness )
24
import CoreSyn
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
25
import NewDemand        ( isStrictDmd, splitStrictSig )
Ian Lynagh's avatar
Ian Lynagh committed
26
import PprCore          ( pprParendExpr, pprCoreExpr )
27 28
import CoreUnfold       ( mkUnfolding, mkCoreUnfolding, mkInlineRule, 
                          exprIsConApp_maybe, callSiteInline, CallCtxt(..) )
29
import CoreUtils
30
import qualified CoreSubst
31
import CoreArity	( exprArity )
32
import Rules            ( lookupRule, getRules )
33
import BasicTypes       ( isMarkedStrict, Arity )
34
import CostCentre       ( currentCCS, pushCCisNop )
Ian Lynagh's avatar
Ian Lynagh committed
35 36 37 38
import TysPrim          ( realWorldStatePrimTy )
import PrelInfo         ( realWorldPrimId )
import BasicTypes       ( TopLevelFlag(..), isTopLevel,
                          RecFlag(..), isNonRuleLoopBreaker )
39
import MonadUtils	( foldlM )
Ian Lynagh's avatar
Ian Lynagh committed
40 41
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
42
import Outputable
43
import FastString
44 45 46
\end{code}


47 48
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
49 50


51
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
52
        *** IMPORTANT NOTE ***
53 54 55 56 57 58
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


59
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
60
        *** IMPORTANT NOTE ***
61 62 63 64 65 66 67 68 69 70
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
71
        ORGANISATION OF FUNCTIONS
72 73 74 75 76 77
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
78 79 80

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
81 82 83
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
84 85
        ------------------------------
simplRecBind    [binders already simplfied]
86 87 88 89
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
90 91
            top-level non-recursive bindings
  Returns:
92 93 94 95 96
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
97 98 99
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
100 101 102 103

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
104 105 106
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
107
    else
Ian Lynagh's avatar
Ian Lynagh committed
108 109
        simplLazyBind
        addFloats
110

Ian Lynagh's avatar
Ian Lynagh committed
111
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
112 113 114 115
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
116 117 118

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
119
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
120 121 122
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
123
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
124 125
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
126 127 128
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
129
  - completeBind
130 131


Ian Lynagh's avatar
Ian Lynagh committed
132
completeNonRecX:        [binder and rhs both simplified]
133
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
134
        build a Case
135
   else
Ian Lynagh's avatar
Ian Lynagh committed
136 137
        completeBind
        addFloats
138

Ian Lynagh's avatar
Ian Lynagh committed
139 140
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
141 142 143 144 145 146 147 148
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
149 150 151
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
152 153 154
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
155 156 157

        f (g x, h x)
        g (+ x)
158 159 160 161

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
162 163
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
164 165 166

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
167 168
        p = (g x, h x)
        q = + x
169 170

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
171
can be safely inlined.
172 173 174 175 176

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
177
        r = let x = e in (x,x)
178 179 180 181 182 183 184 185 186 187 188 189 190 191

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
192
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
193 194 195 196 197

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
198 199


200
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
201
%*                                                                      *
202
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
203
%*                                                                      *
204 205 206
%************************************************************************

\begin{code}
207
simplTopBinds :: SimplEnv -> [InBind] -> SimplM SimplEnv
208

Ian Lynagh's avatar
Ian Lynagh committed
209
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
210 211 212 213
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
214
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
215 216 217
        ; dflags <- getDOptsSmpl
        ; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
                          dopt Opt_D_dump_rule_firings dflags
Ian Lynagh's avatar
Ian Lynagh committed
218
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
219
        ; freeTick SimplifierDone
220
        ; return env2 }
221
  where
Ian Lynagh's avatar
Ian Lynagh committed
222 223 224 225 226 227
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
228
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
229 230
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
231 232
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
233

Ian Lynagh's avatar
Ian Lynagh committed
234 235
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
236

237 238
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
239 240
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
241 242 243 244
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
245
%*                                                                      *
246
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
247
%*                                                                      *
248 249 250
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
251
        * recursive bindings only
252 253 254

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
255 256
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
257 258 259 260 261
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
Thomas Schilling's avatar
Thomas Schilling committed
262
        -- _and_ updates env0 with the in-scope set from env1
263
  where
264
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
265
        -- Add the (substituted) rules to the binder
266
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
267 268
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
269

270
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
271

272
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
273 274
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
275 276
\end{code}

277
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
278 279
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
280 281 282 283 284

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
285 286 287
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
288

289
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
290 291 292
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
293 294

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
295 296
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
297 298 299 300
\end{code}


simplLazyBind is used for
301 302
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
303
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
304 305

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
306
    1. It assumes that the binder is *already* simplified,
307
       and is in scope, and its IdInfo too, except unfolding
308 309 310 311 312 313 314 315

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
316 317 318 319 320
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
321

322
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
323
  = do  { let   rhs_env     = rhs_se `setInScope` env
324 325 326 327 328 329 330 331 332 333
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
334
        ; (body_env, tvs') <- simplBinders rhs_env tvs
335
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
336

337 338
        -- Simplify the RHS
        ; (body_env1, body1) <- simplExprF body_env body mkBoringStop
Ian Lynagh's avatar
Ian Lynagh committed
339 340 341 342 343 344 345

        -- ANF-ise a constructor or PAP rhs
        ; (body_env2, body2) <- prepareRhs body_env1 body1

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
                then                            -- No floating, just wrap up!
346
                     do { rhs' <- mkLam env tvs' (wrapFloats body_env2 body2)
Ian Lynagh's avatar
Ian Lynagh committed
347 348 349 350 351 352 353 354 355
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
356
                        ; rhs' <- mkLam env tvs' body3
357
                        ; env' <- foldlM (addPolyBind top_lvl) env poly_binds
358
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
359 360

        ; completeBind env' top_lvl bndr bndr1 rhs' }
361
\end{code}
362

Ian Lynagh's avatar
Ian Lynagh committed
363
A specialised variant of simplNonRec used when the RHS is already simplified,
364 365 366 367
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
368 369 370
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
371 372

simplNonRecX env bndr new_rhs
373 374 375
  | isDeadBinder bndr	-- Not uncommon; e.g. case (a,b) of b { (p,q) -> p }
  = return env		-- 		 Here b is dead, and we avoid creating
  | otherwise		--		 the binding b = (a,b)
Ian Lynagh's avatar
Ian Lynagh committed
376
  = do  { (env', bndr') <- simplBinder env bndr
377
        ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
378 379

completeNonRecX :: SimplEnv
380
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
381 382 383 384
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
385

386
completeNonRecX env is_strict old_bndr new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
387 388
  = do  { (env1, rhs1) <- prepareRhs (zapFloats env) new_rhs
        ; (env2, rhs2) <-
389
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
390 391 392 393
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
394 395 396 397
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
398
   In the cases described by the folowing commment, postInlineUnconditionally will
399
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
400 401 402 403 404 405 406 407
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
408

409
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
410 411 412 413 414 415
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
416

417 418 419 420
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

421
----------------------------------
422
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
423
constructor application and, if so, converts it to ANF, so that the
424
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
425
        x = (f a, g b)
426
becomes
Ian Lynagh's avatar
Ian Lynagh committed
427 428 429
        t1 = f a
        t2 = g b
        x = (t1,t2)
430

431
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
432
        v = (f e1 `cast` co) e2
433
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
434
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
435 436
That's what the 'go' loop in prepareRhs does

437 438 439
\begin{code}
prepareRhs :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Adds new floats to the env iff that allows us to return a good RHS
Ian Lynagh's avatar
Ian Lynagh committed
440
prepareRhs env (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
441
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
442 443 444
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
  = do  { (env', rhs') <- makeTrivial env rhs
        ; return (env', Cast rhs' co) }
445

Ian Lynagh's avatar
Ian Lynagh committed
446 447 448
prepareRhs env0 rhs0
  = do  { (_is_val, env1, rhs1) <- go 0 env0 rhs0
        ; return (env1, rhs1) }
449
  where
450
    go n_val_args env (Cast rhs co)
Ian Lynagh's avatar
Ian Lynagh committed
451 452
        = do { (is_val, env', rhs') <- go n_val_args env rhs
             ; return (is_val, env', Cast rhs' co) }
453
    go n_val_args env (App fun (Type ty))
Ian Lynagh's avatar
Ian Lynagh committed
454 455
        = do { (is_val, env', rhs') <- go n_val_args env fun
             ; return (is_val, env', App rhs' (Type ty)) }
456
    go n_val_args env (App fun arg)
Ian Lynagh's avatar
Ian Lynagh committed
457 458 459 460 461
        = do { (is_val, env', fun') <- go (n_val_args+1) env fun
             ; case is_val of
                True -> do { (env'', arg') <- makeTrivial env' arg
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
462
    go n_val_args env (Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
463 464 465 466
        = return (is_val, env, Var fun)
        where
          is_val = n_val_args > 0       -- There is at least one arg
                                        -- ...and the fun a constructor or PAP
467
                 && (isConLikeId fun || n_val_args < idArity fun)
468
		        	   -- See Note [CONLIKE pragma] in BasicTypes
Ian Lynagh's avatar
Ian Lynagh committed
469
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
470
        = return (False, env, other)
471 472
\end{code}

473

474 475 476
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
477
        x = e `cast` co
478
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
479 480
        x' = e
        x = x `cast` co         -- A trivial binding
481 482 483 484 485 486 487 488 489 490 491 492 493
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
494
                -- This case should optimise
495

496 497
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
498
BUT don't do [Float coercions] if 'e' has an unlifted type.
499 500
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
501 502
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
503 504 505

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
506
But 'v' isn't in scope!
507 508

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
509 510
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
511

512 513 514 515 516 517 518

\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial env expr
  | exprIsTrivial expr
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
519
  | otherwise           -- See Note [Take care] below
Ian Lynagh's avatar
Ian Lynagh committed
520
  = do  { var <- newId (fsLit "a") (exprType expr)
521
        ; env' <- completeNonRecX env False var var expr
522 523 524 525 526
--	  pprTrace "makeTrivial" (vcat [ppr var <+> ppr (exprArity (substExpr env' (Var var)))
--	  	   		       , ppr expr
--	  	   		       , ppr (substExpr env' (Var var))
--				       , ppr (idArity (fromJust (lookupInScope (seInScope env') var))) ]) $
	; return (env', substExpr env' (Var var)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
527 528 529 530 531 532 533
	-- The substitution is needed becase we're constructing a new binding
	--     a = rhs
	-- And if rhs is of form (rhs1 |> co), then we might get
	--     a1 = rhs1
	--     a = a1 |> co
	-- and now a's RHS is trivial and can be substituted out, and that
	-- is what completeNonRecX will do
534
\end{code}
535 536


537
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
538
%*                                                                      *
539
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
540
%*                                                                      *
541 542
%************************************************************************

543 544 545 546 547
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
548 549 550 551 552 553 554 555

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
556
  - top-level bindings (when let-to-case is impossible)
557
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
558
                (so let-to-case is inappropriate).
559

560 561
Nor does it do the atomic-argument thing

562
\begin{code}
563
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
564 565 566 567 568 569 570
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
571 572

completeBind env top_lvl old_bndr new_bndr new_rhs
573 574 575
  = do	{ let old_info = idInfo old_bndr
	      old_unf  = unfoldingInfo old_info
	      occ_info = occInfo old_info
576

577 578 579 580 581 582 583 584 585 586 587 588 589
	; new_unfolding <- simplUnfolding env top_lvl old_bndr occ_info new_rhs old_unf

	; if postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs new_unfolding
	                -- Inline and discard the binding
	  then do  { tick (PostInlineUnconditionally old_bndr)
	            ; return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
	        -- Use the substitution to make quite, quite sure that the
	        -- substitution will happen, since we are going to discard the binding

	  else return (addNonRecWithUnf env new_bndr new_rhs new_unfolding) }

------------------------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplM SimplEnv
590 591 592 593 594 595 596 597 598 599 600 601
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
602 603 604 605
  = do	{ unfolding <- simplUnfolding env top_lvl poly_id NoOccInfo rhs noUnfolding
    	  		-- Assumes that poly_id did not have an INLINE prag
			-- which is perhaps wrong.  ToDo: think about this
        ; return (addNonRecWithUnf env poly_id rhs unfolding) }
606

607
addPolyBind _ env bind@(Rec _) = return (extendFloats env bind)
608 609 610 611
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

612
------------------------------
613
addNonRecWithUnf :: SimplEnv
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
             	 -> OutId -> OutExpr    -- New binder and RHS
	     	 -> Unfolding		-- New unfolding
             	 -> SimplEnv
addNonRecWithUnf env new_bndr new_rhs new_unfolding
  = let new_arity = exprArity new_rhs
	old_arity = idArity new_bndr
        info1 = idInfo new_bndr `setArityInfo` new_arity
	
              -- Unfolding info: Note [Setting the new unfolding]
	info2 = info1 `setUnfoldingInfo` new_unfolding

        -- Demand info: Note [Setting the demand info]
        info3 | isEvaldUnfolding new_unfolding = zapDemandInfo info2 `orElse` info2
              | otherwise                      = info2

        final_id = new_bndr `setIdInfo` info3
	dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr
    in
    ASSERT( isId new_bndr )
633
    WARN( new_arity < old_arity || new_arity < dmd_arity, 
634
          (ptext (sLit "Arity decrease:") <+> ppr final_id <+> ppr old_arity
635
		<+> ppr new_arity <+> ppr dmd_arity) )
636
	-- Note [Arity decrease]
Simon Marlow's avatar
Simon Marlow committed
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    final_id `seq`   -- This seq forces the Id, and hence its IdInfo,
	             -- and hence any inner substitutions
	    -- pprTrace "Binding" (ppr final_id <+> ppr unfolding) $
    addNonRec env final_id new_rhs
		-- The addNonRec adds it to the in-scope set too

------------------------------
simplUnfolding :: SimplEnv-> TopLevelFlag
	       -> Id	-- Debug output only
	       -> OccInfo -> OutExpr
	       -> Unfolding -> SimplM Unfolding
-- Note [Setting the new unfolding]
simplUnfolding env _ _ _ _ (DFunUnfolding con ops)
  = return (DFunUnfolding con ops')
  where
    ops' = map (CoreSubst.substExpr (mkCoreSubst env)) ops

simplUnfolding env top_lvl _ _ _ 
    (CoreUnfolding { uf_tmpl = expr, uf_arity = arity
                   , uf_guidance = guide@(InlineRule {}) })
  = do { expr' <- simplExpr (setMode SimplGently env) expr
       ; let mb_wkr' = CoreSubst.substInlineRuleGuidance (mkCoreSubst env) (ug_ir_info guide)
       ; return (mkCoreUnfolding (isTopLevel top_lvl) expr' arity 
                                 (guide { ug_ir_info = mb_wkr' })) }
		-- See Note [Top-level flag on inline rules] in CoreUnfold

simplUnfolding _ top_lvl _ occ_info new_rhs _
  | omit_unfolding = return NoUnfolding	
  | otherwise	   = return (mkUnfolding (isTopLevel top_lvl) new_rhs)
  where
    omit_unfolding = isNonRuleLoopBreaker occ_info
SamB's avatar
SamB committed
669
\end{code}
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
Note [Arity decrease]
~~~~~~~~~~~~~~~~~~~~~
Generally speaking the arity of a binding should not decrease.  But it *can* 
legitimately happen becuase of RULES.  Eg
	f = g Int
where g has arity 2, will have arity 2.  But if there's a rewrite rule
	g Int --> h
where h has arity 1, then f's arity will decrease.  Here's a real-life example,
which is in the output of Specialise:

     Rec {
	$dm {Arity 2} = \d.\x. op d
	{-# RULES forall d. $dm Int d = $s$dm #-}
	
	dInt = MkD .... opInt ...
	opInt {Arity 1} = $dm dInt

	$s$dm {Arity 0} = \x. op dInt }

Here opInt has arity 1; but when we apply the rule its arity drops to 0.
That's why Specialise goes to a little trouble to pin the right arity
on specialised functions too.
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently.  Maybe we
  should do nothing at all, but simplifying gently might get rid of 
  more crap.

* If not, we make an unfolding from the new RHS.  But *only* for
  non-loop-breakers. Making loop breakers not have an unfolding at all
  means that we can avoid tests in exprIsConApp, for example.  This is
  important: if exprIsConApp says 'yes' for a recursive thing, then we
  can get into an infinite loop

If there's an InlineRule on a loop breaker, we hang on to the inlining.
It's pretty dodgy, but the user did say 'INLINE'.  May need to revisit
this choice.

Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it.  Example:
     let x = (a,b) in
     case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
     let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens.  Similarly
     let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...

726

727
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
728
%*                                                                      *
729
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
730
%*                                                                      *
731 732
%************************************************************************

733 734 735 736 737 738
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
739 740
        let t = f x
        in fst t
741
==>
Ian Lynagh's avatar
Ian Lynagh committed
742 743 744 745
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
746
==>
Ian Lynagh's avatar
Ian Lynagh committed
747 748 749 750 751
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
752
==>
Ian Lynagh's avatar
Ian Lynagh committed
753
        e1
754 755 756 757

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
758 759
        let f = g d
        in \x -> ...f...
760
==>
Ian Lynagh's avatar
Ian Lynagh committed
761 762
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
763
==>
Ian Lynagh's avatar
Ian Lynagh committed
764 765
        let d1 = ..d..
        in \x -> ...(\y ->e)...
766

Ian Lynagh's avatar
Ian Lynagh committed
767
Only in this second round can the \y be applied, and it
768 769 770
might do the same again.


771
\begin{code}
772
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
773
simplExpr env expr = simplExprC env expr mkBoringStop
774

775
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
776 777
        -- Simplify an expression, given a continuation
simplExprC env expr cont
778
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
779 780 781 782
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
783 784 785 786
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
787
           -> SimplM (SimplEnv, OutExpr)
788

Ian Lynagh's avatar
Ian Lynagh committed
789
simplExprF env e cont
790 791
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
792

Ian Lynagh's avatar
Ian Lynagh committed
793 794
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
795
simplExprF' env (Var v)        cont = simplVar env v cont
796 797 798 799
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
800
                                      ApplyTo NoDup arg env cont
801

Ian Lynagh's avatar
Ian Lynagh committed
802
simplExprF' env expr@(Lam _ _) cont
803
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
804 805 806 807 808 809
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
810 811 812 813
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
814 815 816 817 818
    zap | n_args >= n_params = \b -> b
        | otherwise          = \b -> if isTyVar b then b
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
819

820
simplExprF' env (Type ty) cont
821
  = ASSERT( contIsRhsOrArg cont )
822
    do  { ty' <- simplCoercion env ty
Ian Lynagh's avatar
Ian Lynagh committed
823
        ; rebuild env (Type ty') cont }
824

825
simplExprF' env (Case scrut bndr _ alts) cont
826
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
827
  =     -- Simplify the scrutinee with a Select continuation
828
    simplExprF env scrut (Select NoDup bndr alts env cont)
829

830
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
831 832 833 834
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
835
  where
836
    case_cont = Select NoDup bndr alts env mkBoringStop
837

838
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
839
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
840 841
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
842

Ian Lynagh's avatar
Ian Lynagh committed
843 844
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
845

846 847
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
848 849

---------------------------------
850
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
851
        -- Kept monadic just so we can do the seqType
852
simplType env ty
853
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
854
    seqType new_ty   `seq`   return new_ty
855
  where
856
    new_ty = substTy env ty
857 858 859

---------------------------------
simplCoercion :: SimplEnv -> InType -> SimplM OutType
860 861
-- The InType isn't *necessarily* a coercion, but it might be
-- (in a type application, say) and optCoercion is a no-op on types
862 863 864
simplCoercion env co
  = do { co' <- simplType env co
       ; return (optCoercion co') }
865 866 867
\end{code}


868
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
869
%*                                                                      *
870
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
871
%*                                                                      *
872 873 874 875 876 877
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
878 879 880
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
881 882
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
883
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
884
      StrictArg fun _ info cont    -> rebuildCall env (fun `App` expr) info cont
885
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
886 887 888
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
889 890 891
\end{code}


892
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
893
%*                                                                      *
894
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
895
%*                                                                      *
896 897 898
%************************************************************************

\begin{code}
899
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
900
          -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
901
simplCast env body co0 cont0
902
  = do  { co1 <- simplCoercion env co0
Ian Lynagh's avatar
Ian Lynagh committed
903
        ; simplExprF env body (addCoerce co1 cont0) }
904
  where
905 906
       addCoerce co cont = add_coerce co (coercionKind co) cont

Ian Lynagh's avatar
Ian Lynagh committed
907
       add_coerce _co (s1, k1) cont     -- co :: ty~ty
Ian Lynagh's avatar
Ian Lynagh committed
908
         | s1 `coreEqType` k1 = cont    -- is a no-op
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
909

Ian Lynagh's avatar
Ian Lynagh committed
910 911
       add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
         | (_l1, t1) <- coercionKind co2
912
		-- 	e |> (g1 :: S1~L) |> (g2 :: L~T1)
Ian Lynagh's avatar
Ian Lynagh committed
913
                -- ==>
914 915
                --      e,                       if S1=T1
                --      e |> (g1 . g2 :: S1~T1)  otherwise
Ian Lynagh's avatar
Ian Lynagh committed
916 917 918 919 920 921
                --
                -- For example, in the initial form of a worker
                -- we may find  (coerce T (coerce S (\x.e))) y
                -- and we'd like it to simplify to e[y/x] in one round
                -- of simplification
         , s1 `coreEqType` t1  = cont            -- The coerces cancel out
922
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
Ian Lynagh's avatar
Ian Lynagh committed
923

Ian Lynagh's avatar
Ian Lynagh committed
924
       add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
925
                -- (f |> g) ty  --->   (f ty) |> (g @ ty)
Ian Lynagh's avatar
Ian Lynagh committed
926 927 928 929 930
                -- This implements the PushT rule from the paper
         | Just (tyvar,_) <- splitForAllTy_maybe s1s2
         , not (isCoVar tyvar)
         = ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
         where
931
           ty' = substTy (arg_se `setInScope` env) arg_ty
932

Ian Lynagh's avatar
Ian Lynagh committed
933
        -- ToDo: the PushC rule is not implemented at all
934

Ian Lynagh's avatar
Ian Lynagh committed
935
       add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
936
         | not (isTypeArg arg)  -- This implements the Push rule from the paper
Ian Lynagh's avatar
Ian Lynagh committed
937
         , isFunTy s1s2   -- t1t2 must be a function type, becuase it's applied
938
                --      (e |> (g :: s1s2 ~ t1->t2)) f
Ian Lynagh's avatar
Ian Lynagh committed
939
                -- ===>
940 941
                --      (e (f |> (arg g :: t1~s1))
		--	|> (res g :: s2->t2)
Ian Lynagh's avatar
Ian Lynagh committed
942
                --
943
                -- t1t2 must be a function type, t1->t2, because it's applied
Ian Lynagh's avatar
Ian Lynagh committed
944 945 946 947 948 949 950 951
                -- to something but s1s2 might conceivably not be
                --
                -- When we build the ApplyTo we can't mix the out-types
                -- with the InExpr in the argument, so we simply substitute
                -- to make it all consistent.  It's a bit messy.
                -- But it isn't a common case.
                --
                -- Example of use: Trac #995
952
         = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)
953
         where
954 955 956
           -- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and
           -- t2 ~ s2 with left and right on the curried form:
           --    (->) t1 t2 ~ (->) s1 s2
957
           [co1, co2] = decomposeCo 2 co
958
           new_arg    = mkCoerce (mkSymCoercion co1) arg'
959
           arg'       = substExpr (arg_se `setInScope` env) arg
960

961
       add_coerce co _ cont = CoerceIt co cont
962 963
\end{code}

964

965
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
966
%*                                                                      *
967
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
968
%*                                                                      *
969
%************************************************************************
970 971

\begin{code}
972
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
973
         -> SimplM (SimplEnv, OutExpr)
974 975

simplLam env [] body cont = simplExprF env body cont
976

simonpj@microsoft.com's avatar