OptCoercion.hs 32.2 KB
Newer Older
1
-- (c) The University of Glasgow 2006
2

3
{-# LANGUAGE CPP #-}
4
 -- This module used to take 10GB of memory to compile with the new
5
 -- (Nov '15) pattern-match checker.
Ian Lynagh's avatar
Ian Lynagh committed
6

7
module OptCoercion ( optCoercion, checkAxInstCo ) where
8 9 10

#include "HsVersions.h"

11
import TyCoRep
12
import Coercion
13
import Type hiding( substTyVarBndr, substTy )
14
import TcType       ( exactTyCoVarsOfType )
15
import TyCon
16
import CoAxiom
17 18
import VarSet
import VarEnv
19
import StaticFlags      ( opt_NoOptCoercion )
20
import Outputable
21
import FamInstEnv ( flattenTys )
22
import Pair
23
import ListSetOps ( getNth )
24
import Util
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
25 26
import Unify
import InstEnv
Icelandjack's avatar
Icelandjack committed
27
import Control.Monad   ( zipWithM )
28

29
{-
30 31
%************************************************************************
%*                                                                      *
32
                 Optimising coercions
33 34
%*                                                                      *
%************************************************************************
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Note [Optimising coercion optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Looking up a coercion's role or kind is linear in the size of the
coercion. Thus, doing this repeatedly during the recursive descent
of coercion optimisation is disastrous. We must be careful to avoid
doing this if at all possible.

Because it is generally easy to know a coercion's components' roles
from the role of the outer coercion, we pass down the known role of
the input in the algorithm below. We also keep functions opt_co2
and opt_co3 separate from opt_co4, so that the former two do Phantom
checks that opt_co4 can avoid. This is a big win because Phantom coercions
rarely appear within non-phantom coercions -- only in some TyConAppCos
and some AxiomInstCos. We handle these cases specially by calling
opt_co2.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Note [Optimising InstCo]
~~~~~~~~~~~~~~~~~~~~~~~~
When we have (InstCo (ForAllCo tv h g) g2), we want to optimise.

Let's look at the typing rules.

h : k1 ~ k2
tv:k1 |- g : t1 ~ t2
-----------------------------
ForAllCo tv h g : (all tv:k1.t1) ~ (all tv:k2.t2[tv |-> tv |> sym h])

g1 : (all tv:k1.t1') ~ (all tv:k2.t2')
g2 : s1 ~ s2
--------------------
InstCo g1 g2 : t1'[tv |-> s1] ~ t2'[tv |-> s2]

We thus want some coercion proving this:

  (t1[tv |-> s1]) ~ (t2[tv |-> s2 |> sym h])

If we substitute the *type* tv for the *coercion*
(g2 `mkCoherenceRightCo` sym h) in g, we'll get this result exactly.
This is bizarre,
though, because we're substituting a type variable with a coercion. However,
this operation already exists: it's called *lifting*, and defined in Coercion.
We just need to enhance the lifting operation to be able to deal with
an ambient substitution, which is why a LiftingContext stores a TCvSubst.

80
-}
81

82
optCoercion :: TCvSubst -> Coercion -> NormalCo
83
-- ^ optCoercion applies a substitution to a coercion,
84
--   *and* optimises it to reduce its size
85
optCoercion env co
86
  | opt_NoOptCoercion = substCo env co
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
87 88 89 90 91
  | debugIsOn
  = let out_co = opt_co1 lc False co
        (Pair in_ty1  in_ty2,  in_role)  = coercionKindRole co
        (Pair out_ty1 out_ty2, out_role) = coercionKindRole out_co
    in
92 93
    ASSERT2( substTyUnchecked env in_ty1 `eqType` out_ty1 &&
             substTyUnchecked env in_ty2 `eqType` out_ty2 &&
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
94 95 96 97 98 99 100 101 102 103 104
             in_role == out_role
           , text "optCoercion changed types!"
             $$ hang (text "in_co:") 2 (ppr co)
             $$ hang (text "in_ty1:") 2 (ppr in_ty1)
             $$ hang (text "in_ty2:") 2 (ppr in_ty2)
             $$ hang (text "out_co:") 2 (ppr out_co)
             $$ hang (text "out_ty1:") 2 (ppr out_ty1)
             $$ hang (text "out_ty2:") 2 (ppr out_ty2)
             $$ hang (text "subst:") 2 (ppr env) )
    out_co

105 106 107
  | otherwise         = opt_co1 lc False co
  where
    lc = mkSubstLiftingContext env
108

109
type NormalCo    = Coercion
110
  -- Invariants:
111 112 113 114 115 116
  --  * The substitution has been fully applied
  --  * For trans coercions (co1 `trans` co2)
  --       co1 is not a trans, and neither co1 nor co2 is identity

type NormalNonIdCo = NormalCo  -- Extra invariant: not the identity

117 118 119 120 121 122
-- | Do we apply a @sym@ to the result?
type SymFlag = Bool

-- | Do we force the result to be representational?
type ReprFlag = Bool

123 124 125
-- | Optimize a coercion, making no assumptions. All coercions in
-- the lifting context are already optimized (and sym'd if nec'y)
opt_co1 :: LiftingContext
126 127
        -> SymFlag
        -> Coercion -> NormalCo
128
opt_co1 env sym co = opt_co2 env sym (coercionRole co) co
129

130 131
-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's role. No other assumptions.
132
opt_co2 :: LiftingContext
133 134 135
        -> SymFlag
        -> Role   -- ^ The role of the input coercion
        -> Coercion -> NormalCo
136 137
opt_co2 env sym Phantom co = opt_phantom env sym co
opt_co2 env sym r       co = opt_co3 env sym Nothing r co
138 139 140

-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's non-Phantom role.
141 142 143
opt_co3 :: LiftingContext -> SymFlag -> Maybe Role -> Role -> Coercion -> NormalCo
opt_co3 env sym (Just Phantom)          _ co = opt_phantom env sym co
opt_co3 env sym (Just Representational) r co = opt_co4_wrap env sym True  r co
144
  -- if mrole is Just Nominal, that can't be a downgrade, so we can ignore
145
opt_co3 env sym _                       r co = opt_co4_wrap env sym False r co
146 147 148

-- See Note [Optimising coercion optimisation]
-- | Optimize a non-phantom coercion.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
opt_co4, opt_co4_wrap :: LiftingContext -> SymFlag -> ReprFlag -> Role -> Coercion -> NormalCo

opt_co4_wrap = opt_co4
{-
opt_co4_wrap env sym rep r co
  = pprTrace "opt_co4_wrap {"
    ( vcat [ text "Sym:" <+> ppr sym
           , text "Rep:" <+> ppr rep
           , text "Role:" <+> ppr r
           , text "Co:" <+> ppr co ]) $
    ASSERT( r == coercionRole co )
    let result = opt_co4 env sym rep r co in
    pprTrace "opt_co4_wrap }" (ppr co $$ text "---" $$ ppr result) $
    result
-}
164 165

opt_co4 env _   rep r (Refl _r ty)
166 167 168 169
  = ASSERT2( r == _r, text "Expected role:" <+> ppr r $$
                      text "Found role:" <+> ppr _r   $$
                      text "Type:" <+> ppr ty )
    liftCoSubst (chooseRole rep r) env ty
170

171 172 173 174 175
opt_co4 env sym rep r (SymCo co)  = opt_co4_wrap env (not sym) rep r co
  -- surprisingly, we don't have to do anything to the env here. This is
  -- because any "lifting" substitutions in the env are tied to ForAllCos,
  -- which treat their left and right sides differently. We don't want to
  -- exchange them.
176 177 178 179 180 181 182

opt_co4 env sym rep r g@(TyConAppCo _r tc cos)
  = ASSERT( r == _r )
    case (rep, r) of
      (True, Nominal) ->
        mkTyConAppCo Representational tc
                     (zipWith3 (opt_co3 env sym)
183
                               (map Just (tyConRolesRepresentational tc))
184 185 186
                               (repeat Nominal)
                               cos)
      (False, Nominal) ->
187
        mkTyConAppCo Nominal tc (map (opt_co4_wrap env sym False Nominal) cos)
188 189 190
      (_, Representational) ->
                      -- must use opt_co2 here, because some roles may be P
                      -- See Note [Optimising coercion optimisation]
191
        mkTyConAppCo r tc (zipWith (opt_co2 env sym)
192
                                   (tyConRolesRepresentational tc)  -- the current roles
193 194 195
                                   cos)
      (_, Phantom) -> pprPanic "opt_co4 sees a phantom!" (ppr g)

196 197 198 199 200 201 202 203
opt_co4 env sym rep r (AppCo co1 co2)
  = mkAppCo (opt_co4_wrap env sym rep r co1)
            (opt_co4_wrap env sym False Nominal co2)

opt_co4 env sym rep r (ForAllCo tv k_co co)
  = case optForAllCoBndr env sym tv k_co of
      (env', tv', k_co') -> mkForAllCo tv' k_co' $
                            opt_co4_wrap env' sym rep r co
204 205
     -- Use the "mk" functions to check for nested Refls

206
opt_co4 env sym rep r (CoVarCo cv)
207 208
  | Just co <- lookupCoVar (lcTCvSubst env) cv
  = opt_co4_wrap (zapLiftingContext env) sym rep r co
209

210
  | Just cv1 <- lookupInScope (lcInScopeSet env) cv
211
  = ASSERT( isCoVar cv1 ) wrapRole rep r $ wrapSym sym (CoVarCo cv1)
212 213
                -- cv1 might have a substituted kind!

214
  | otherwise = WARN( True, text "opt_co: not in scope:" <+> ppr cv $$ ppr env)
215
                ASSERT( isCoVar cv )
216
                wrapRole rep r $ wrapSym sym (CoVarCo cv)
217

218
opt_co4 env sym rep r (AxiomInstCo con ind cos)
219 220 221 222
    -- Do *not* push sym inside top-level axioms
    -- e.g. if g is a top-level axiom
    --   g a : f a ~ a
    -- then (sym (g ty)) /= g (sym ty) !!
223 224
  = ASSERT( r == coAxiomRole con )
    wrapRole rep (coAxiomRole con) $
225
    wrapSym sym $
226 227
                       -- some sub-cos might be P: use opt_co2
                       -- See Note [Optimising coercion optimisation]
228
    AxiomInstCo con ind (zipWith (opt_co2 env False)
229 230
                                 (coAxBranchRoles (coAxiomNthBranch con ind))
                                 cos)
231 232
      -- Note that the_co does *not* have sym pushed into it

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
233
opt_co4 env sym rep r (UnivCo prov _r t1 t2)
234
  = ASSERT( r == _r )
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
235
    opt_univ env sym prov (chooseRole rep r) t1 t2
236

237 238 239 240
opt_co4 env sym rep r (TransCo co1 co2)
                      -- sym (g `o` h) = sym h `o` sym g
  | sym       = opt_trans in_scope co2' co1'
  | otherwise = opt_trans in_scope co1' co2'
241
  where
242 243 244 245
    co1' = opt_co4_wrap env sym rep r co1
    co2' = opt_co4_wrap env sym rep r co2
    in_scope = lcInScopeSet env

246

247
opt_co4 env sym rep r co@(NthCo {}) = opt_nth_co env sym rep r co
248

249
opt_co4 env sym rep r (LRCo lr co)
250
  | Just pr_co <- splitAppCo_maybe co
251
  = ASSERT( r == Nominal )
252
    opt_co4_wrap env sym rep Nominal (pick_lr lr pr_co)
253
  | Just pr_co <- splitAppCo_maybe co'
254 255
  = ASSERT( r == Nominal )
    if rep
256 257
    then opt_co4_wrap (zapLiftingContext env) False True Nominal (pick_lr lr pr_co)
    else pick_lr lr pr_co
258
  | otherwise
259
  = wrapRole rep Nominal $ LRCo lr co'
260
  where
261
    co' = opt_co4_wrap env sym False Nominal co
262

263 264
    pick_lr CLeft  (l, _) = l
    pick_lr CRight (_, r) = r
265

266 267 268 269 270 271 272
-- See Note [Optimising InstCo]
opt_co4 env sym rep r (InstCo co1 arg)
    -- forall over type...
  | Just (tv, kind_co, co_body) <- splitForAllCo_maybe co1
  = opt_co4_wrap (extendLiftingContext env tv
                    (arg' `mkCoherenceRightCo` mkSymCo kind_co))
                 sym rep r co_body
273

274 275 276 277 278 279 280 281 282 283
    -- See if it is a forall after optimization
    -- If so, do an inefficient one-variable substitution, then re-optimize

    -- forall over type...
  | Just (tv', kind_co', co_body') <- splitForAllCo_maybe co1'
  = opt_co4_wrap (extendLiftingContext (zapLiftingContext env) tv'
                    (arg' `mkCoherenceRightCo` mkSymCo kind_co'))
            False False r' co_body'

  | otherwise = InstCo co1' arg'
284
  where
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    co1' = opt_co4_wrap env sym rep r co1
    r'   = chooseRole rep r
    arg' = opt_co4_wrap env sym False Nominal arg

opt_co4 env sym rep r (CoherenceCo co1 co2)
  | TransCo col1 cor1 <- co1
  = opt_co4_wrap env sym rep r (mkTransCo (mkCoherenceCo col1 co2) cor1)

  | TransCo col1' cor1' <- co1'
  = if sym then opt_trans in_scope col1'
                  (optCoercion (zapTCvSubst (lcTCvSubst env))
                               (mkCoherenceRightCo cor1' co2'))
           else opt_trans in_scope (mkCoherenceCo col1' co2') cor1'

  | otherwise
  = wrapSym sym $ CoherenceCo (opt_co4_wrap env False rep r co1) co2'
  where co1' = opt_co4_wrap env sym   rep   r       co1
        co2' = opt_co4_wrap env False False Nominal co2
        in_scope = lcInScopeSet env

opt_co4 env sym _rep r (KindCo co)
  = ASSERT( r == Nominal )
    let kco' = promoteCoercion co in
    case kco' of
      KindCo co' -> promoteCoercion (opt_co1 env sym co')
      _          -> opt_co4_wrap env sym False Nominal kco'
  -- This might be able to be optimized more to do the promotion
  -- and substitution/optimization at the same time
313

314 315
opt_co4 env sym _ r (SubCo co)
  = ASSERT( r == Representational )
316
    opt_co4_wrap env sym True Nominal co
317

318 319
-- This could perhaps be optimized more.
opt_co4 env sym rep r (AxiomRuleCo co cs)
320 321
  = ASSERT( r == coaxrRole co )
    wrapRole rep r $
322
    wrapSym sym $
323
    AxiomRuleCo co (zipWith (opt_co2 env False) (coaxrAsmpRoles co) cs)
324

325
-------------
326 327
-- | Optimize a phantom coercion. The input coercion may not necessarily
-- be a phantom, but the output sure will be.
328
opt_phantom :: LiftingContext -> SymFlag -> Coercion -> NormalCo
329
opt_phantom env sym co
330
  = opt_univ env sym (PhantomProv (mkKindCo co)) Phantom ty1 ty2
331 332 333
  where
    Pair ty1 ty2 = coercionKind co

334 335 336 337 338 339 340 341 342 343 344
opt_univ :: LiftingContext -> SymFlag -> UnivCoProvenance -> Role
         -> Type -> Type -> Coercion
opt_univ env sym (PhantomProv h) _r ty1 ty2
  | sym       = mkPhantomCo h' ty2' ty1'
  | otherwise = mkPhantomCo h' ty1' ty2'
  where
    h' = opt_co4 env sym False Nominal h
    ty1' = substTy (lcSubstLeft  env) ty1
    ty2' = substTy (lcSubstRight env) ty2

opt_univ env sym prov role oty1 oty2
345 346 347
  | Just (tc1, tys1) <- splitTyConApp_maybe oty1
  , Just (tc2, tys2) <- splitTyConApp_maybe oty2
  , tc1 == tc2
348 349 350 351 352 353 354
      -- NB: prov must not be the two interesting ones (ProofIrrel & Phantom);
      -- Phantom is already taken care of, and ProofIrrel doesn't relate tyconapps
  = let roles    = tyConRolesX role tc1
        arg_cos  = zipWith3 (mkUnivCo prov) roles tys1 tys2
        arg_cos' = zipWith (opt_co4 env sym False) roles arg_cos
    in
    mkTyConAppCo role tc1 arg_cos'
355

356
  -- can't optimize the AppTy case because we can't build the kind coercions.
357 358 359

  | Just (tv1, ty1) <- splitForAllTy_maybe oty1
  , Just (tv2, ty2) <- splitForAllTy_maybe oty2
360 361 362 363 364 365 366 367 368 369
      -- NB: prov isn't interesting here either
  = let k1   = tyVarKind tv1
        k2   = tyVarKind tv2
        eta  = mkUnivCo prov Nominal k1 k2
          -- eta gets opt'ed soon, but not yet.
        ty2' = substTyWith [tv2] [TyVarTy tv1 `mkCastTy` eta] ty2

        (env', tv1', eta') = optForAllCoBndr env sym tv1 eta
    in
    mkForAllCo tv1' eta' (opt_univ env' sym prov role ty1 ty2')
370 371

  | otherwise
372 373
  = let ty1 = substTyUnchecked (lcSubstLeft  env) oty1
        ty2 = substTyUnchecked (lcSubstRight env) oty2
374 375 376 377 378 379 380 381 382 383 384 385 386
        (a, b) | sym       = (ty2, ty1)
               | otherwise = (ty1, ty2)
    in
    mkUnivCo prov' role a b

  where
    prov' = case prov of
      UnsafeCoerceProv   -> prov
      PhantomProv kco    -> PhantomProv $ opt_co4_wrap env sym False Nominal kco
      ProofIrrelProv kco -> ProofIrrelProv $ opt_co4_wrap env sym False Nominal kco
      PluginProv _       -> prov
      HoleProv h         -> pprPanic "opt_univ fell into a hole" (ppr h)

387

388 389 390 391 392
-------------
-- NthCo must be handled separately, because it's the one case where we can't
-- tell quickly what the component coercion's role is from the containing
-- coercion. To avoid repeated coercionRole calls as opt_co1 calls opt_co2,
-- we just look for nested NthCo's, which can happen in practice.
393
opt_nth_co :: LiftingContext -> SymFlag -> ReprFlag -> Role -> Coercion -> NormalCo
394 395 396 397 398 399 400 401 402
opt_nth_co env sym rep r = go []
  where
    go ns (NthCo n co) = go (n:ns) co
      -- previous versions checked if the tycon is decomposable. This
      -- is redundant, because a non-decomposable tycon under an NthCo
      -- is entirely bogus. See docs/core-spec/core-spec.pdf.
    go ns co
      = opt_nths ns co

403 404 405 406 407 408 409 410 411 412 413 414 415
      -- try to resolve 1 Nth
    push_nth n (Refl r1 ty)
      | Just (tc, args) <- splitTyConApp_maybe ty
      = Just (Refl (nthRole r1 tc n) (args `getNth` n))
      | n == 0
      , Just (tv, _) <- splitForAllTy_maybe ty
      = Just (Refl Nominal (tyVarKind tv))
    push_nth n (TyConAppCo _ _ cos)
      = Just (cos `getNth` n)
    push_nth 0 (ForAllCo _ eta _)
      = Just eta
    push_nth _ _ = Nothing

416
      -- input coercion is *not* yet sym'd or opt'd
417 418 419 420
    opt_nths [] co = opt_co4_wrap env sym rep r co
    opt_nths (n:ns) co
      | Just co' <- push_nth n co
      = opt_nths ns co'
421 422 423 424 425 426 427

      -- here, the co isn't a TyConAppCo, so we opt it, hoping to get
      -- a TyConAppCo as output. We don't know the role, so we use
      -- opt_co1. This is slightly annoying, because opt_co1 will call
      -- coercionRole, but as long as we don't have a long chain of
      -- NthCo's interspersed with some other coercion former, we should
      -- be OK.
428
    opt_nths ns co = opt_nths' ns (opt_co1 env sym co)
429 430 431 432 433

      -- input coercion *is* sym'd and opt'd
    opt_nths' [] co
      = if rep && (r == Nominal)
            -- propagate the SubCo:
434
        then opt_co4_wrap (zapLiftingContext env) False True r co
435
        else co
436 437 438
    opt_nths' (n:ns) co
      | Just co' <- push_nth n co
      = opt_nths' ns co'
439 440 441 442 443
    opt_nths' ns co = wrapRole rep r (mk_nths ns co)

    mk_nths [] co = co
    mk_nths (n:ns) co = mk_nths ns (mkNthCo n co)

444
-------------
445 446
opt_transList :: InScopeSet -> [NormalCo] -> [NormalCo] -> [NormalCo]
opt_transList is = zipWith (opt_trans is)
447

448 449
opt_trans :: InScopeSet -> NormalCo -> NormalCo -> NormalCo
opt_trans is co1 co2
450
  | isReflCo co1 = co2
451
  | otherwise    = opt_trans1 is co1 co2
452

453
opt_trans1 :: InScopeSet -> NormalNonIdCo -> NormalCo -> NormalCo
454
-- First arg is not the identity
455
opt_trans1 is co1 co2
456
  | isReflCo co2 = co1
457
  | otherwise    = opt_trans2 is co1 co2
458

459
opt_trans2 :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> NormalCo
460
-- Neither arg is the identity
461
opt_trans2 is (TransCo co1a co1b) co2
462
    -- Don't know whether the sub-coercions are the identity
463
  = opt_trans is co1a (opt_trans is co1b co2)
464

465
opt_trans2 is co1 co2
466
  | Just co <- opt_trans_rule is co1 co2
467 468
  = co

469 470
opt_trans2 is co1 (TransCo co2a co2b)
  | Just co1_2a <- opt_trans_rule is co1 co2a
471 472
  = if isReflCo co1_2a
    then co2b
473
    else opt_trans1 is co1_2a co2b
474

475
opt_trans2 _ co1 co2
476 477 478 479
  = mkTransCo co1 co2

------
-- Optimize coercions with a top-level use of transitivity.
480
opt_trans_rule :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo
481

482
-- Push transitivity through matching destructors
483
opt_trans_rule is in_co1@(NthCo d1 co1) in_co2@(NthCo d2 co2)
484 485 486
  | d1 == d2
  , co1 `compatible_co` co2
  = fireTransRule "PushNth" in_co1 in_co2 $
487
    mkNthCo d1 (opt_trans is co1 co2)
488

489 490 491 492 493 494
opt_trans_rule is in_co1@(LRCo d1 co1) in_co2@(LRCo d2 co2)
  | d1 == d2
  , co1 `compatible_co` co2
  = fireTransRule "PushLR" in_co1 in_co2 $
    mkLRCo d1 (opt_trans is co1 co2)

495
-- Push transitivity inside instantiation
496
opt_trans_rule is in_co1@(InstCo co1 ty1) in_co2@(InstCo co2 ty2)
497
  | ty1 `eqCoercion` ty2
498 499
  , co1 `compatible_co` co2
  = fireTransRule "TrPushInst" in_co1 in_co2 $
500
    mkInstCo (opt_trans is co1 co2) ty1
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
opt_trans_rule is in_co1@(UnivCo p1 r1 tyl1 _tyr1)
                  in_co2@(UnivCo p2 r2 _tyl2 tyr2)
  | Just prov' <- opt_trans_prov p1 p2
  = ASSERT( r1 == r2 )
    fireTransRule "UnivCo" in_co1 in_co2 $
    mkUnivCo prov' r1 tyl1 tyr2
  where
    -- if the provenances are different, opt'ing will be very confusing
    opt_trans_prov UnsafeCoerceProv      UnsafeCoerceProv      = Just UnsafeCoerceProv
    opt_trans_prov (PhantomProv kco1)    (PhantomProv kco2)
      = Just $ PhantomProv $ opt_trans is kco1 kco2
    opt_trans_prov (ProofIrrelProv kco1) (ProofIrrelProv kco2)
      = Just $ ProofIrrelProv $ opt_trans is kco1 kco2
    opt_trans_prov (PluginProv str1)     (PluginProv str2)     | str1 == str2 = Just p1
    opt_trans_prov _ _ = Nothing

518
-- Push transitivity down through matching top-level constructors.
519
opt_trans_rule is in_co1@(TyConAppCo r1 tc1 cos1) in_co2@(TyConAppCo r2 tc2 cos2)
520
  | tc1 == tc2
521 522
  = ASSERT( r1 == r2 )
    fireTransRule "PushTyConApp" in_co1 in_co2 $
523
    mkTyConAppCo r1 tc1 (opt_transList is cos1 cos2)
524

525
opt_trans_rule is in_co1@(AppCo co1a co1b) in_co2@(AppCo co2a co2b)
526
  = fireTransRule "TrPushApp" in_co1 in_co2 $
527 528
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
529

530
-- Eta rules
531
opt_trans_rule is co1@(TyConAppCo r tc cos1) co2
532 533 534
  | Just cos2 <- etaTyConAppCo_maybe tc co2
  = ASSERT( length cos1 == length cos2 )
    fireTransRule "EtaCompL" co1 co2 $
535
    mkTyConAppCo r tc (opt_transList is cos1 cos2)
536

537
opt_trans_rule is co1 co2@(TyConAppCo r tc cos2)
538 539 540
  | Just cos1 <- etaTyConAppCo_maybe tc co1
  = ASSERT( length cos1 == length cos2 )
    fireTransRule "EtaCompR" co1 co2 $
541
    mkTyConAppCo r tc (opt_transList is cos1 cos2)
542

543 544 545
opt_trans_rule is co1@(AppCo co1a co1b) co2
  | Just (co2a,co2b) <- etaAppCo_maybe co2
  = fireTransRule "EtaAppL" co1 co2 $
546 547
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
548 549 550 551

opt_trans_rule is co1 co2@(AppCo co2a co2b)
  | Just (co1a,co1b) <- etaAppCo_maybe co1
  = fireTransRule "EtaAppR" co1 co2 $
552 553
    mkAppCo (opt_trans is co1a co2a)
            (opt_trans is co1b co2b)
554

555
-- Push transitivity inside forall
556
opt_trans_rule is co1 co2
557 558 559 560 561 562 563 564 565 566 567 568 569 570
  | ForAllCo tv1 eta1 r1 <- co1
  , Just (tv2,eta2,r2) <- etaForAllCo_maybe co2
  = push_trans tv1 eta1 r1 tv2 eta2 r2

  | ForAllCo tv2 eta2 r2 <- co2
  , Just (tv1,eta1,r1) <- etaForAllCo_maybe co1
  = push_trans tv1 eta1 r1 tv2 eta2 r2

  where
  push_trans tv1 eta1 r1 tv2 eta2 r2
    = fireTransRule "EtaAllTy" co1 co2 $
      mkForAllCo tv1 (opt_trans is eta1 eta2) (opt_trans is' r1 r2')
    where
      is' = is `extendInScopeSet` tv1
571
      r2' = substCoWithUnchecked [tv2] [TyVarTy tv1] r2
572 573

-- Push transitivity inside axioms
574
opt_trans_rule is co1 co2
575

576
  -- See Note [Why call checkAxInstCo during optimisation]
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
577
  -- TrPushSymAxR
578
  | Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
579
  , True <- sym
580
  , Just cos2 <- matchAxiom sym con ind co2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
581 582 583
  , let newAxInst = AxiomInstCo con ind (opt_transList is (map mkSymCo cos2) cos1)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushSymAxR" co1 co2 $ SymCo newAxInst
584

eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
585 586 587
  -- TrPushAxR
  | Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
  , False <- sym
588
  , Just cos2 <- matchAxiom sym con ind co2
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
589 590 591 592 593 594 595
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushAxR" co1 co2 newAxInst

  -- TrPushSymAxL
  | Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
  , True <- sym
596
  , Just cos1 <- matchAxiom (not sym) con ind co1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
597 598 599 600
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos2 (map mkSymCo cos1))
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushSymAxL" co1 co2 $ SymCo newAxInst

601
  -- TrPushAxL
602
  | Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
603
  , False <- sym
604
  , Just cos1 <- matchAxiom (not sym) con ind co1
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
605 606 607
  , let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
  , Nothing <- checkAxInstCo newAxInst
  = fireTransRule "TrPushAxL" co1 co2 newAxInst
608 609

  -- TrPushAxSym/TrPushSymAx
610 611
  | Just (sym1, con1, ind1, cos1) <- co1_is_axiom_maybe
  , Just (sym2, con2, ind2, cos2) <- co2_is_axiom_maybe
612
  , con1 == con2
613
  , ind1 == ind2
614
  , sym1 == not sym2
615
  , let branch = coAxiomNthBranch con1 ind1
616
        qtvs = coAxBranchTyVars branch ++ coAxBranchCoVars branch
617 618
        lhs  = coAxNthLHS con1 ind1
        rhs  = coAxBranchRHS branch
619
        pivot_tvs = exactTyCoVarsOfType (if sym2 then rhs else lhs)
620 621 622
  , all (`elemVarSet` pivot_tvs) qtvs
  = fireTransRule "TrPushAxSym" co1 co2 $
    if sym2
623 624 625 626
       -- TrPushAxSym
    then liftCoSubstWith role qtvs (opt_transList is cos1 (map mkSymCo cos2)) lhs
       -- TrPushSymAx
    else liftCoSubstWith role qtvs (opt_transList is (map mkSymCo cos1) cos2) rhs
627 628 629
  where
    co1_is_axiom_maybe = isAxiom_maybe co1
    co2_is_axiom_maybe = isAxiom_maybe co2
630
    role = coercionRole co1 -- should be the same as coercionRole co2!
631

632 633 634 635 636 637
opt_trans_rule is co1 co2
  | Just (lco, lh) <- isCohRight_maybe co1
  , Just (rco, rh) <- isCohLeft_maybe co2
  , (coercionType lh) `eqType` (coercionType rh)
  = opt_trans_rule is lco rco

638
opt_trans_rule _ co1 co2        -- Identity rule
639
  | (Pair ty1 _, r) <- coercionKindRole co1
640 641 642
  , Pair _ ty2 <- coercionKind co2
  , ty1 `eqType` ty2
  = fireTransRule "RedTypeDirRefl" co1 co2 $
643
    Refl r ty2
644

645
opt_trans_rule _ _ _ = Nothing
646 647 648 649 650 651

fireTransRule :: String -> Coercion -> Coercion -> Coercion -> Maybe Coercion
fireTransRule _rule _co1 _co2 res
  = -- pprTrace ("Trans rule fired: " ++ _rule) (vcat [ppr _co1, ppr _co2, ppr res]) $
    Just res

652
{-
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
653 654 655 656 657 658 659 660 661
Note [Conflict checking with AxiomInstCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following type family and axiom:

type family Equal (a :: k) (b :: k) :: Bool
type instance where
  Equal a a = True
  Equal a b = False
--
662 663 664
Equal :: forall k::*. k -> k -> Bool
axEqual :: { forall k::*. forall a::k. Equal k a a ~ True
           ; forall k::*. forall a::k. forall b::k. Equal k a b ~ False }
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
665

666 667 668 669 670 671
We wish to disallow (axEqual[1] <*> <Int> <Int). (Recall that the index is
0-based, so this is the second branch of the axiom.) The problem is that, on
the surface, it seems that (axEqual[1] <*> <Int> <Int>) :: (Equal * Int Int ~
False) and that all is OK. But, all is not OK: we want to use the first branch
of the axiom in this case, not the second. The problem is that the parameters
of the first branch can unify with the supplied coercions, thus meaning that
Jan Stolarek's avatar
Jan Stolarek committed
672 673
the first branch should be taken. See also Note [Apartness] in
types/FamInstEnv.hs.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

Note [Why call checkAxInstCo during optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible that otherwise-good-looking optimisations meet with disaster
in the presence of axioms with multiple equations. Consider

type family Equal (a :: *) (b :: *) :: Bool where
  Equal a a = True
  Equal a b = False
type family Id (a :: *) :: * where
  Id a = a

axEq :: { [a::*].       Equal a a ~ True
        ; [a::*, b::*]. Equal a b ~ False }
axId :: [a::*]. Id a ~ a

co1 = Equal (axId[0] Int) (axId[0] Bool)
  :: Equal (Id Int) (Id Bool) ~  Equal Int Bool
co2 = axEq[1] <Int> <Bool>
  :: Equal Int Bool ~ False

We wish to optimise (co1 ; co2). We end up in rule TrPushAxL, noting that
co2 is an axiom and that matchAxiom succeeds when looking at co1. But, what
happens when we push the coercions inside? We get

co3 = axEq[1] (axId[0] Int) (axId[0] Bool)
  :: Equal (Id Int) (Id Bool) ~ False

which is bogus! This is because the type system isn't smart enough to know
that (Id Int) and (Id Bool) are Surely Apart, as they're headed by type
families. At the time of writing, I (Richard Eisenberg) couldn't think of
a way of detecting this any more efficient than just building the optimised
coercion and checking.
707
-}
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
708 709

-- | Check to make sure that an AxInstCo is internally consistent.
710
-- Returns the conflicting branch, if it exists
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
711
-- See Note [Conflict checking with AxiomInstCo]
712
checkAxInstCo :: Coercion -> Maybe CoAxBranch
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
713
-- defined here to avoid dependencies in Coercion
714 715
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in CoreLint
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
716
checkAxInstCo (AxiomInstCo ax ind cos)
717 718 719 720 721 722
  = let branch       = coAxiomNthBranch ax ind
        tvs          = coAxBranchTyVars branch
        cvs          = coAxBranchCoVars branch
        incomps      = coAxBranchIncomps branch
        (tys, cotys) = splitAtList tvs (map (pFst . coercionKind) cos)
        co_args      = map stripCoercionTy cotys
niteria's avatar
niteria committed
723 724
        subst        = zipTvSubst tvs tys `composeTCvSubst`
                       zipCvSubst cvs co_args
725
        target   = Type.substTys subst (coAxBranchLHS branch)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
726
        in_scope = mkInScopeSet $
727
                   unionVarSets (map (tyCoVarsOfTypes . coAxBranchLHS) incomps)
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
728 729
        flattened_target = flattenTys in_scope target in
    check_no_conflict flattened_target incomps
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
730
  where
731 732
    check_no_conflict :: [Type] -> [CoAxBranch] -> Maybe CoAxBranch
    check_no_conflict _    [] = Nothing
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
733 734 735 736
    check_no_conflict flat (b@CoAxBranch { cab_lhs = lhs_incomp } : rest)
         -- See Note [Apartness] in FamInstEnv
      | SurelyApart <- tcUnifyTysFG instanceBindFun flat lhs_incomp
      = check_no_conflict flat rest
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
737
      | otherwise
738
      = Just b
eir@cis.upenn.edu's avatar
eir@cis.upenn.edu committed
739 740
checkAxInstCo _ = Nothing

741

742
-----------
743
wrapSym :: SymFlag -> Coercion -> Coercion
744 745 746
wrapSym sym co | sym       = SymCo co
               | otherwise = co

747 748 749
-- | Conditionally set a role to be representational
wrapRole :: ReprFlag
         -> Role         -- ^ current role
750
         -> Coercion -> Coercion
751 752 753 754 755 756 757 758 759 760
wrapRole False _       = id
wrapRole True  current = downgradeRole Representational current

-- | If we require a representational role, return that. Otherwise,
-- return the "default" role provided.
chooseRole :: ReprFlag
           -> Role    -- ^ "default" role
           -> Role
chooseRole True _ = Representational
chooseRole _    r = r
761

762
-----------
763
isAxiom_maybe :: Coercion -> Maybe (Bool, CoAxiom Branched, Int, [Coercion])
764
isAxiom_maybe (SymCo co)
765 766 767 768
  | Just (sym, con, ind, cos) <- isAxiom_maybe co
  = Just (not sym, con, ind, cos)
isAxiom_maybe (AxiomInstCo con ind cos)
  = Just (False, con, ind, cos)
769 770 771
isAxiom_maybe _ = Nothing

matchAxiom :: Bool -- True = match LHS, False = match RHS
772 773
           -> CoAxiom br -> Int -> Coercion -> Maybe [Coercion]
matchAxiom sym ax@(CoAxiom { co_ax_tc = tc }) ind co
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
  | CoAxBranch { cab_tvs = qtvs
               , cab_cvs = []   -- can't infer these, so fail if there are any
               , cab_roles = roles
               , cab_lhs = lhs
               , cab_rhs = rhs } <- coAxiomNthBranch ax ind
  , Just subst <- liftCoMatch (mkVarSet qtvs)
                              (if sym then (mkTyConApp tc lhs) else rhs)
                              co
  , all (`isMappedByLC` subst) qtvs
  = zipWithM (liftCoSubstTyVar subst) roles qtvs

  | otherwise
  = Nothing

-------------
-- destruct a CoherenceCo
isCohLeft_maybe :: Coercion -> Maybe (Coercion, Coercion)
isCohLeft_maybe (CoherenceCo co1 co2) = Just (co1, co2)
isCohLeft_maybe _                     = Nothing

-- destruct a (sym (co1 |> co2)).
-- if isCohRight_maybe co = Just (co1, co2), then (sym co1) `mkCohRightCo` co2 = co
isCohRight_maybe :: Coercion -> Maybe (Coercion, Coercion)
isCohRight_maybe (SymCo (CoherenceCo co1 co2)) = Just (mkSymCo co1, co2)
isCohRight_maybe _                             = Nothing
799 800 801 802 803

-------------
compatible_co :: Coercion -> Coercion -> Bool
-- Check whether (co1 . co2) will be well-kinded
compatible_co co1 co2
804
  = x1 `eqType` x2
805 806 807 808 809
  where
    Pair _ x1 = coercionKind co1
    Pair x2 _ = coercionKind co2

-------------
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
{-
etaForAllCo_maybe
~~~~~~~~~~~~~~~~~
Suppose we have

  g : all a1:k1.t1  ~  all a2:k2.t2

but g is *not* a ForAllCo. We want to eta-expand it. So, we do this:

  g' = all a1:(ForAllKindCo g).(InstCo g (a1 `mkCoherenceRightCo` ForAllKindCo g))

Call the kind coercion h1 and the body coercion h2. We can see that

  h2 : t1 ~ t2[a2 |-> (a1 |> h2)]

According to the typing rule for ForAllCo, we get that

  g' : all a1:k1.t1  ~  all a1:k2.(t2[a2 |-> (a1 |> h2)][a1 |-> a1 |> sym h2])

or

  g' : all a1:k1.t1  ~  all a1:k2.(t2[a2 |-> a1])

as desired.
-}
etaForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
-- Try to make the coercion be of form (forall tv:kind_co. co)
837
etaForAllCo_maybe co
838 839
  | ForAllCo tv kind_co r <- co
  = Just (tv, kind_co, r)
840 841 842

  | Pair ty1 ty2  <- coercionKind co
  , Just (tv1, _) <- splitForAllTy_maybe ty1
843 844 845 846
  , isForAllTy ty2
  , let kind_co = mkNthCo 0 co
  = Just ( tv1, kind_co
         , mkInstCo co (mkNomReflCo (TyVarTy tv1) `mkCoherenceRightCo` kind_co) )
847 848 849 850

  | otherwise
  = Nothing

851 852 853 854 855 856 857
etaAppCo_maybe :: Coercion -> Maybe (Coercion,Coercion)
-- If possible, split a coercion
--   g :: t1a t1b ~ t2a t2b
-- into a pair of coercions (left g, right g)
etaAppCo_maybe co
  | Just (co1,co2) <- splitAppCo_maybe co
  = Just (co1,co2)
858
  | (Pair ty1 ty2, Nominal) <- coercionKindRole co
859 860
  , Just (_,t1) <- splitAppTy_maybe ty1
  , Just (_,t2) <- splitAppTy_maybe ty2
861 862 863
  , let isco1 = isCoercionTy t1
  , let isco2 = isCoercionTy t2
  , isco1 == isco2
864 865 866 867
  = Just (LRCo CLeft co, LRCo CRight co)
  | otherwise
  = Nothing

868
etaTyConAppCo_maybe :: TyCon -> Coercion -> Maybe [Coercion]
869
-- If possible, split a coercion
870
--       g :: T s1 .. sn ~ T t1 .. tn
871
-- into [ Nth 0 g :: s1~t1, ..., Nth (n-1) g :: sn~tn ]
872
etaTyConAppCo_maybe tc (TyConAppCo _ tc2 cos2)
873 874 875
  = ASSERT( tc == tc2 ) Just cos2

etaTyConAppCo_maybe tc co
876
  | mightBeUnsaturatedTyCon tc
877 878 879 880 881
  , Pair ty1 ty2     <- coercionKind co
  , Just (tc1, tys1) <- splitTyConApp_maybe ty1
  , Just (tc2, tys2) <- splitTyConApp_maybe ty2
  , tc1 == tc2
  , let n = length tys1
882
  = ASSERT( tc == tc1 )
883
    ASSERT( n == length tys2 )
884
    Just (decomposeCo n co)
885 886 887 888 889 890
    -- NB: n might be <> tyConArity tc
    -- e.g.   data family T a :: * -> *
    --        g :: T a b ~ T c d

  | otherwise
  = Nothing
891

892
{-
893 894
Note [Eta for AppCo]
~~~~~~~~~~~~~~~~~~~~
895
Suppose we have
896 897 898 899 900
   g :: s1 t1 ~ s2 t2

Then we can't necessarily make
   left  g :: s1 ~ s2
   right g :: t1 ~ t2
Gabor Greif's avatar
typos  
Gabor Greif committed
901
because it's possible that
902 903 904 905 906
   s1 :: * -> *         t1 :: *
   s2 :: (*->*) -> *    t2 :: * -> *
and in that case (left g) does not have the same
kind on either side.

907
It's enough to check that
908 909 910 911 912
  kind t1 = kind t2
because if g is well-kinded then
  kind (s1 t2) = kind (s2 t2)
and these two imply
  kind s1 = kind s2
913

914
-}
915 916 917 918 919

optForAllCoBndr :: LiftingContext -> Bool
                -> TyVar -> Coercion -> (LiftingContext, TyVar, Coercion)
optForAllCoBndr env sym
  = substForAllCoBndrCallbackLC sym (opt_co4_wrap env sym False Nominal) env