Capability.c 25.8 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

34
nat n_capabilities;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
41
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
42

43
44
45
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

46
#if defined(THREADED_RTS)
47
48
49
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
50
    return blackholes_need_checking
51
	|| sched_state >= SCHED_INTERRUPTING
52
53
	;
}
54
#endif
55

56
#if defined(THREADED_RTS)
57
58
59
rtsBool
stealWork (Capability *cap)
{
60
61
62
63
64
65
  /* use the normal Sparks.h interface (internally modified to enable
     concurrent stealing) 
     and immediately turn the spark into a thread when successful
  */
  Capability *robbed;
  StgClosurePtr spark;
66
  rtsBool retry;
67
68
69
70
71
72
73
74
  nat i = 0;

  debugTrace(DEBUG_sched,
	     "cap %d: Trying to steal work from other capabilities", 
	     cap->no);

  if (n_capabilities == 1) { return rtsFalse; } // makes no sense...

75
76
  do {
      retry = rtsFalse;
77

78
79
80
81
82
83
      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = &capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;
84

85
86
87
88
89
90
91
92
93
94
95
96
          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

          spark = tryStealSpark(robbed->sparks);
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = rtsTrue;
          }

          if (spark != NULL) {
              debugTrace(DEBUG_sched,
97
		 "cap %d: Stole a spark from capability %d",
98
                         cap->no, robbed->no);
99

100
101
102
103
104
105
              createSparkThread(cap,spark);
              return rtsTrue;
          }
          // otherwise: no success, try next one
      }
  } while (retry);
106

107
108
  debugTrace(DEBUG_sched, "No sparks stolen");
  return rtsFalse;
109
}
110
#endif
111
112
113

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
114
 *
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
131
132
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

149
/* ----------------------------------------------------------------------------
150
151
152
153
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
154
155

static void
156
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
157
{
158
    nat g;
159

160
161
162
163
164
165
166
167
168
169
170
171
172
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
173
174
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
175
176
177
    cap->sparks_created     = 0;
    cap->sparks_converted   = 0;
    cap->sparks_pruned      = 0;
178
179
#endif

sof's avatar
sof committed
180
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
181
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
182

183
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
184
185
				     RtsFlags.GcFlags.generations,
				     "initCapability");
186
187
188

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
189
    }
190

tharris@microsoft.com's avatar
tharris@microsoft.com committed
191
192
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
193
194
195
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
196
    cap->context_switch = 0;
sof's avatar
sof committed
197
198
}

199
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
200
201
 * Function:  initCapabilities()
 *
202
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
203
 *            we keep a table of them, the size of which is
204
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
205
 *
206
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
207
void
208
initCapabilities( void )
sof's avatar
sof committed
209
{
210
211
#if defined(THREADED_RTS)
    nat i;
212

213
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
214
215
216
217
218
219
220
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

221
222
223
224
225
226
227
228
229
230
231
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
232

233
    for (i = 0; i < n_capabilities; i++) {
234
	initCapability(&capabilities[i], i);
235
    }
236

Simon Marlow's avatar
Simon Marlow committed
237
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
238
239
240

#else /* !THREADED_RTS */

241
    n_capabilities = 1;
242
    capabilities = &MainCapability;
243
    initCapability(&MainCapability, 0);
244

245
246
#endif

247
248
249
250
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
251
252
}

253
254
255
256
257
258
259
260
261
262
263
264
265
/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void setContextSwitches(void)
{
  nat i;
  for (i=0; i < n_capabilities; i++) {
    capabilities[i].context_switch = 1;
  }
}

266
/* ----------------------------------------------------------------------------
267
268
269
270
271
272
273
274
275
276
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
277
278
 *
 * ------------------------------------------------------------------------- */
279
280
281

#if defined(THREADED_RTS)
STATIC_INLINE void
282
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
283
{
284
285
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
286
287
288
289
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
290
291
292
293
294
295
296
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
297
}
298
#endif
299

300
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
301
302
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
303
304
305
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
306
307
 * ------------------------------------------------------------------------- */

308
#if defined(THREADED_RTS)
309
void
310
311
releaseCapability_ (Capability* cap, 
                    rtsBool always_wakeup)
312
{
313
314
315
316
    Task *task;

    task = cap->running_task;

317
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
318
319

    cap->running_task = NULL;
320

321
322
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
323
324
325
326
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
327
    }
328

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    /* if waiting_for_gc was the reason to release the cap: thread
       comes from yieldCap->releaseAndQueueWorker. Unconditionally set
       cap. free and return (see default after the if-protected other
       special cases). Thread will wait on cond.var and re-acquire the
       same cap after GC (GC-triggering cap. calls releaseCap and
       enters the spare_workers case)
    */
    if (waiting_for_gc) {
      last_free_capability = cap; // needed?
      trace(TRACE_sched | DEBUG_sched, 
	    "GC pending, set capability %d free", cap->no);
      return;
    } 


344
345
346
347
348
349
350
351
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
352
    }
353

354
    if (!cap->spare_workers) {
355
356
357
358
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
359
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
360
361
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
362
363
364
	    startWorkerTask(cap, workerStart);
	    return;
	}
365
    }
366

367
368
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
369
370
371
    if (always_wakeup || 
        !emptyRunQueue(cap) || !emptyWakeupQueue(cap) ||
        !emptySparkPoolCap(cap) || globalWorkToDo()) {
372
373
374
375
376
377
378
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

379
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
380
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
381
382
}

383
void
384
releaseCapability (Capability* cap USED_IF_THREADS)
385
386
{
    ACQUIRE_LOCK(&cap->lock);
387
388
389
390
391
392
393
394
395
    releaseCapability_(cap, rtsFalse);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, rtsTrue);
396
397
398
399
    RELEASE_LOCK(&cap->lock);
}

static void
400
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

421
    releaseCapability_(cap,rtsFalse);
422
423
424
425

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
426

427
/* ----------------------------------------------------------------------------
428
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
429
430
 *
 * Purpose:  when an OS thread returns from an external call,
431
432
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
433
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
434
435
 * made it.
 *
436
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
437
void
438
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
439
{
440
#if !defined(THREADED_RTS)
441

442
443
444
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
445

446
#else
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
	    for (i = 0; i < n_capabilities; i++) {
		cap = &capabilities[i];
		if (!cap->running_task) {
		    break;
		}
	    }
	    // Can't find a free one, use last_free_capability.
	    cap = last_free_capability;
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

468
    } else {
469
	ASSERT(task->cap == cap);
470
471
    }

472
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
473

Simon Marlow's avatar
Simon Marlow committed
474
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

510
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
511

Simon Marlow's avatar
Simon Marlow committed
512
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
513
514
515
516
517
518

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
519
/* ----------------------------------------------------------------------------
520
 * yieldCapability
521
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
522

sof's avatar
sof committed
523
void
524
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
525
{
526
527
    Capability *cap = *pCap;

Simon Marlow's avatar
Simon Marlow committed
528
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
529
530

	// We must now release the capability and wait to be woken up
531
	// again.
532
	task->wakeup = rtsFalse;
533
534
535
536
537
538
539
540
541
542
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
543
544
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

545
546
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
547
548
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
570
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
571
	ASSERT(cap->running_task == task);
572

573
    *pCap = cap;
574

575
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
576

577
    return;
sof's avatar
sof committed
578
579
}

580
581
582
583
584
585
586
587
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
588
589
590
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
591
{
592
    ACQUIRE_LOCK(&other_cap->lock);
593

594
595
596
597
598
599
600
601
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
602

603
    if (other_cap->running_task == NULL) {
604
605
606
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

607
608
609
610
611
612
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

	trace(TRACE_sched, "resuming capability %d", other_cap->no);
613
	releaseCapability_(other_cap,rtsFalse);
614
    } else {
615
	appendToWakeupQueue(my_cap,other_cap,tso);
616
        other_cap->context_switch = 1;
617
618
619
620
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
621

622
    RELEASE_LOCK(&other_cap->lock);
623
624
}

625
/* ----------------------------------------------------------------------------
626
 * prodCapabilities
sof's avatar
sof committed
627
 *
628
629
630
 * Used to indicate that the interrupted flag is now set, or some
 * other global condition that might require waking up a Task on each
 * Capability.
631
632
 * ------------------------------------------------------------------------- */

633
634
635
636
637
638
static void
prodCapabilities(rtsBool all)
{
    nat i;
    Capability *cap;
    Task *task;
639

640
641
642
643
644
    for (i=0; i < n_capabilities; i++) {
	cap = &capabilities[i];
	ACQUIRE_LOCK(&cap->lock);
	if (!cap->running_task) {
	    if (cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
645
		trace(TRACE_sched, "resuming capability %d", cap->no);
646
647
648
649
650
651
652
653
		task = cap->spare_workers;
		ASSERT(!task->stopped);
		giveCapabilityToTask(cap,task);
		if (!all) {
		    RELEASE_LOCK(&cap->lock);
		    return;
		}
	    }
654
	}
655
	RELEASE_LOCK(&cap->lock);
656
    }
657
    return;
sof's avatar
sof committed
658
}
659

660
661
662
663
664
void
prodAllCapabilities (void)
{
    prodCapabilities(rtsTrue);
}
sof's avatar
sof committed
665

666
/* ----------------------------------------------------------------------------
667
668
669
670
671
672
 * prodOneCapability
 *
 * Like prodAllCapabilities, but we only require a single Task to wake
 * up in order to service some global event, such as checking for
 * deadlock after some idle time has passed.
 * ------------------------------------------------------------------------- */
673

674
675
676
677
void
prodOneCapability (void)
{
    prodCapabilities(rtsFalse);
678
}
679
680
681
682
683
684
685
686
687
688
689
690
691

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
692
 *
693
 * ------------------------------------------------------------------------- */
694
695

void
696
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
697
{
698
699
    nat i;

700
    ASSERT(sched_state == SCHED_SHUTTING_DOWN);
701
702
703

    task->cap = cap;

704
705
706
707
708
709
710
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
711
712
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
713
714
715
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
716
	    debugTrace(DEBUG_sched, "not owner, yielding");
717
718
	    yieldThread();
	    continue;
719
	}
720
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
721
722
723
724
725
726
727
728
729
730
731
732
733

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
734
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
735
736
737
738
739
740
741
742
743
744
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

745
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
746
747
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
748
	    releaseCapability_(cap,rtsFalse); // this will wake up a worker
749
750
751
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
752
	}
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
769
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
770
771
	RELEASE_LOCK(&cap->lock);
	break;
772
    }
773
774
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
775

776
777
778
779
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
780
}
781

782
783
784
785
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
786
 *
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


805
#endif /* THREADED_RTS */
806

807
808
809
static void
freeCapability (Capability *cap)
{
Ian Lynagh's avatar
Ian Lynagh committed
810
811
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
812
    freeSparkPool(cap->sparks);
Ian Lynagh's avatar
Ian Lynagh committed
813
814
#endif
}
815

816
817
818
819
820
821
822
823
824
825
826
827
828
void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    nat i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(&capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
}

829
830
831
832
833
834
835
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
836
837
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta, 
                      rtsBool prune_sparks USED_IF_THREADS)
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
862
863

#if defined(THREADED_RTS)
864
865
866
867
868
        if (prune_sparks) {
            pruneSparkQueue (evac, user, cap);
        } else {
            traverseSparkQueue (evac, user, cap);
        }
869
#endif
870
    }
871

872
873
874
875
876
877
878
879
880
881
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

void
markCapabilities (evac_fn evac, void *user)
{
882
    markSomeCapabilities(evac, user, 0, 1, rtsFalse);
883
}