Simplify.lhs 85.1 KB
Newer Older
1
%
2
% (c) The AQUA Project, Glasgow University, 1993-1998
3 4 5 6
%
\section[Simplify]{The main module of the simplifier}

\begin{code}
7
module Simplify ( simplTopBinds, simplExpr ) where
8

9
#include "HsVersions.h"
10

simonpj@microsoft.com's avatar
Wibble  
simonpj@microsoft.com committed
11
import DynFlags
12
import SimplMonad
Ian Lynagh's avatar
Ian Lynagh committed
13 14
import Type hiding      ( substTy, extendTvSubst )
import SimplEnv
15
import SimplUtils
16
import MkId		( rUNTIME_ERROR_ID )
17
import Id
18
import Var
19 20
import IdInfo
import Coercion
Ian Lynagh's avatar
Ian Lynagh committed
21 22
import FamInstEnv       ( topNormaliseType )
import DataCon          ( dataConRepStrictness, dataConUnivTyVars )
23
import CoreSyn
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
24
import NewDemand        ( isStrictDmd, splitStrictSig )
Ian Lynagh's avatar
Ian Lynagh committed
25 26
import PprCore          ( pprParendExpr, pprCoreExpr )
import CoreUnfold       ( mkUnfolding, callSiteInline, CallCtxt(..) )
27
import CoreUtils
28
import Rules            ( lookupRule, getRules )
Ian Lynagh's avatar
Ian Lynagh committed
29 30 31 32 33 34 35 36
import BasicTypes       ( isMarkedStrict )
import CostCentre       ( currentCCS )
import TysPrim          ( realWorldStatePrimTy )
import PrelInfo         ( realWorldPrimId )
import BasicTypes       ( TopLevelFlag(..), isTopLevel,
                          RecFlag(..), isNonRuleLoopBreaker )
import Maybes           ( orElse )
import Data.List        ( mapAccumL )
37
import Outputable
38
import FastString
39 40 41
\end{code}


42 43
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in SimplCore.lhs.
44 45


46
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
47
        *** IMPORTANT NOTE ***
48 49 50 51 52 53
-----------------------------------------
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more.   (Actually, it never did!)  The reason is
documented with simplifyArgs.


54
-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
55
        *** IMPORTANT NOTE ***
56 57 58 59 60 61 62 63 64 65
-----------------------------------------
Many parts of the simplifier return a bunch of "floats" as well as an
expression. This is wrapped as a datatype SimplUtils.FloatsWith.

All "floats" are let-binds, not case-binds, but some non-rec lets may
be unlifted (with RHS ok-for-speculation).



-----------------------------------------
Ian Lynagh's avatar
Ian Lynagh committed
66
        ORGANISATION OF FUNCTIONS
67 68 69 70 71 72
-----------------------------------------
simplTopBinds
  - simplify all top-level binders
  - for NonRec, call simplRecOrTopPair
  - for Rec,    call simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
73 74 75

        ------------------------------
simplExpr (applied lambda)      ==> simplNonRecBind
76 77 78
simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind
simplExpr (Let (Rec ...)    ..) ==> simplify binders; simplRecBind

Ian Lynagh's avatar
Ian Lynagh committed
79 80
        ------------------------------
simplRecBind    [binders already simplfied]
81 82 83 84
  - use simplRecOrTopPair on each pair in turn

simplRecOrTopPair [binder already simplified]
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
85 86
            top-level non-recursive bindings
  Returns:
87 88 89 90 91
  - check for PreInlineUnconditionally
  - simplLazyBind

simplNonRecBind
  Used for: non-top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
92 93 94
            beta reductions (which amount to the same thing)
  Because it can deal with strict arts, it takes a
        "thing-inside" and returns an expression
95 96 97 98

  - check for PreInlineUnconditionally
  - simplify binder, including its IdInfo
  - if strict binding
Ian Lynagh's avatar
Ian Lynagh committed
99 100 101
        simplStrictArg
        mkAtomicArgs
        completeNonRecX
102
    else
Ian Lynagh's avatar
Ian Lynagh committed
103 104
        simplLazyBind
        addFloats
105

Ian Lynagh's avatar
Ian Lynagh committed
106
simplNonRecX:   [given a *simplified* RHS, but an *unsimplified* binder]
107 108 109 110
  Used for: binding case-binder and constr args in a known-constructor case
  - check for PreInLineUnconditionally
  - simplify binder
  - completeNonRecX
Ian Lynagh's avatar
Ian Lynagh committed
111 112 113

        ------------------------------
simplLazyBind:  [binder already simplified, RHS not]
114
  Used for: recursive bindings (top level and nested)
Ian Lynagh's avatar
Ian Lynagh committed
115 116 117
            top-level non-recursive bindings
            non-top-level, but *lazy* non-recursive bindings
        [must not be strict or unboxed]
118
  Returns floats + an augmented environment, not an expression
Ian Lynagh's avatar
Ian Lynagh committed
119 120
  - substituteIdInfo and add result to in-scope
        [so that rules are available in rec rhs]
121 122 123
  - simplify rhs
  - mkAtomicArgs
  - float if exposes constructor or PAP
124
  - completeBind
125 126


Ian Lynagh's avatar
Ian Lynagh committed
127
completeNonRecX:        [binder and rhs both simplified]
128
  - if the the thing needs case binding (unlifted and not ok-for-spec)
Ian Lynagh's avatar
Ian Lynagh committed
129
        build a Case
130
   else
Ian Lynagh's avatar
Ian Lynagh committed
131 132
        completeBind
        addFloats
133

Ian Lynagh's avatar
Ian Lynagh committed
134 135
completeBind:   [given a simplified RHS]
        [used for both rec and non-rec bindings, top level and not]
136 137 138 139 140 141 142 143
  - try PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity



Right hand sides and arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
144 145 146
In many ways we want to treat
        (a) the right hand side of a let(rec), and
        (b) a function argument
147 148 149
in the same way.  But not always!  In particular, we would
like to leave these arguments exactly as they are, so they
will match a RULE more easily.
Ian Lynagh's avatar
Ian Lynagh committed
150 151 152

        f (g x, h x)
        g (+ x)
153 154 155 156

It's harder to make the rule match if we ANF-ise the constructor,
or eta-expand the PAP:

Ian Lynagh's avatar
Ian Lynagh committed
157 158
        f (let { a = g x; b = h x } in (a,b))
        g (\y. + x y)
159 160 161

On the other hand if we see the let-defns

Ian Lynagh's avatar
Ian Lynagh committed
162 163
        p = (g x, h x)
        q = + x
164 165

then we *do* want to ANF-ise and eta-expand, so that p and q
Ian Lynagh's avatar
Ian Lynagh committed
166
can be safely inlined.
167 168 169 170 171

Even floating lets out is a bit dubious.  For let RHS's we float lets
out if that exposes a value, so that the value can be inlined more vigorously.
For example

Ian Lynagh's avatar
Ian Lynagh committed
172
        r = let x = e in (x,x)
173 174 175 176 177 178 179 180 181 182 183 184 185 186

Here, if we float the let out we'll expose a nice constructor. We did experiments
that showed this to be a generally good thing.  But it was a bad thing to float
lets out unconditionally, because that meant they got allocated more often.

For function arguments, there's less reason to expose a constructor (it won't
get inlined).  Just possibly it might make a rule match, but I'm pretty skeptical.
So for the moment we don't float lets out of function arguments either.


Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like

Ian Lynagh's avatar
Ian Lynagh committed
187
        case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
188 189 190 191 192

If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together.  And in general that's a good thing to do.  Perhaps
we should eta expand wherever we find a (value) lambda?  Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
193 194


195
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
196
%*                                                                      *
197
\subsection{Bindings}
Ian Lynagh's avatar
Ian Lynagh committed
198
%*                                                                      *
199 200 201
%************************************************************************

\begin{code}
202
simplTopBinds :: SimplEnv -> [InBind] -> SimplM [OutBind]
203

Ian Lynagh's avatar
Ian Lynagh committed
204
simplTopBinds env0 binds0
Ian Lynagh's avatar
Ian Lynagh committed
205 206 207 208
  = do  {       -- Put all the top-level binders into scope at the start
                -- so that if a transformation rule has unexpectedly brought
                -- anything into scope, then we don't get a complaint about that.
                -- It's rather as if the top-level binders were imported.
Ian Lynagh's avatar
Ian Lynagh committed
209
        ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0)
Ian Lynagh's avatar
Ian Lynagh committed
210 211 212
        ; dflags <- getDOptsSmpl
        ; let dump_flag = dopt Opt_D_dump_inlinings dflags ||
                          dopt Opt_D_dump_rule_firings dflags
Ian Lynagh's avatar
Ian Lynagh committed
213
        ; env2 <- simpl_binds dump_flag env1 binds0
Ian Lynagh's avatar
Ian Lynagh committed
214
        ; freeTick SimplifierDone
Ian Lynagh's avatar
Ian Lynagh committed
215
        ; return (getFloats env2) }
216
  where
Ian Lynagh's avatar
Ian Lynagh committed
217 218 219 220 221 222
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
        -- That's why we run down binds and bndrs' simultaneously.
        --
        -- The dump-flag emits a trace for each top-level binding, which
        -- helps to locate the tracing for inlining and rule firing
223
    simpl_binds :: Bool -> SimplEnv -> [InBind] -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
224 225
    simpl_binds _    env []           = return env
    simpl_binds dump env (bind:binds) = do { env' <- trace_bind dump bind $
Ian Lynagh's avatar
Ian Lynagh committed
226 227
                                                     simpl_bind env bind
                                           ; simpl_binds dump env' binds }
228

Ian Lynagh's avatar
Ian Lynagh committed
229 230
    trace_bind True  bind = pprTrace "SimplBind" (ppr (bindersOf bind))
    trace_bind False _    = \x -> x
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
231

232 233
    simpl_bind env (Rec pairs)  = simplRecBind      env  TopLevel pairs
    simpl_bind env (NonRec b r) = simplRecOrTopPair env' TopLevel b b' r
Ian Lynagh's avatar
Ian Lynagh committed
234 235
        where
          (env', b') = addBndrRules env b (lookupRecBndr env b)
236 237 238 239
\end{code}


%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
240
%*                                                                      *
241
\subsection{Lazy bindings}
Ian Lynagh's avatar
Ian Lynagh committed
242
%*                                                                      *
243 244 245
%************************************************************************

simplRecBind is used for
Ian Lynagh's avatar
Ian Lynagh committed
246
        * recursive bindings only
247 248 249

\begin{code}
simplRecBind :: SimplEnv -> TopLevelFlag
Ian Lynagh's avatar
Ian Lynagh committed
250 251
             -> [(InId, InExpr)]
             -> SimplM SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
252 253 254 255 256
simplRecBind env0 top_lvl pairs0
  = do  { let (env_with_info, triples) = mapAccumL add_rules env0 pairs0
        ; env1 <- go (zapFloats env_with_info) triples
        ; return (env0 `addRecFloats` env1) }
        -- addFloats adds the floats from env1,
Thomas Schilling's avatar
Thomas Schilling committed
257
        -- _and_ updates env0 with the in-scope set from env1
258
  where
259
    add_rules :: SimplEnv -> (InBndr,InExpr) -> (SimplEnv, (InBndr, OutBndr, InExpr))
Ian Lynagh's avatar
Ian Lynagh committed
260
        -- Add the (substituted) rules to the binder
261
    add_rules env (bndr, rhs) = (env', (bndr, bndr', rhs))
Ian Lynagh's avatar
Ian Lynagh committed
262 263
        where
          (env', bndr') = addBndrRules env bndr (lookupRecBndr env bndr)
264

265
    go env [] = return env
Ian Lynagh's avatar
Ian Lynagh committed
266

267
    go env ((old_bndr, new_bndr, rhs) : pairs)
Ian Lynagh's avatar
Ian Lynagh committed
268 269
        = do { env' <- simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
             ; go env' pairs }
270 271
\end{code}

272
simplOrTopPair is used for
Ian Lynagh's avatar
Ian Lynagh committed
273 274
        * recursive bindings (whether top level or not)
        * top-level non-recursive bindings
275 276 277 278 279

It assumes the binder has already been simplified, but not its IdInfo.

\begin{code}
simplRecOrTopPair :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
280 281 282
                  -> TopLevelFlag
                  -> InId -> OutBndr -> InExpr  -- Binder and rhs
                  -> SimplM SimplEnv    -- Returns an env that includes the binding
283

284
simplRecOrTopPair env top_lvl old_bndr new_bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
285 286 287
  | preInlineUnconditionally env top_lvl old_bndr rhs   -- Check for unconditional inline
  = do  { tick (PreInlineUnconditionally old_bndr)
        ; return (extendIdSubst env old_bndr (mkContEx env rhs)) }
288 289

  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
290 291
  = simplLazyBind env top_lvl Recursive old_bndr new_bndr rhs env
        -- May not actually be recursive, but it doesn't matter
292 293 294 295
\end{code}


simplLazyBind is used for
296 297
  * [simplRecOrTopPair] recursive bindings (whether top level or not)
  * [simplRecOrTopPair] top-level non-recursive bindings
Ian Lynagh's avatar
Ian Lynagh committed
298
  * [simplNonRecE]      non-top-level *lazy* non-recursive bindings
299 300

Nota bene:
Ian Lynagh's avatar
Ian Lynagh committed
301
    1. It assumes that the binder is *already* simplified,
302
       and is in scope, and its IdInfo too, except unfolding
303 304 305 306 307 308 309 310

    2. It assumes that the binder type is lifted.

    3. It does not check for pre-inline-unconditionallly;
       that should have been done already.

\begin{code}
simplLazyBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
311 312 313 314 315
              -> TopLevelFlag -> RecFlag
              -> InId -> OutId          -- Binder, both pre-and post simpl
                                        -- The OutId has IdInfo, except arity, unfolding
              -> InExpr -> SimplEnv     -- The RHS and its environment
              -> SimplM SimplEnv
316

317
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
Ian Lynagh's avatar
Ian Lynagh committed
318
  = do  { let   rhs_env     = rhs_se `setInScope` env
319 320 321 322 323 324 325 326 327 328
		(tvs, body) = case collectTyBinders rhs of
			        (tvs, body) | not_lam body -> (tvs,body)
					    | otherwise	   -> ([], rhs)
		not_lam (Lam _ _) = False
		not_lam _	  = True
			-- Do not do the "abstract tyyvar" thing if there's
			-- a lambda inside, becuase it defeats eta-reduction
			--    f = /\a. \x. g a x  
			-- should eta-reduce

Ian Lynagh's avatar
Ian Lynagh committed
329
        ; (body_env, tvs') <- simplBinders rhs_env tvs
330
                -- See Note [Floating and type abstraction] in SimplUtils
Ian Lynagh's avatar
Ian Lynagh committed
331

332 333
        -- Simplify the RHS
        ; (body_env1, body1) <- simplExprF body_env body mkBoringStop
Ian Lynagh's avatar
Ian Lynagh committed
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

        -- ANF-ise a constructor or PAP rhs
        ; (body_env2, body2) <- prepareRhs body_env1 body1

        ; (env', rhs')
            <-  if not (doFloatFromRhs top_lvl is_rec False body2 body_env2)
                then                            -- No floating, just wrap up!
                     do { rhs' <- mkLam tvs' (wrapFloats body_env2 body2)
                        ; return (env, rhs') }

                else if null tvs then           -- Simple floating
                     do { tick LetFloatFromLet
                        ; return (addFloats env body_env2, body2) }

                else                            -- Do type-abstraction first
                     do { tick LetFloatFromLet
                        ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2
                        ; rhs' <- mkLam tvs' body3
352
                        ; let env' = foldl (addPolyBind top_lvl) env poly_binds
353
                        ; return (env', rhs') }
Ian Lynagh's avatar
Ian Lynagh committed
354 355

        ; completeBind env' top_lvl bndr bndr1 rhs' }
356
\end{code}
357

Ian Lynagh's avatar
Ian Lynagh committed
358
A specialised variant of simplNonRec used when the RHS is already simplified,
359 360 361 362
notably in knownCon.  It uses case-binding where necessary.

\begin{code}
simplNonRecX :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
363 364 365
             -> InId            -- Old binder
             -> OutExpr         -- Simplified RHS
             -> SimplM SimplEnv
366 367

simplNonRecX env bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
368
  = do  { (env', bndr') <- simplBinder env bndr
369
        ; completeNonRecX env' (isStrictId bndr) bndr bndr' new_rhs }
370 371

completeNonRecX :: SimplEnv
372
                -> Bool
Ian Lynagh's avatar
Ian Lynagh committed
373 374 375 376
                -> InId                 -- Old binder
                -> OutId                -- New binder
                -> OutExpr              -- Simplified RHS
                -> SimplM SimplEnv
377

378
completeNonRecX env is_strict old_bndr new_bndr new_rhs
Ian Lynagh's avatar
Ian Lynagh committed
379 380
  = do  { (env1, rhs1) <- prepareRhs (zapFloats env) new_rhs
        ; (env2, rhs2) <-
381
                if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1
Ian Lynagh's avatar
Ian Lynagh committed
382 383 384 385
                then do { tick LetFloatFromLet
                        ; return (addFloats env env1, rhs1) }   -- Add the floats to the main env
                else return (env, wrapFloats env1 rhs1)         -- Wrap the floats around the RHS
        ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 }
386 387 388 389
\end{code}

{- No, no, no!  Do not try preInlineUnconditionally in completeNonRecX
   Doing so risks exponential behaviour, because new_rhs has been simplified once already
Ian Lynagh's avatar
Ian Lynagh committed
390
   In the cases described by the folowing commment, postInlineUnconditionally will
391
   catch many of the relevant cases.
Ian Lynagh's avatar
Ian Lynagh committed
392 393 394 395 396 397 398 399
        -- This happens; for example, the case_bndr during case of
        -- known constructor:  case (a,b) of x { (p,q) -> ... }
        -- Here x isn't mentioned in the RHS, so we don't want to
        -- create the (dead) let-binding  let x = (a,b) in ...
        --
        -- Similarly, single occurrences can be inlined vigourously
        -- e.g.  case (f x, g y) of (a,b) -> ....
        -- If a,b occur once we can avoid constructing the let binding for them.
400

401
   Furthermore in the case-binding case preInlineUnconditionally risks extra thunks
Ian Lynagh's avatar
Ian Lynagh committed
402 403 404 405 406 407
        -- Consider     case I# (quotInt# x y) of
        --                I# v -> let w = J# v in ...
        -- If we gaily inline (quotInt# x y) for v, we end up building an
        -- extra thunk:
        --                let w = J# (quotInt# x y) in ...
        -- because quotInt# can fail.
408

409 410 411 412
  | preInlineUnconditionally env NotTopLevel bndr new_rhs
  = thing_inside (extendIdSubst env bndr (DoneEx new_rhs))
-}

413
----------------------------------
414
prepareRhs takes a putative RHS, checks whether it's a PAP or
Ian Lynagh's avatar
Ian Lynagh committed
415
constructor application and, if so, converts it to ANF, so that the
416
resulting thing can be inlined more easily.  Thus
Ian Lynagh's avatar
Ian Lynagh committed
417
        x = (f a, g b)
418
becomes
Ian Lynagh's avatar
Ian Lynagh committed
419 420 421
        t1 = f a
        t2 = g b
        x = (t1,t2)
422

423
We also want to deal well cases like this
Ian Lynagh's avatar
Ian Lynagh committed
424
        v = (f e1 `cast` co) e2
425
Here we want to make e1,e2 trivial and get
Ian Lynagh's avatar
Ian Lynagh committed
426
        x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
427 428
That's what the 'go' loop in prepareRhs does

429 430 431
\begin{code}
prepareRhs :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Adds new floats to the env iff that allows us to return a good RHS
Ian Lynagh's avatar
Ian Lynagh committed
432
prepareRhs env (Cast rhs co)    -- Note [Float coercions]
Ian Lynagh's avatar
Ian Lynagh committed
433
  | (ty1, _ty2) <- coercionKind co       -- Do *not* do this if rhs has an unlifted type
Ian Lynagh's avatar
Ian Lynagh committed
434 435 436
  , not (isUnLiftedType ty1)            -- see Note [Float coercions (unlifted)]
  = do  { (env', rhs') <- makeTrivial env rhs
        ; return (env', Cast rhs' co) }
437

Ian Lynagh's avatar
Ian Lynagh committed
438 439 440
prepareRhs env0 rhs0
  = do  { (_is_val, env1, rhs1) <- go 0 env0 rhs0
        ; return (env1, rhs1) }
441
  where
442
    go n_val_args env (Cast rhs co)
Ian Lynagh's avatar
Ian Lynagh committed
443 444
        = do { (is_val, env', rhs') <- go n_val_args env rhs
             ; return (is_val, env', Cast rhs' co) }
445
    go n_val_args env (App fun (Type ty))
Ian Lynagh's avatar
Ian Lynagh committed
446 447
        = do { (is_val, env', rhs') <- go n_val_args env fun
             ; return (is_val, env', App rhs' (Type ty)) }
448
    go n_val_args env (App fun arg)
Ian Lynagh's avatar
Ian Lynagh committed
449 450 451 452 453
        = do { (is_val, env', fun') <- go (n_val_args+1) env fun
             ; case is_val of
                True -> do { (env'', arg') <- makeTrivial env' arg
                           ; return (True, env'', App fun' arg') }
                False -> return (False, env, App fun arg) }
454
    go n_val_args env (Var fun)
Ian Lynagh's avatar
Ian Lynagh committed
455 456 457 458 459
        = return (is_val, env, Var fun)
        where
          is_val = n_val_args > 0       -- There is at least one arg
                                        -- ...and the fun a constructor or PAP
                 && (isDataConWorkId fun || n_val_args < idArity fun)
Ian Lynagh's avatar
Ian Lynagh committed
460
    go _ env other
Ian Lynagh's avatar
Ian Lynagh committed
461
        = return (False, env, other)
462 463
\end{code}

464

465 466 467
Note [Float coercions]
~~~~~~~~~~~~~~~~~~~~~~
When we find the binding
Ian Lynagh's avatar
Ian Lynagh committed
468
        x = e `cast` co
469
we'd like to transform it to
Ian Lynagh's avatar
Ian Lynagh committed
470 471
        x' = e
        x = x `cast` co         -- A trivial binding
472 473 474 475 476 477 478 479 480 481 482 483 484
There's a chance that e will be a constructor application or function, or something
like that, so moving the coerion to the usage site may well cancel the coersions
and lead to further optimisation.  Example:

     data family T a :: *
     data instance T Int = T Int

     foo :: Int -> Int -> Int
     foo m n = ...
        where
          x = T m
          go 0 = 0
          go n = case x of { T m -> go (n-m) }
Ian Lynagh's avatar
Ian Lynagh committed
485
                -- This case should optimise
486

487 488
Note [Float coercions (unlifted)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ian Lynagh's avatar
Ian Lynagh committed
489
BUT don't do [Float coercions] if 'e' has an unlifted type.
490 491
This *can* happen:

Ian Lynagh's avatar
Ian Lynagh committed
492 493
     foo :: Int = (error (# Int,Int #) "urk")
                  `cast` CoUnsafe (# Int,Int #) Int
494 495 496

If do the makeTrivial thing to the error call, we'll get
    foo = case error (# Int,Int #) "urk" of v -> v `cast` ...
Ian Lynagh's avatar
Ian Lynagh committed
497
But 'v' isn't in scope!
498 499

These strange casts can happen as a result of case-of-case
Ian Lynagh's avatar
Ian Lynagh committed
500 501
        bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of
                (# p,q #) -> p+q
502

503 504 505 506 507 508 509

\begin{code}
makeTrivial :: SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
makeTrivial env expr
  | exprIsTrivial expr
  = return (env, expr)
Ian Lynagh's avatar
Ian Lynagh committed
510
  | otherwise           -- See Note [Take care] below
Ian Lynagh's avatar
Ian Lynagh committed
511
  = do  { var <- newId (fsLit "a") (exprType expr)
512
        ; env' <- completeNonRecX env False var var expr
513 514 515 516 517
--	  pprTrace "makeTrivial" (vcat [ppr var <+> ppr (exprArity (substExpr env' (Var var)))
--	  	   		       , ppr expr
--	  	   		       , ppr (substExpr env' (Var var))
--				       , ppr (idArity (fromJust (lookupInScope (seInScope env') var))) ]) $
	; return (env', substExpr env' (Var var)) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
518 519 520 521 522 523 524
	-- The substitution is needed becase we're constructing a new binding
	--     a = rhs
	-- And if rhs is of form (rhs1 |> co), then we might get
	--     a1 = rhs1
	--     a = a1 |> co
	-- and now a's RHS is trivial and can be substituted out, and that
	-- is what completeNonRecX will do
525
\end{code}
526 527


528
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
529
%*                                                                      *
530
\subsection{Completing a lazy binding}
Ian Lynagh's avatar
Ian Lynagh committed
531
%*                                                                      *
532 533
%************************************************************************

534 535 536 537 538
completeBind
  * deals only with Ids, not TyVars
  * takes an already-simplified binder and RHS
  * is used for both recursive and non-recursive bindings
  * is used for both top-level and non-top-level bindings
539 540 541 542 543 544 545 546

It does the following:
  - tries discarding a dead binding
  - tries PostInlineUnconditionally
  - add unfolding [this is the only place we add an unfolding]
  - add arity

It does *not* attempt to do let-to-case.  Why?  Because it is used for
Ian Lynagh's avatar
Ian Lynagh committed
547
  - top-level bindings (when let-to-case is impossible)
548
  - many situations where the "rhs" is known to be a WHNF
Ian Lynagh's avatar
Ian Lynagh committed
549
                (so let-to-case is inappropriate).
550

551 552
Nor does it do the atomic-argument thing

553
\begin{code}
554
completeBind :: SimplEnv
Ian Lynagh's avatar
Ian Lynagh committed
555 556 557 558 559 560 561
             -> TopLevelFlag            -- Flag stuck into unfolding
             -> InId                    -- Old binder
             -> OutId -> OutExpr        -- New binder and RHS
             -> SimplM SimplEnv
-- completeBind may choose to do its work
--      * by extending the substitution (e.g. let x = y in ...)
--      * or by adding to the floats in the envt
562 563

completeBind env top_lvl old_bndr new_bndr new_rhs
564
  | postInlineUnconditionally env top_lvl new_bndr occ_info new_rhs unfolding
Ian Lynagh's avatar
Ian Lynagh committed
565 566 567 568 569 570
                -- Inline and discard the binding
  = do  { tick (PostInlineUnconditionally old_bndr)
        ; -- pprTrace "postInlineUnconditionally" (ppr old_bndr <+> ppr new_bndr <+> ppr new_rhs) $
          return (extendIdSubst env old_bndr (DoneEx new_rhs)) }
        -- Use the substitution to make quite, quite sure that the
        -- substitution will happen, since we are going to discard the binding
571

572 573 574 575 576 577 578 579
  | otherwise
  = return (addNonRecWithUnf env new_bndr new_rhs unfolding wkr)
  where
    unfolding | omit_unfolding = NoUnfolding
	      | otherwise      = mkUnfolding  (isTopLevel top_lvl) new_rhs
    old_info    = idInfo old_bndr
    occ_info    = occInfo old_info
    wkr		= substWorker env (workerInfo old_info)
580 581 582 583
    omit_unfolding = isNonRuleLoopBreaker occ_info 
		   --       or not (activeInline env old_bndr)
    		   -- Do *not* trim the unfolding in SimplGently, else
		   -- the specialiser can't see it!
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

-----------------
addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplEnv
-- Add a new binding to the environment, complete with its unfolding
-- but *do not* do postInlineUnconditionally, because we have already
-- processed some of the scope of the binding
-- We still want the unfolding though.  Consider
--	let 
--	      x = /\a. let y = ... in Just y
--	in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the 
-- opportunity to inline 'y' too.

addPolyBind top_lvl env (NonRec poly_id rhs)
  = addNonRecWithUnf env poly_id rhs unfolding NoWorker
  where
    unfolding | not (activeInline env poly_id) = NoUnfolding
	      | otherwise		       = mkUnfolding (isTopLevel top_lvl) rhs
		-- addNonRecWithInfo adds the new binding in the
		-- proper way (ie complete with unfolding etc),
		-- and extends the in-scope set

addPolyBind _ env bind@(Rec _) = extendFloats env bind
		-- Hack: letrecs are more awkward, so we extend "by steam"
		-- without adding unfoldings etc.  At worst this leads to
		-- more simplifier iterations

-----------------
addNonRecWithUnf :: SimplEnv
             	  -> OutId -> OutExpr        -- New binder and RHS
		  -> Unfolding -> WorkerInfo -- and unfolding
             	  -> SimplEnv
-- Add suitable IdInfo to the Id, add the binding to the floats, and extend the in-scope set
addNonRecWithUnf env new_bndr rhs unfolding wkr
619
  = ASSERT( isId new_bndr )
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
620 621
    WARN( new_arity < old_arity || new_arity < dmd_arity, 
          (ppr final_id <+> ppr old_arity <+> ppr new_arity <+> ppr dmd_arity) $$ ppr rhs )
622
    final_id `seq`      -- This seq forces the Id, and hence its IdInfo,
623 624 625 626
	                -- and hence any inner substitutions
    addNonRec env final_id rhs
	-- The addNonRec adds it to the in-scope set too
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
627 628 629
	dmd_arity = length $ fst $ splitStrictSig $ idNewStrictness new_bndr
	old_arity = idArity new_bndr

Ian Lynagh's avatar
Ian Lynagh committed
630
        --      Arity info
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
631 632
	new_arity = exprArity rhs
        new_bndr_info = idInfo new_bndr `setArityInfo` new_arity
Ian Lynagh's avatar
Ian Lynagh committed
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

        --      Unfolding info
        -- Add the unfolding *only* for non-loop-breakers
        -- Making loop breakers not have an unfolding at all
        -- means that we can avoid tests in exprIsConApp, for example.
        -- This is important: if exprIsConApp says 'yes' for a recursive
        -- thing, then we can get into an infinite loop

        --      Demand info
        -- If the unfolding is a value, the demand info may
        -- go pear-shaped, so we nuke it.  Example:
        --      let x = (a,b) in
        --      case x of (p,q) -> h p q x
        -- Here x is certainly demanded. But after we've nuked
        -- the case, we'll get just
        --      let x = (a,b) in h a b x
        -- and now x is not demanded (I'm assuming h is lazy)
        -- This really happens.  Similarly
        --      let f = \x -> e in ...f..f...
        -- After inlining f at some of its call sites the original binding may
        -- (for example) be no longer strictly demanded.
        -- The solution here is a bit ad hoc...
        info_w_unf = new_bndr_info `setUnfoldingInfo` unfolding
656
				   `setWorkerInfo`    wkr
Ian Lynagh's avatar
Ian Lynagh committed
657

658
        final_info | isEvaldUnfolding unfolding = zapDemandInfo info_w_unf `orElse` info_w_unf
Ian Lynagh's avatar
Ian Lynagh committed
659
                   | otherwise                  = info_w_unf
660
	
Ian Lynagh's avatar
Ian Lynagh committed
661
        final_id = new_bndr `setIdInfo` final_info
SamB's avatar
SamB committed
662
\end{code}
663 664 665



666
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
667
%*                                                                      *
668
\subsection[Simplify-simplExpr]{The main function: simplExpr}
Ian Lynagh's avatar
Ian Lynagh committed
669
%*                                                                      *
670 671
%************************************************************************

672 673 674 675 676 677
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before.  If we do so naively we get quadratic
behaviour as things float out.

To see why it's important to do it after, consider this (real) example:

Ian Lynagh's avatar
Ian Lynagh committed
678 679
        let t = f x
        in fst t
680
==>
Ian Lynagh's avatar
Ian Lynagh committed
681 682 683 684
        let t = let a = e1
                    b = e2
                in (a,b)
        in fst t
685
==>
Ian Lynagh's avatar
Ian Lynagh committed
686 687 688 689 690
        let a = e1
            b = e2
            t = (a,b)
        in
        a       -- Can't inline a this round, cos it appears twice
691
==>
Ian Lynagh's avatar
Ian Lynagh committed
692
        e1
693 694 695 696

Each of the ==> steps is a round of simplification.  We'd save a
whole round if we float first.  This can cascade.  Consider

Ian Lynagh's avatar
Ian Lynagh committed
697 698
        let f = g d
        in \x -> ...f...
699
==>
Ian Lynagh's avatar
Ian Lynagh committed
700 701
        let f = let d1 = ..d.. in \y -> e
        in \x -> ...f...
702
==>
Ian Lynagh's avatar
Ian Lynagh committed
703 704
        let d1 = ..d..
        in \x -> ...(\y ->e)...
705

Ian Lynagh's avatar
Ian Lynagh committed
706
Only in this second round can the \y be applied, and it
707 708 709
might do the same again.


710
\begin{code}
711
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
712
simplExpr env expr = simplExprC env expr mkBoringStop
713

714
simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr
Ian Lynagh's avatar
Ian Lynagh committed
715 716
        -- Simplify an expression, given a continuation
simplExprC env expr cont
717
  = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $
Ian Lynagh's avatar
Ian Lynagh committed
718 719 720 721
    do  { (env', expr') <- simplExprF (zapFloats env) expr cont
        ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
          -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
          -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $
722 723 724 725
          return (wrapFloats env' expr') }

--------------------------------------------------
simplExprF :: SimplEnv -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
726
           -> SimplM (SimplEnv, OutExpr)
727

Ian Lynagh's avatar
Ian Lynagh committed
728
simplExprF env e cont
729 730
  = -- pprTrace "simplExprF" (ppr e $$ ppr cont $$ ppr (seTvSubst env) $$ ppr (seIdSubst env) {- $$ ppr (seFloats env) -} ) $
    simplExprF' env e cont
Ian Lynagh's avatar
Ian Lynagh committed
731

Ian Lynagh's avatar
Ian Lynagh committed
732 733
simplExprF' :: SimplEnv -> InExpr -> SimplCont
            -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
734
simplExprF' env (Var v)        cont = simplVar env v cont
735 736 737 738
simplExprF' env (Lit lit)      cont = rebuild env (Lit lit) cont
simplExprF' env (Note n expr)  cont = simplNote env n expr cont
simplExprF' env (Cast body co) cont = simplCast env body co cont
simplExprF' env (App fun arg)  cont = simplExprF env fun $
Ian Lynagh's avatar
Ian Lynagh committed
739
                                      ApplyTo NoDup arg env cont
740

Ian Lynagh's avatar
Ian Lynagh committed
741
simplExprF' env expr@(Lam _ _) cont
742
  = simplLam env (map zap bndrs) body cont
Ian Lynagh's avatar
Ian Lynagh committed
743 744 745 746 747 748
        -- The main issue here is under-saturated lambdas
        --   (\x1. \x2. e) arg1
        -- Here x1 might have "occurs-once" occ-info, because occ-info
        -- is computed assuming that a group of lambdas is applied
        -- all at once.  If there are too few args, we must zap the
        -- occ-info.
749 750 751 752
  where
    n_args   = countArgs cont
    n_params = length bndrs
    (bndrs, body) = collectBinders expr
Ian Lynagh's avatar
Ian Lynagh committed
753 754 755 756 757
    zap | n_args >= n_params = \b -> b
        | otherwise          = \b -> if isTyVar b then b
                                     else zapLamIdInfo b
        -- NB: we count all the args incl type args
        -- so we must count all the binders (incl type lambdas)
758

759
simplExprF' env (Type ty) cont
760
  = ASSERT( contIsRhsOrArg cont )
Ian Lynagh's avatar
Ian Lynagh committed
761 762
    do  { ty' <- simplType env ty
        ; rebuild env (Type ty') cont }
763

764
simplExprF' env (Case scrut bndr _ alts) cont
765
  | not (switchIsOn (getSwitchChecker env) NoCaseOfCase)
Ian Lynagh's avatar
Ian Lynagh committed
766
  =     -- Simplify the scrutinee with a Select continuation
767
    simplExprF env scrut (Select NoDup bndr alts env cont)
768

769
  | otherwise
Ian Lynagh's avatar
Ian Lynagh committed
770 771 772 773
  =     -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
    do  { case_expr' <- simplExprC env scrut case_cont
        ; rebuild env case_expr' cont }
774
  where
775
    case_cont = Select NoDup bndr alts env mkBoringStop
776

777
simplExprF' env (Let (Rec pairs) body) cont
Ian Lynagh's avatar
Ian Lynagh committed
778
  = do  { env' <- simplRecBndrs env (map fst pairs)
Ian Lynagh's avatar
Ian Lynagh committed
779 780
                -- NB: bndrs' don't have unfoldings or rules
                -- We add them as we go down
781

Ian Lynagh's avatar
Ian Lynagh committed
782 783
        ; env'' <- simplRecBind env' NotTopLevel pairs
        ; simplExprF env'' body cont }
784

785 786
simplExprF' env (Let (NonRec bndr rhs) body) cont
  = simplNonRecE env bndr (rhs, env) ([], body) cont
787 788

---------------------------------
789
simplType :: SimplEnv -> InType -> SimplM OutType
Ian Lynagh's avatar
Ian Lynagh committed
790
        -- Kept monadic just so we can do the seqType
791
simplType env ty
792
  = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
793
    seqType new_ty   `seq`   return new_ty
794
  where
795
    new_ty = substTy env ty
796 797 798
\end{code}


799
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
800
%*                                                                      *
801
\subsection{The main rebuilder}
Ian Lynagh's avatar
Ian Lynagh committed
802
%*                                                                      *
803 804 805 806 807 808
%************************************************************************

\begin{code}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant
-- only the in-scope set and floats should matter
Ian Lynagh's avatar
Ian Lynagh committed
809 810 811
rebuild env expr cont0
  = -- pprTrace "rebuild" (ppr expr $$ ppr cont0 $$ ppr (seFloats env)) $
    case cont0 of
Ian Lynagh's avatar
Ian Lynagh committed
812 813
      Stop {}                      -> return (env, expr)
      CoerceIt co cont             -> rebuild env (mkCoerce co expr) cont
814
      Select _ bndr alts se cont   -> rebuildCase (se `setFloats` env) expr bndr alts cont
815
      StrictArg fun _ info cont    -> rebuildCall env (fun `App` expr) info cont
816
      StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr
Ian Lynagh's avatar
Ian Lynagh committed
817 818 819
                                         ; simplLam env' bs body cont }
      ApplyTo _ arg se cont        -> do { arg' <- simplExpr (se `setInScope` env) arg
                                         ; rebuild env (App expr arg') cont }
820 821 822
\end{code}


823
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
824
%*                                                                      *
825
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
826
%*                                                                      *
827 828 829
%************************************************************************

\begin{code}
830
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
831
          -> SimplM (SimplEnv, OutExpr)
Ian Lynagh's avatar
Ian Lynagh committed
832 833 834
simplCast env body co0 cont0
  = do  { co1 <- simplType env co0
        ; simplExprF env body (addCoerce co1 cont0) }
835
  where
836 837
       addCoerce co cont = add_coerce co (coercionKind co) cont

Ian Lynagh's avatar
Ian Lynagh committed
838
       add_coerce _co (s1, k1) cont     -- co :: ty~ty
Ian Lynagh's avatar
Ian Lynagh committed
839
         | s1 `coreEqType` k1 = cont    -- is a no-op
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
840

Ian Lynagh's avatar
Ian Lynagh committed
841 842
       add_coerce co1 (s1, _k2) (CoerceIt co2 cont)
         | (_l1, t1) <- coercionKind co2
843
		-- 	e |> (g1 :: S1~L) |> (g2 :: L~T1)
Ian Lynagh's avatar
Ian Lynagh committed
844
                -- ==>
845 846
                --      e,                       if T1=T2
                --      e |> (g1 . g2 :: T1~T2)  otherwise
Ian Lynagh's avatar
Ian Lynagh committed
847 848 849 850 851 852
                --
                -- For example, in the initial form of a worker
                -- we may find  (coerce T (coerce S (\x.e))) y
                -- and we'd like it to simplify to e[y/x] in one round
                -- of simplification
         , s1 `coreEqType` t1  = cont            -- The coerces cancel out
853
         | otherwise           = CoerceIt (mkTransCoercion co1 co2) cont
Ian Lynagh's avatar
Ian Lynagh committed
854

Ian Lynagh's avatar
Ian Lynagh committed
855
       add_coerce co (s1s2, _t1t2) (ApplyTo dup (Type arg_ty) arg_se cont)
856
                -- (f |> g) ty  --->   (f ty) |> (g @ ty)
Ian Lynagh's avatar
Ian Lynagh committed
857 858 859 860 861
                -- This implements the PushT rule from the paper
         | Just (tyvar,_) <- splitForAllTy_maybe s1s2
         , not (isCoVar tyvar)
         = ApplyTo dup (Type ty') (zapSubstEnv env) (addCoerce (mkInstCoercion co ty') cont)
         where
862
           ty' = substTy (arg_se `setInScope` env) arg_ty
863

Ian Lynagh's avatar
Ian Lynagh committed
864
        -- ToDo: the PushC rule is not implemented at all
865

Ian Lynagh's avatar
Ian Lynagh committed
866
       add_coerce co (s1s2, _t1t2) (ApplyTo dup arg arg_se cont)
867
         | not (isTypeArg arg)  -- This implements the Push rule from the paper
Ian Lynagh's avatar
Ian Lynagh committed
868
         , isFunTy s1s2   -- t1t2 must be a function type, becuase it's applied
869
                --      (e |> (g :: s1s2 ~ t1->t2)) f
Ian Lynagh's avatar
Ian Lynagh committed
870
                -- ===>
871 872
                --      (e (f |> (arg g :: t1~s1))
		--	|> (res g :: s2->t2)
Ian Lynagh's avatar
Ian Lynagh committed
873
                --
874
                -- t1t2 must be a function type, t1->t2, because it's applied
Ian Lynagh's avatar
Ian Lynagh committed
875 876 877 878 879 880 881 882
                -- to something but s1s2 might conceivably not be
                --
                -- When we build the ApplyTo we can't mix the out-types
                -- with the InExpr in the argument, so we simply substitute
                -- to make it all consistent.  It's a bit messy.
                -- But it isn't a common case.
                --
                -- Example of use: Trac #995
883
         = ApplyTo dup new_arg (zapSubstEnv env) (addCoerce co2 cont)
884
         where
885 886 887
           -- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and
           -- t2 ~ s2 with left and right on the curried form:
           --    (->) t1 t2 ~ (->) s1 s2
888
           [co1, co2] = decomposeCo 2 co
889
           new_arg    = mkCoerce (mkSymCoercion co1) arg'
890
           arg'       = substExpr (arg_se `setInScope` env) arg
891

892
       add_coerce co _ cont = CoerceIt co cont
893 894
\end{code}

895

896
%************************************************************************
Ian Lynagh's avatar
Ian Lynagh committed
897
%*                                                                      *
898
\subsection{Lambdas}
Ian Lynagh's avatar
Ian Lynagh committed
899
%*                                                                      *
900
%************************************************************************
901 902

\begin{code}
903
simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont
Ian Lynagh's avatar
Ian Lynagh committed
904
         -> SimplM (SimplEnv, OutExpr)
905 906

simplLam env [] body cont = simplExprF env body cont
907

908
        -- Beta reduction
909
simplLam env (bndr:bndrs) body (ApplyTo _ arg arg_se cont)
Ian Lynagh's avatar
Ian Lynagh committed
910 911
  = do  { tick (BetaReduction bndr)
        ; simplNonRecE env bndr (arg, arg_se) (bndrs, body) cont }
912

Ian Lynagh's avatar
Ian Lynagh committed
913
        -- Not enough args, so there are real lambdas left to put in the result
914
simplLam env bndrs body cont
Ian Lynagh's avatar
Ian Lynagh committed
915 916
  = do  { (env', bndrs') <- simplLamBndrs env bndrs
        ; body' <- simplExpr env' body
Ian Lynagh's avatar
Ian Lynagh committed
917
        ; new_lam <- mkLam bndrs' body'
Ian Lynagh's avatar
Ian Lynagh committed
918
        ; rebuild env' new_lam cont }
919 920

------------------
Ian Lynagh's avatar
Ian Lynagh committed
921 922 923
simplNonRecE :: SimplEnv
             -> InId                    -- The binder
             -> (InExpr, SimplEnv)      -- Rhs of binding (or arg of lambda)
924
             -> ([InBndr], InExpr)      -- Body of the let/lambda
Ian Lynagh's avatar
Ian Lynagh committed
925 926 927
                                        --      \xs.e
             -> SimplCont
             -> SimplM (SimplEnv, OutExpr)
928 929 930 931 932 933 934 935 936 937

-- simplNonRecE is used for
--  * non-top-level non-recursive lets in expressions
--  * beta reduction
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process
--
-- The "body" of the binding comes as a pair of ([InId],InExpr)
-- representing a lambda; so we recurse back to simplLam
Ian Lynagh's avatar
Ian Lynagh committed
938 939
-- Why?  Because of the binder-occ-info-zapping done before
--       the call to simplLam in simplExprF (Lam ...)
940

941 942
	-- First deal with type applications and type lets
	--   (/\a. e) (Type ty)   and   (let a = Type ty in e)
943
simplNonRecE env bndr (Type ty_arg, rhs_se) (bndrs, body) cont
944 945
  = ASSERT( isTyVar bndr )
    do	{ ty_arg' <- simplType (rhs_se `setInScope` env) ty_arg
946 947
	; simplLam (extendTvSubst env bndr ty_arg') bndrs body cont }

948 949
simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont
  | preInlineUnconditionally env NotTopLevel bndr rhs
Ian Lynagh's avatar
Ian Lynagh committed
950 951
  = do  { tick (PreInlineUnconditionally bndr)
        ; simplLam (extendIdSubst env bndr (mkContEx rhs_se rhs)) bndrs body cont }
952

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
953
  | isStrictId bndr
Ian Lynagh's avatar
Ian Lynagh committed
954 955
  = do  { simplExprF (rhs_se `setFloats` env) rhs
                     (StrictBind bndr bndrs body env cont) }
956 957

  | otherwise
958 959
  = ASSERT( not (isTyVar bndr) )
    do  { (env1, bndr1) <- simplNonRecBndr env bndr