TcBinds.lhs 43.5 KB
Newer Older
1
%
2
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
3
4
5
6
%
\section[TcBinds]{TcBinds}

\begin{code}
7
8
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
9
10
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
11
		 badBootDeclErr ) where
12

13
#include "HsVersions.h"
14

ross's avatar
ross committed
15
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
16
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
17

18
19
import DynFlags		( dopt, DynFlags,
			  DynFlag(Opt_MonomorphismRestriction, Opt_MonoPatBinds, Opt_GlasgowExts) )
20
21
22
23
24
import HsSyn		( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
			  HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
			  LSig, Match(..), IPBind(..), Prag(..),
			  HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
			  isVanillaLSig, sigName, placeHolderNames, isPragLSig,
25
			  LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
26
			  collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
27
			)
28
import TcHsSyn		( zonkId )
29

30
import TcRnMonad
31
import Inst		( newDictsAtLoc, newIPDict, instToId )
32
import TcEnv		( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
33
			  pprBinders, tcLookupLocalId_maybe, tcLookupId,
34
			  tcGetGlobalTyVars )
35
import TcUnify		( tcInfer, tcSubExp, unifyTheta, 
36
			  bleatEscapedTvs, sigCtxt )
37
38
import TcSimplify	( tcSimplifyInfer, tcSimplifyInferCheck, 
			  tcSimplifyRestricted, tcSimplifyIPs )
39
import TcHsType		( tcHsSigType, UserTypeCtxt(..) )
40
import TcPat		( tcPat, PatCtxt(..) )
41
import TcSimplify	( bindInstsOfLocalFuns )
42
43
44
45
46
import TcMType		( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
			  tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
			  zonkTcType, zonkTcTypes, zonkTcTyVars )
import TcType		( TcType, TcTyVar, TcThetaType, 
			  SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
47
			  TcTauType, TcSigmaType, isUnboxedTupleType,
48
			  mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
49
			  mkForAllTy, isUnLiftedType, tcGetTyVar, 
50
			  mkTyVarTys, tidyOpenTyVar )
51
import Kind		( argTypeKind )
52
53
import VarEnv		( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
import TysWiredIn	( unitTy )
54
import TysPrim		( alphaTyVar )
55
import Id		( Id, mkLocalId, mkVanillaGlobal )
56
import IdInfo		( vanillaIdInfo )
57
import Var		( TyVar, idType, idName )
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
58
import Name		( Name )
59
import NameSet
60
import NameEnv
61
import VarSet
62
import SrcLoc		( Located(..), unLoc, getLoc )
63
import Bag
64
import ErrUtils		( Message )
65
import Digraph		( SCC(..), stronglyConnComp )
66
import Maybes		( expectJust, isJust, isNothing, orElse )
67
68
import Util		( singleton )
import BasicTypes	( TopLevelFlag(..), isTopLevel, isNotTopLevel,
69
			  RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
70
import Outputable
71
\end{code}
72

73

74
75
76
77
78
79
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

80
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
81
82
83
84
85
86
87
88
89
90
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

91
The real work is done by @tcBindWithSigsAndThen@.
92
93
94
95
96
97
98
99
100
101

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

102
103
104
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

105
\begin{code}
106
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
107
108
109
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
110
tcTopBinds binds
111
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
112
	; return (foldr (unionBags . snd) emptyBag prs, env) }
113
	-- The top level bindings are flattened into a giant 
114
	-- implicitly-mutually-recursive LHsBinds
115

116
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
117
118
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
119
120
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
121
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
122
  where
123
    tc_boot_sig (TypeSig (L _ name) ty)
124
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
125
126
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
127
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
128

129
130
131
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

132
133
134
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
135

136
137
138
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
139

140
141
142
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
143

144
145
146
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
147
148
149

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
150
151
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
152
153
154
155
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
156
    tc_ip_bind (IPBind ip expr)
157
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
158
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
159
  	tcMonoExpr expr ty			`thenM` \ expr' ->
160
161
  	returnM (ip_inst, (IPBind ip' expr'))

162
163
164
165
166
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

167
168
169
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

170
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
171
  = do 	{   	-- Typecheck the signature
172
	; let { prag_fn = mkPragFun sigs
173
	      ; ty_sigs = filter isVanillaLSig sigs
174
	      ; sig_fn  = mkTcSigFun ty_sigs }
175
176

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
177
178
179
180
181
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
182

183
184
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
185
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
186
			     tc_val_binds top_lvl sig_fn prag_fn 
187
					  binds thing_inside
188

189
	; return (ValBindsOut binds' sigs, thing) }
190

191
192
------------------------
tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
193
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
194
195
196
197
198
199
200
201
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
  = do	{ thing <- thing_inside
	; return ([], thing) }

202
tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
203
  = do	{ (group', (groups', thing))
204
205
		<- tc_group top_lvl sig_fn prag_fn group $ 
		   tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
206
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
207

208
209
------------------------
tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
210
	 -> (RecFlag, LHsBinds Name) -> TcM thing
211
212
213
214
215
216
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

217
tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
218
219
220
  =  	-- A single non-recursive binding
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
221
222
    do	{ (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
					sig_fn prag_fn binds thing_inside
223
224
	; return ([(NonRecursive, b) | b <- binds], thing) }

225
tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
226
  =	-- A recursive strongly-connected component
227
 	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
228
	-- strongly-connected-component analysis, this time omitting 
229
	-- any references to variables with type signatures.
230
231
	--
	-- Then we bring into scope all the variables with type signatures
232
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
233
234
235
	; gla_exts     <- doptM Opt_GlasgowExts
	; (binds,thing) <- if gla_exts 
			   then go new_sccs
236
			   else tc_binds Recursive binds thing_inside
237
238
239
	; return ([(Recursive, unionManyBags binds)], thing) }
		-- Rec them all together
  where
240
    new_sccs :: [SCC (LHsBind Name)]
241
    new_sccs = stronglyConnComp (mkEdges sig_fn binds)
242

243
244
245
246
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
    go (scc:sccs) = do	{ (binds1, (binds2, thing)) <- go1 scc (go sccs)
			; return (binds1 ++ binds2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], thing) }
sof's avatar
sof committed
247

248
249
    go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
    go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
sof's avatar
sof committed
250

251
252
253
254
255
256
257
258
259
    tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
260
261
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
262
263
264
265
266
267
268
269
270
271
272
273
274
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
275
276
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
277

278
------------------------
279
280
281
tcPolyBinds :: TopLevelFlag 
	    -> RecFlag			-- Whether the group is really recursive
	    -> RecFlag			-- Whether it's recursive for typechecking purposes
282
	    -> TcSigFun -> TcPragFun
283
	    -> LHsBinds Name
284
285
286
287
288
289
290
291
 	    -> TcM thing
	    -> TcM ([LHsBinds TcId], thing)

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
-- Deals with the bindInstsOfLocalFuns thing too
292
293
294
295
--
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
296

297
tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
298
299
300
  =	-- NB: polymorphic recursion means that a function
	-- may use an instance of itself, we must look at the LIE arising
	-- from the function's own right hand side.  Hence the getLIE
301
302
	-- encloses the tc_poly_binds. 
    do	{ traceTc (text "tcPolyBinds" <+> ppr scc)
303
	; ((binds1, poly_ids, thing), lie) <- getLIE $ 
304
		do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
							 sig_fn prag_fn scc
		   ; thing <- tcExtendIdEnv poly_ids thing_inside
		   ; return (binds1, poly_ids, thing) }

	; if isTopLevel top_lvl 
	  then		-- For the top level don't bother will all this
			-- bindInstsOfLocalFuns stuff. All the top level 
			-- things are rec'd together anyway, so it's fine to
		        -- leave them to the tcSimplifyTop, 
			-- and quite a bit faster too
		do { extendLIEs lie; return (binds1, thing) }

	  else do	-- Nested case
		{ lie_binds <- bindInstsOfLocalFuns lie poly_ids
	 	; return (binds1 ++ [lie_binds], thing) }}
320

321
------------------------
322
323
tc_poly_binds :: TopLevelFlag		-- See comments on tcPolyBinds
	      -> RecFlag -> RecFlag
324
	      -> TcSigFun -> TcPragFun
325
	      -> LHsBinds Name
326
327
328
329
	      -> TcM ([LHsBinds TcId], [TcId])
-- Typechecks the bindings themselves
-- Knows nothing about the scope of the bindings

330
tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
331
  = let 
332
333
        binder_names = collectHsBindBinders binds
	bind_list    = bagToList binds
334

335
	loc = getLoc (head bind_list)
336
337
338
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
339
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
340
    setSrcSpan loc				$
341
    recoverM (recoveryCode binder_names)	$ do 
342

343
344
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
345
346

   	-- TYPECHECK THE BINDINGS
347
  ; ((binds', mono_bind_infos), lie_req) 
348
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
349

350
351
352
353
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
354
355
356
357
358
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
359
360
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
361
			-- ToDo: prags for unlifted bindings
362

363
364
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
365
366

    else do	-- The normal lifted case: GENERALISE
367
  { dflags <- getDOpts 
368
  ; (tyvars_to_gen, dict_binds, dict_ids)
369
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
370
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
371
372
373
374
375
376

	-- FINALISE THE QUANTIFIED TYPE VARIABLES
	-- The quantified type variables often include meta type variables
	-- we want to freeze them into ordinary type variables, and
	-- default their kind (e.g. from OpenTypeKind to TypeKind)
  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
377
378

	-- BUILD THE POLYMORPHIC RESULT IDs
379
380
  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
		    mono_bind_infos
sof's avatar
sof committed
381

382
383
	-- ZONK THE poly_ids, because they are used to extend the type 
	-- environment; see the invariant on TcEnv.tcExtendIdEnv 
384
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
385
386
  ; zonked_poly_ids <- mappM zonkId poly_ids

387
  ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
388
389
390
391
392
393
394
395
396
397
398
399
400

  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
	 		            dict_ids exports
	 		    	    (dict_binds `unionBags` binds')

  ; return ([unitBag abs_bind], zonked_poly_ids)
  } }


--------------
mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
	 -> TcM ([TyVar], Id, Id, [Prag])
mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
  = case mb_sig of
      Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
		     ; return (inferred_tvs, poly_id, mono_id, prags) }
	  where
	    poly_id = mkLocalId poly_name poly_ty
	    poly_ty = mkForAllTys inferred_tvs
				       $ mkFunTys dict_tys 
				       $ idType mono_id

      Just sig -> do { let poly_id = sig_id sig
		     ; prags <- tcPrags poly_id (prag_fn poly_name)
		     ; sig_tys <- zonkTcTyVars (sig_tvs sig)
		     ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
		     ; return (sig_tvs', poly_id, mono_id, prags) }
		-- We zonk the sig_tvs here so that the export triple
		-- always has zonked type variables; 
		-- a convenient invariant

419
420
421
422
423
424
425

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
426
427
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
428
429
430
431
432
433
434
435
436
437
438
439
440
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

tcPrags :: Id -> [LSig Name] -> TcM [Prag]
tcPrags poly_id prags = mapM tc_prag prags
  where
    tc_prag (L loc prag) = setSrcSpan loc $ 
			   addErrCtxt (pragSigCtxt prag) $ 
			   tcPrag poly_id prag

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
441
442
443
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
444

445

446
447
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
448
  = do	{ spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
449
	; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
450
451
	; extendLIEs lie
	; let const_dicts = map instToId lie
452
	; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
453
454
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
455
456
  
--------------
457
458
459
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
460
recoveryCode binder_names
461
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
462
	; poly_ids <- mapM mk_dummy binder_names
463
	; return ([], poly_ids) }
464
  where
465
466
467
468
469
470
471
472
    mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
			; case mb_id of
    		     	      Just id -> return id		-- Had signature, was in envt
	    		      Nothing -> return (mkLocalId name forall_a_a) }    -- No signature

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

473

474
475
476
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
477
478
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
479
480
481
482
483
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
484
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
485
	  	  (strictBindErr "Top-level" unlifted mbind)
486
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
487
	  	  (strictBindErr "Recursive" unlifted mbind)
488
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
489
490
491
492
493
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
494
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
495
496
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
497
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
498
					 (badStrictSig unlifted sig)
499
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
500
501

strictBindErr flavour unlifted mbind
502
503
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
504
505
506
507
508
509
510
511
512
513
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
514
515
\end{code}

516

517
518
%************************************************************************
%*									*
519
\subsection{tcMonoBind}
520
521
522
%*									*
%************************************************************************

523
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
524
525
The signatures have been dealt with already.

526
\begin{code}
527
528
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
529
530
531
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
532
533
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

534
535
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
536
	    sig_fn 		-- Single function binding,
537
	    NonRecursive	-- binder isn't mentioned in RHS,
538
  | Nothing <- sig_fn name	-- ...with no type signature
539
540
541
542
543
544
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
545
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
546

547
548
549
550
551
552
553
554
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
555

556
	; mono_name <- newLocalName name
557
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
558
559
560
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
					      fun_co_fn = co_fn })),
561
562
		  [(name, Nothing, mono_id)]) }

563
564
565
566
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
567
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
568
569
570
571
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
572
    do	{ tc_sig <- tcInstSig True name scoped_tvs
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
			| (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]

	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
		    	       tcMatchesFun mono_name matches mono_ty

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn }
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

588
589
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
590

591
	-- Bring the monomorphic Ids, into scope for the RHSs
592
	; let mono_info  = getMonoBindInfo tc_binds
593
594
595
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
596

597
	; binds' <- tcExtendIdEnv2    rhs_id_env $
598
599
600
601
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

623
624
625
626
627
628
629
630
631
632
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

633
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
634
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
635
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
636
637
638
639
640
641
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
642
643
644
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
645
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
646
647
648
649
650
651
652
653
654
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
655

656
	; let nm_sig_prs  = names `zip` mb_sigs
657
658
659
660
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
661
	      sig_tau_fn  = lookupNameEnv tau_sig_env
662

663
664
665
666
667
668
669
670
671
672
673
674
	      tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
			      mapM lookup_info nm_sig_prs
		-- The unitTy is a bit bogus; it's the "result type" for lookup_info.  

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
675

676
677
678
679
680
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


681
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
682
683
	-- AbsBind, VarBind impossible

684
685
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
686
tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
687
688
689
690
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
				    	    (idType mono_id)
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
691
692
693

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
694
695
696
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
697
698
699


---------------------
700
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
701
getMonoBindInfo tc_binds
702
  = foldr (get_info . unLoc) [] tc_binds
703
704
705
706
707
708
709
710
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
711
		Generalisation
712
713
714
715
%*									*
%************************************************************************

\begin{code}
716
717
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
718
	   -> [MonoBindInfo] -> [Inst]
719
	   -> TcM ([TcTyVar], TcDictBinds, [TcId])
720
721
722
723
724
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
  = do { extendLIEs lie_req; return ([], emptyBag, []) }

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
725
726
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
727
	  	  (restrictedBindCtxtErr bndrs)
728

729
730
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
731
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
732
						tau_tvs lie_req
733

734
   	-- Check that signature type variables are OK
735
	; final_qtvs <- checkSigsTyVars qtvs sigs
736

737
	; return (final_qtvs, binds, []) }
738

739
740
741
742
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
743
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty
744
745
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
746
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
747
748
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
749

750
751
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
752
	; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
753
754
	
   	-- Check that signature type variables are OK
755
	; final_qtvs <- checkSigsTyVars forall_tvs sigs
756

757
	; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
758
  where
759
760
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
761
762
763
    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
		-- NB: exactTyVarsOfType; see Note [Silly type synonym] 
		--     near defn of TcType.exactTyVarsOfType
764
    is_mono_sig sig = null (sig_theta sig)
765
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
766

767
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
768
769
770
		            sig_theta = theta, sig_loc = loc }) mono_id
      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
\end{code}
771

772
773
774
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
775

776
777
778
779
780
781
782
783
784
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
785
786
787
788
789
790
791
792
793
794
795
796
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
	; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
	= setSrcSpan (instLocSrcSpan (sig_loc sig)) 	$
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
	  unifyTheta theta1 theta

797
798
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
799
800
801
802
803
804
805
806
807
808
809
810
811
812
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
813
  where
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
834
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
835
836
837
838
839
840
841
842
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
843
		Just sig_tv' -> bomb_out sig_tv sig_tv'
844
845
846

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

847
    bomb_out sig_tv1 sig_tv2
848
849
850
851
852
853
854
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
855
856
857
       where
\end{code}    

858

859
@getTyVarsToGen@ decides what type variables to generalise over.
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

875
876
877
878
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

879
880
881
882
883
884
885
886
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
887
888
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
889

890
891
892
893
894
895
896
897
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

898
899
900
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
901

902
903
904
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
905

906
907
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
908

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
939
940
941
942

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

943
944
945
946
947
948
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
949

950
951
952
953
954
955
956
957
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


958
959
960

%************************************************************************
%*									*
961
		Signatures
962
963
964
%*									*
%************************************************************************

965
Type signatures are tricky.  See Note [Signature skolems] in TcType
966

967
968
969
970
971
972
973
974
975
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

976
\begin{code}
977
978
979
980
type TcSigFun = Name -> Maybe [Name]	-- Maps a let-binder to the list of
					-- type variables brought into scope
					-- by its type signature.
					-- Nothing => no type signature
981

982
mkTcSigFun :: [LSig Name] -> TcSigFun
983
984
985
-- Search for a particular type signature
-- Precondition: the sigs are all type sigs
-- Precondition: no duplicates
986
mkTcSigFun sigs = lookupNameEnv env
987
  where
988
989
990
991
992
993
994
    env = mkNameEnv [(name, scoped_tyvars hs_ty)
		    | L span (TypeSig (L _ name) (L _ hs_ty)) <- sigs]
    scoped_tyvars (HsForAllTy Explicit tvs _ _) = hsLTyVarNames tvs
    scoped_tyvars other				= []
	-- The scoped names are the ones explicitly mentioned
	-- in the HsForAll.  (There may be more in sigma_ty, because
	-- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
995
996
997
998
999
1000

---------------
data TcSigInfo
  = TcSigInfo {
	sig_id     :: TcId,		--  *Polymorphic* binder for this value...

For faster browsing, not all history is shown. View entire blame