TcBinds.lhs 44.8 KB
Newer Older
1
%
Simon Marlow's avatar
Simon Marlow committed
2
% (c) The University of Glasgow 2006
3
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4
5
6
7
%
\section[TcBinds]{TcBinds}

\begin{code}
8
{-# OPTIONS -w #-}
9
10
11
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
Ian Lynagh's avatar
Ian Lynagh committed
12
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
13
14
-- for details

15
16
module TcBinds ( tcLocalBinds, tcTopBinds, 
		 tcHsBootSigs, tcMonoBinds, 
17
18
		 TcPragFun, tcSpecPrag, tcPrags, mkPragFun, 
		 TcSigInfo(..), TcSigFun, mkTcSigFun,
19
		 badBootDeclErr ) where
20

21
#include "HsVersions.h"
22

ross's avatar
ross committed
23
import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
24
import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
25

Simon Marlow's avatar
Simon Marlow committed
26
27
28
import DynFlags
import HsSyn
import TcHsSyn
29

30
import TcRnMonad
Simon Marlow's avatar
Simon Marlow committed
31
32
33
34
35
36
37
38
39
import Inst
import TcEnv
import TcUnify
import TcSimplify
import TcHsType
import TcPat
import TcMType
import TcType
import {- Kind parts of -} Type
40
import Coercion
Simon Marlow's avatar
Simon Marlow committed
41
42
43
44
import VarEnv
import TysPrim
import Id
import IdInfo
45
import Var ( TyVar, varType )
Simon Marlow's avatar
Simon Marlow committed
46
import Name
47
import NameSet
48
import NameEnv
49
import VarSet
Simon Marlow's avatar
Simon Marlow committed
50
import SrcLoc
51
import Bag
Simon Marlow's avatar
Simon Marlow committed
52
53
54
import ErrUtils
import Digraph
import Maybes
55
import List
Simon Marlow's avatar
Simon Marlow committed
56
57
import Util
import BasicTypes
58
import Outputable
59
\end{code}
60

61

62
63
64
65
66
67
%************************************************************************
%*									*
\subsection{Type-checking bindings}
%*									*
%************************************************************************

68
@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
69
70
71
72
73
74
75
76
77
78
it needs to know something about the {\em usage} of the things bound,
so that it can create specialisations of them.  So @tcBindsAndThen@
takes a function which, given an extended environment, E, typechecks
the scope of the bindings returning a typechecked thing and (most
important) an LIE.  It is this LIE which is then used as the basis for
specialising the things bound.

@tcBindsAndThen@ also takes a "combiner" which glues together the
bindings and the "thing" to make a new "thing".

79
The real work is done by @tcBindWithSigsAndThen@.
80
81
82
83
84
85
86
87
88
89

Recursive and non-recursive binds are handled in essentially the same
way: because of uniques there are no scoping issues left.  The only
difference is that non-recursive bindings can bind primitive values.

Even for non-recursive binding groups we add typings for each binder
to the LVE for the following reason.  When each individual binding is
checked the type of its LHS is unified with that of its RHS; and
type-checking the LHS of course requires that the binder is in scope.

90
91
92
At the top-level the LIE is sure to contain nothing but constant
dictionaries, which we resolve at the module level.

93
\begin{code}
94
tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
95
96
97
	-- Note: returning the TcLclEnv is more than we really
	--       want.  The bit we care about is the local bindings
	--	 and the free type variables thereof
98
tcTopBinds binds
99
  = do	{ (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
100
	; return (foldr (unionBags . snd) emptyBag prs, env) }
101
	-- The top level bindings are flattened into a giant 
102
	-- implicitly-mutually-recursive LHsBinds
103

104
tcHsBootSigs :: HsValBinds Name -> TcM [Id]
105
106
-- A hs-boot file has only one BindGroup, and it only has type
-- signatures in it.  The renamer checked all this
107
108
tcHsBootSigs (ValBindsOut binds sigs)
  = do	{ checkTc (null binds) badBootDeclErr
109
	; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
110
  where
111
    tc_boot_sig (TypeSig (L _ name) ty)
112
      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
113
114
	   ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
	-- Notice that we make GlobalIds, not LocalIds
115
tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
116

117
118
119
badBootDeclErr :: Message
badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")

120
121
122
------------------------
tcLocalBinds :: HsLocalBinds Name -> TcM thing
	     -> TcM (HsLocalBinds TcId, thing)
sof's avatar
sof committed
123

124
125
126
tcLocalBinds EmptyLocalBinds thing_inside 
  = do	{ thing <- thing_inside
	; return (EmptyLocalBinds, thing) }
sof's avatar
sof committed
127

128
129
130
tcLocalBinds (HsValBinds binds) thing_inside
  = do	{ (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
	; return (HsValBinds binds', thing) }
131

132
133
134
tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
  = do	{ (thing, lie) <- getLIE thing_inside
	; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
135
136
137

	-- If the binding binds ?x = E, we  must now 
	-- discharge any ?x constraints in expr_lie
138
139
	; dict_binds <- tcSimplifyIPs avail_ips lie
	; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
140
141
142
143
  where
	-- I wonder if we should do these one at at time
	-- Consider	?x = 4
	--		?y = ?x + 1
144
    tc_ip_bind (IPBind ip expr)
145
      = newFlexiTyVarTy argTypeKind		`thenM` \ ty ->
146
  	newIPDict (IPBindOrigin ip) ip ty	`thenM` \ (ip', ip_inst) ->
147
  	tcMonoExpr expr ty			`thenM` \ expr' ->
148
149
  	returnM (ip_inst, (IPBind ip' expr'))

150
151
152
153
154
------------------------
tcValBinds :: TopLevelFlag 
	   -> HsValBinds Name -> TcM thing
	   -> TcM (HsValBinds TcId, thing) 

155
156
157
tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
  = pprPanic "tcValBinds" (ppr binds)

158
tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
159
  = do 	{   	-- Typecheck the signature
160
	; let { prag_fn = mkPragFun sigs
161
	      ; ty_sigs = filter isVanillaLSig sigs
162
	      ; sig_fn  = mkTcSigFun ty_sigs }
163
164

	; poly_ids <- mapM tcTySig ty_sigs
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
165
166
167
168
169
		-- No recovery from bad signatures, because the type sigs
		-- may bind type variables, so proceeding without them
		-- can lead to a cascade of errors
		-- ToDo: this means we fall over immediately if any type sig
		-- is wrong, which is over-conservative, see Trac bug #745
170

171
172
		-- Extend the envt right away with all 
		-- the Ids declared with type signatures
173
	; poly_rec <- doptM Opt_RelaxedPolyRec
174
  	; (binds', thing) <- tcExtendIdEnv poly_ids $
175
			     tc_val_binds poly_rec top_lvl sig_fn prag_fn 
176
					  binds thing_inside
177

178
	; return (ValBindsOut binds' sigs, thing) }
179

180
------------------------
181
tc_val_binds :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
182
	     -> [(RecFlag, LHsBinds Name)] -> TcM thing
183
184
185
186
	     -> TcM ([(RecFlag, LHsBinds TcId)], thing)
-- Typecheck a whole lot of value bindings,
-- one strongly-connected component at a time

187
tc_val_binds poly_rec top_lvl sig_fn prag_fn [] thing_inside
188
189
190
  = do	{ thing <- thing_inside
	; return ([], thing) }

191
tc_val_binds poly_rec top_lvl sig_fn prag_fn (group : groups) thing_inside
192
  = do	{ (group', (groups', thing))
193
194
		<- tc_group poly_rec top_lvl sig_fn prag_fn group $ 
		   tc_val_binds poly_rec top_lvl sig_fn prag_fn groups thing_inside
195
	; return (group' ++ groups', thing) }
sof's avatar
sof committed
196

197
------------------------
198
tc_group :: Bool -> TopLevelFlag -> TcSigFun -> TcPragFun
199
	 -> (RecFlag, LHsBinds Name) -> TcM thing
200
201
202
203
204
205
 	 -> TcM ([(RecFlag, LHsBinds TcId)], thing)

-- Typecheck one strongly-connected component of the original program.
-- We get a list of groups back, because there may 
-- be specialisations etc as well

206
tc_group poly_rec top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
207
    	-- A single non-recursive binding
208
209
     	-- We want to keep non-recursive things non-recursive
        -- so that we desugar unlifted bindings correctly
210
 =  do	{ (binds, thing) <- tc_haskell98 top_lvl sig_fn prag_fn NonRecursive binds thing_inside
211
212
	; return ([(NonRecursive, b) | b <- binds], thing) }

213
214
tc_group poly_rec top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
  | not poly_rec	-- Recursive group, normal Haskell 98 route
215
216
217
218
219
  = do	{ (binds1, thing) <- tc_haskell98 top_lvl sig_fn prag_fn Recursive binds thing_inside
	; return ([(Recursive, unionManyBags binds1)], thing) }

  | otherwise		-- Recursive group, with gla-exts
  =	-- To maximise polymorphism (with -fglasgow-exts), we do a new 
220
	-- strongly-connected-component analysis, this time omitting 
221
	-- any references to variables with type signatures.
222
	--
223
224
	-- Notice that the bindInsts thing covers *all* the bindings in the original
	-- group at once; an earlier one may use a later one!
225
    do	{ traceTc (text "tc_group rec" <+> pprLHsBinds binds)
226
227
228
	; (binds1,thing) <- bindLocalInsts top_lvl $
			    go (stronglyConnComp (mkEdges sig_fn binds))
	; return ([(Recursive, unionManyBags binds1)], thing) }
229
230
		-- Rec them all together
  where
231
232
233
234
235
--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], [TcId], thing)
    go (scc:sccs) = do	{ (binds1, ids1) <- tc_scc scc
			; (binds2, ids2, thing) <- tcExtendIdEnv ids1 $ go sccs
			; return (binds1 ++ binds2, ids1 ++ ids2, thing) }
    go [] 	  = do	{ thing <- thing_inside; return ([], [], thing) }
236

237
238
    tc_scc (AcyclicSCC bind) = tc_sub_group NonRecursive (unitBag bind)
    tc_scc (CyclicSCC binds) = tc_sub_group Recursive    (listToBag binds)
sof's avatar
sof committed
239

240
    tc_sub_group = tcPolyBinds top_lvl sig_fn prag_fn Recursive
sof's avatar
sof committed
241

242
243
244
245
246
247
248
249
250
251
tc_haskell98 top_lvl sig_fn prag_fn rec_flag binds thing_inside
  = bindLocalInsts top_lvl $ do
    { (binds1, ids) <- tcPolyBinds top_lvl sig_fn prag_fn rec_flag rec_flag binds
    ; thing <- tcExtendIdEnv ids thing_inside
    ; return (binds1, ids, thing) }

------------------------
bindLocalInsts :: TopLevelFlag -> TcM ([LHsBinds TcId], [TcId], a) -> TcM ([LHsBinds TcId], a)
bindLocalInsts top_lvl thing_inside
  | isTopLevel top_lvl = do { (binds, ids, thing) <- thing_inside; return (binds, thing) }
252
  	-- For the top level don't bother with all this bindInstsOfLocalFuns stuff. 
253
254
255
256
257
258
259
	-- All the top level things are rec'd together anyway, so it's fine to
	-- leave them to the tcSimplifyTop, and quite a bit faster too

  | otherwise	-- Nested case
  = do	{ ((binds, ids, thing), lie) <- getLIE thing_inside
	; lie_binds <- bindInstsOfLocalFuns lie ids
	; return (binds ++ [lie_binds], thing) }
260
261
262
263
264
265
266
267

------------------------
mkEdges :: TcSigFun -> LHsBinds Name
	-> [(LHsBind Name, BKey, [BKey])]

type BKey  = Int -- Just number off the bindings

mkEdges sig_fn binds
268
269
  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
			 Just key <- [lookupNameEnv key_map n], no_sig n ])
270
271
272
273
274
275
276
277
278
279
280
281
282
    | (bind, key) <- keyd_binds
    ]
  where
    no_sig :: Name -> Bool
    no_sig n = isNothing (sig_fn n)

    keyd_binds = bagToList binds `zip` [0::BKey ..]

    key_map :: NameEnv BKey	-- Which binding it comes from
    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
				     , bndr <- bindersOfHsBind bind ]

bindersOfHsBind :: HsBind Name -> [Name]
283
284
bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
285

286
------------------------
287
tcPolyBinds :: TopLevelFlag -> TcSigFun -> TcPragFun
288
	    -> RecFlag			-- Whether the group is really recursive
289
290
	    -> RecFlag			-- Whether it's recursive after breaking
					-- dependencies based on type signatures
291
	    -> LHsBinds Name
292
	    -> TcM ([LHsBinds TcId], [TcId])
293
294
295
296
297

-- Typechecks a single bunch of bindings all together, 
-- and generalises them.  The bunch may be only part of a recursive
-- group, because we use type signatures to maximise polymorphism
--
298
299
300
-- Returns a list because the input may be a single non-recursive binding,
-- in which case the dependency order of the resulting bindings is
-- important.  
301
-- 
302
303
-- Knows nothing about the scope of the bindings

304
tcPolyBinds top_lvl sig_fn prag_fn rec_group rec_tc binds
305
  = let 
306
	bind_list    = bagToList binds
307
308
        binder_names = collectHsBindBinders binds
	loc          = getLoc (head bind_list)
309
310
311
		-- TODO: location a bit awkward, but the mbinds have been
		--	 dependency analysed and may no longer be adjacent
    in
312
	-- SET UP THE MAIN RECOVERY; take advantage of any type sigs
313
    setSrcSpan loc				$
314
    recoverM (recoveryCode binder_names sig_fn)	$ do 
315

316
317
  { traceTc (ptext SLIT("------------------------------------------------"))
  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
318
319

   	-- TYPECHECK THE BINDINGS
320
  ; ((binds', mono_bind_infos), lie_req) 
321
	<- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
322
  ; traceTc (text "temp" <+> (ppr binds' $$ ppr lie_req))
323

324
325
326
327
	-- CHECK FOR UNLIFTED BINDINGS
	-- These must be non-recursive etc, and are not generalised
	-- They desugar to a case expression in the end
  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
328
329
330
331
332
  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
				  zonked_mono_tys mono_bind_infos
  ; if is_strict then
    do	{ extendLIEs lie_req
	; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
333
334
	      mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
	      mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
335
			-- ToDo: prags for unlifted bindings
336

337
338
	; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
		   [poly_id | (_, poly_id, _, _) <- exports]) }	-- Guaranteed zonked
339
340

    else do	-- The normal lifted case: GENERALISE
341
  { dflags <- getDOpts 
342
  ; (tyvars_to_gen, dicts, dict_binds)
343
	<- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
344
	   generalise dflags top_lvl bind_list sig_fn mono_bind_infos lie_req
345

346
	-- BUILD THE POLYMORPHIC RESULT IDs
347
348
  ; let dict_vars = map instToVar dicts	-- May include equality constraints
  ; exports <- mapM (mkExport top_lvl prag_fn tyvars_to_gen (map varType dict_vars))
349
		    mono_bind_infos
sof's avatar
sof committed
350

351
  ; let	poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
352
  ; traceTc (text "binding:" <+> ppr (poly_ids `zip` map idType poly_ids))
353

354
  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen
355
	 		            dict_vars exports
356
357
	 		    	    (dict_binds `unionBags` binds')

358
  ; return ([unitBag abs_bind], poly_ids)	-- poly_ids are guaranteed zonked by mkExport
359
360
361
362
  } }


--------------
363
364
mkExport :: TopLevelFlag -> TcPragFun -> [TyVar] -> [TcType]
	 -> MonoBindInfo
365
	 -> TcM ([TyVar], Id, Id, [LPrag])
366
367
368
369
370
371
372
373
374
375
376
-- mkExport generates exports with 
--	zonked type variables, 
--	zonked poly_ids
-- The former is just because no further unifications will change
-- the quantified type variables, so we can fix their final form
-- right now.
-- The latter is needed because the poly_ids are used to extend the
-- type environment; see the invariant on TcEnv.tcExtendIdEnv 

-- Pre-condition: the inferred_tvs are already zonked

377
378
379
380
mkExport top_lvl prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
  = do	{ warn_missing_sigs <- doptM Opt_WarnMissingSigs
	; let warn = isTopLevel top_lvl && warn_missing_sigs
	; (tvs, poly_id) <- mk_poly_id warn mb_sig
381
		-- poly_id has a zonked type
382

383
	; prags <- tcPrags poly_id (prag_fn poly_name)
384
385
		-- tcPrags requires a zonked poly_id

386
	; return (tvs, poly_id, mono_id, prags) }
387
388
389
  where
    poly_ty = mkForAllTys inferred_tvs (mkFunTys dict_tys (idType mono_id))

390
391
392
    mk_poly_id warn Nothing    = do { poly_ty' <- zonkTcType poly_ty
				    ; missingSigWarn warn poly_name poly_ty'
				    ; return (inferred_tvs, mkLocalId poly_name poly_ty') }
393
394
    mk_poly_id warn (Just sig) = do { tvs <- mapM zonk_tv (sig_tvs sig)
			            ; return (tvs,  sig_id sig) }
395

396
    zonk_tv tv = do { ty <- zonkTcTyVar tv; return (tcGetTyVar "mkExport" ty) }
397
398
399
400
401
402
403

------------------------
type TcPragFun = Name -> [LSig Name]

mkPragFun :: [LSig Name] -> TcPragFun
mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
	where
404
405
	  prs = [(expectJust "mkPragFun" (sigName sig), sig) 
		| sig <- sigs, isPragLSig sig]
406
407
408
	  env = foldl add emptyNameEnv prs
	  add env (n,p) = extendNameEnv_Acc (:) singleton env n p

409
410
tcPrags :: Id -> [LSig Name] -> TcM [LPrag]
tcPrags poly_id prags = mapM (wrapLocM tc_prag) prags
411
  where
412
413
    tc_prag prag = addErrCtxt (pragSigCtxt prag) $ 
		   tcPrag poly_id prag
414
415
416
417

pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)

tcPrag :: TcId -> Sig Name -> TcM Prag
418
419
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
420
421
422
tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
tcPrag poly_id (SpecInstSig hs_ty)	     = tcSpecPrag poly_id hs_ty defaultInlineSpec
tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
423

424

425
426
tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
tcSpecPrag poly_id hs_ty inl
427
428
  = do	{ let name = idName poly_id
	; spec_ty <- tcHsSigType (FunSigCtxt name) hs_ty
429
430
	; co_fn <- tcSubExp (SpecPragOrigin name) (idType poly_id) spec_ty
	; return (SpecPrag (mkHsWrap co_fn (HsVar poly_id)) spec_ty inl) }
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
431
432
	-- Most of the work of specialisation is done by 
	-- the desugarer, guided by the SpecPrag
433
434
  
--------------
435
436
437
-- If typechecking the binds fails, then return with each
-- signature-less binder given type (forall a.a), to minimise 
-- subsequent error messages
438
recoveryCode binder_names sig_fn
439
  = do	{ traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
440
	; poly_ids <- mapM mk_dummy binder_names
441
	; return ([], poly_ids) }
442
  where
443
444
445
    mk_dummy name 
	| isJust (sig_fn name) = tcLookupId name	-- Had signature; look it up
	| otherwise	       = return (mkLocalId name forall_a_a)    -- No signature
446
447
448
449

forall_a_a :: TcType
forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)

450

451
452
453
-- Check that non-overloaded unlifted bindings are
-- 	a) non-recursive,
--	b) not top level, 
454
455
--	c) not a multiple-binding group (more or less implied by (a))

simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
456
457
458
459
460
checkStrictBinds :: TopLevelFlag -> RecFlag
		 -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
		 -> TcM Bool
checkStrictBinds top_lvl rec_group mbind mono_tys infos
  | unlifted || bang_pat
461
  = do 	{ checkTc (isNotTopLevel top_lvl)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
462
	  	  (strictBindErr "Top-level" unlifted mbind)
463
	; checkTc (isNonRec rec_group)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
464
	  	  (strictBindErr "Recursive" unlifted mbind)
465
	; checkTc (isSingletonBag mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
466
467
468
469
470
	    	  (strictBindErr "Multiple" unlifted mbind) 
	; mapM_ check_sig infos
	; return True }
  | otherwise
  = return False
471
  where
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
472
473
    unlifted = any isUnLiftedType mono_tys
    bang_pat = anyBag (isBangHsBind . unLoc) mbind
474
    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
475
					 (badStrictSig unlifted sig)
476
    check_sig other	       = return ()
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
477
478

strictBindErr flavour unlifted mbind
479
480
  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 
	 4 (pprLHsBinds mbind)
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
481
482
483
484
485
486
487
488
489
490
  where
    msg | unlifted  = ptext SLIT("bindings for unlifted types")
	| otherwise = ptext SLIT("bang-pattern bindings")

badStrictSig unlifted sig
  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
	 4 (ppr sig)
  where
    msg | unlifted  = ptext SLIT("an unlifted binding")
	| otherwise = ptext SLIT("a bang-pattern binding")
491
492
\end{code}

493

494
495
%************************************************************************
%*									*
496
\subsection{tcMonoBind}
497
498
499
%*									*
%************************************************************************

500
@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
501
502
The signatures have been dealt with already.

503
\begin{code}
504
505
tcMonoBinds :: [LHsBind Name]
	    -> TcSigFun
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
506
507
508
	    -> RecFlag	-- Whether the binding is recursive for typechecking purposes
			-- i.e. the binders are mentioned in their RHSs, and
			--	we are not resuced by a type signature
509
510
	    -> TcM (LHsBinds TcId, [MonoBindInfo])

511
512
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
513
	    sig_fn 		-- Single function binding,
514
	    NonRecursive	-- binder isn't mentioned in RHS,
515
  | Nothing <- sig_fn name	-- ...with no type signature
516
517
518
519
520
521
  = 	-- In this very special case we infer the type of the
	-- right hand side first (it may have a higher-rank type)
	-- and *then* make the monomorphic Id for the LHS
	-- e.g.		f = \(x::forall a. a->a) -> <body>
	-- 	We want to infer a higher-rank type for f
    setSrcSpan b_loc  	$
522
    do	{ ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name inf matches)
523

524
525
526
527
528
529
530
531
		-- Check for an unboxed tuple type
		--	f = (# True, False #)
		-- Zonk first just in case it's hidden inside a meta type variable
		-- (This shows up as a (more obscure) kind error 
		--  in the 'otherwise' case of tcMonoBinds.)
	; zonked_rhs_ty <- zonkTcType rhs_ty
	; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
		  (unboxedTupleErr name zonked_rhs_ty)
532

533
	; mono_name <- newLocalName name
534
	; let mono_id = mkLocalId mono_name zonked_rhs_ty
535
536
	; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
					      fun_matches = matches', bind_fvs = fvs,
andy@galois.com's avatar
andy@galois.com committed
537
					      fun_co_fn = co_fn, fun_tick = Nothing })),
538
539
		  [(name, Nothing, mono_id)]) }

540
541
542
543
tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
				fun_matches = matches, bind_fvs = fvs })]
	    sig_fn 		-- Single function binding
	    non_rec	
544
  | Just scoped_tvs <- sig_fn name	-- ...with a type signature
545
546
547
548
  = 	-- When we have a single function binding, with a type signature
	-- we can (a) use genuine, rigid skolem constants for the type variables
	--	  (b) bring (rigid) scoped type variables into scope
    setSrcSpan b_loc  	$
549
    do	{ tc_sig <- tcInstSig True name
550
551
552
553
	; mono_name <- newLocalName name
	; let mono_ty = sig_tau tc_sig
	      mono_id = mkLocalId mono_name mono_ty
	      rhs_tvs = [ (name, mkTyVarTy tv)
554
555
556
557
		        | (name, tv) <- scoped_tvs `zip` sig_tvs tc_sig ]
			-- See Note [More instantiated than scoped]
			-- Note that the scoped_tvs and the (sig_tvs sig) 
			-- may have different Names. That's quite ok.
558

559
	; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs $
560
		    	       tcMatchesFun mono_name inf matches mono_ty
561
562
563

	; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
				    fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
564
565
			            bind_fvs = placeHolderNames, fun_co_fn = co_fn, 
				    fun_tick = Nothing }
566
567
568
	; return (unitBag (L b_loc fun_bind'),
		  [(name, Just tc_sig, mono_id)]) }

569
570
tcMonoBinds binds sig_fn non_rec
  = do	{ tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
571

572
	-- Bring the monomorphic Ids, into scope for the RHSs
573
	; let mono_info  = getMonoBindInfo tc_binds
574
575
576
	      rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
			 	-- A monomorphic binding for each term variable that lacks 
				-- a type sig.  (Ones with a sig are already in scope.)
577

578
	; binds' <- tcExtendIdEnv2 rhs_id_env $
579
580
581
582
		    traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
							 | (n,id) <- rhs_id_env]) `thenM_`
		    mapM (wrapLocM tcRhs) tc_binds
	; return (listToBag binds', mono_info) }
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

------------------------
-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
--	if there's a signature for it, use the instantiated signature type
--	otherwise invent a type variable
-- You see that quite directly in the FunBind case.
-- 
-- But there's a complication for pattern bindings:
--	data T = MkT (forall a. a->a)
--	MkT f = e
-- Here we can guess a type variable for the entire LHS (which will be refined to T)
-- but we want to get (f::forall a. a->a) as the RHS environment.
-- The simplest way to do this is to typecheck the pattern, and then look up the
-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't

data TcMonoBind		-- Half completed; LHS done, RHS not done
  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType

604
605
606
607
608
609
610
611
612
613
type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
	-- Type signature (if any), and
	-- the monomorphic bound things

bndrNames :: [MonoBindInfo] -> [Name]
bndrNames mbi = [n | (n,_,_) <- mbi]

getMonoType :: MonoBindInfo -> TcTauType
getMonoType (_,_,mono_id) = idType mono_id

614
tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
615
tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
616
  = do	{ mb_sig <- tcInstSig_maybe sig_fn name
617
618
619
620
621
622
	; mono_name <- newLocalName name
	; mono_ty   <- mk_mono_ty mb_sig
	; let mono_id = mkLocalId mono_name mono_ty
	; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
  where
    mk_mono_ty (Just sig) = return (sig_tau sig)
623
624
625
    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind

tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
626
  = do	{ mb_sigs <- mapM (tcInstSig_maybe sig_fn) names
627
628
629
630
631
632
633
634
635
	; mono_pat_binds <- doptM Opt_MonoPatBinds
		-- With -fmono-pat-binds, we do no generalisation of pattern bindings
		-- But the signature can still be polymoprhic!
		--	data T = MkT (forall a. a->a)
		--	x :: forall a. a->a
		--	MkT x = <rhs>
		-- The function get_sig_ty decides whether the pattern-bound variables
		-- should have exactly the type in the type signature (-fmono-pat-binds), 
		-- or the instantiated version (-fmono-pat-binds)
636

637
	; let nm_sig_prs  = names `zip` mb_sigs
638
639
640
641
	      get_sig_ty | mono_pat_binds = idType . sig_id
			 | otherwise	  = sig_tau
	      tau_sig_env = mkNameEnv [ (name, get_sig_ty sig) 
				      | (name, Just sig) <- nm_sig_prs]
642
	      sig_tau_fn  = lookupNameEnv tau_sig_env
643

644
	      tc_pat exp_ty = tcLetPat sig_tau_fn pat exp_ty $
645
646
647
648
649
650
651
652
653
654
			      mapM lookup_info nm_sig_prs

		-- After typechecking the pattern, look up the binder
		-- names, which the pattern has brought into scope.
	      lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
	      lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
					      ; return (name, mb_sig, mono_id) }

	; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
				     tcInfer tc_pat
655

656
657
658
659
660
	; return (TcPatBind infos pat' grhss pat_ty) }
  where
    names = collectPatBinders pat


661
tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
662
663
	-- AbsBind, VarBind impossible

664
665
-------------------
tcRhs :: TcMonoBind -> TcM (HsBind TcId)
666
667
668
669
670
-- When we are doing pattern bindings, or multiple function bindings at a time
-- we *don't* bring any scoped type variables into scope
-- Wny not?  They are not completely rigid.
-- That's why we have the special case for a single FunBind in tcMonoBinds
tcRhs (TcFunBind (_,_,mono_id) fun' inf matches)
671
672
  = do	{ (co_fn, matches') <- tcMatchesFun (idName mono_id) inf 
				    	    matches (idType mono_id)
673
	; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
andy@galois.com's avatar
andy@galois.com committed
674
675
			    bind_fvs = placeHolderNames, fun_co_fn = co_fn,
			    fun_tick = Nothing }) }
676
677
678

tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
  = do	{ grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
679
680
681
		    tcGRHSsPat grhss pat_ty
	; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
			    bind_fvs = placeHolderNames }) }
682
683
684


---------------------
685
getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
686
getMonoBindInfo tc_binds
687
  = foldr (get_info . unLoc) [] tc_binds
688
689
690
691
692
693
694
695
  where
    get_info (TcFunBind info _ _ _)  rest = info : rest
    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
\end{code}


%************************************************************************
%*									*
696
		Generalisation
697
698
699
700
%*									*
%************************************************************************

\begin{code}
701
702
generalise :: DynFlags -> TopLevelFlag 
	   -> [LHsBind Name] -> TcSigFun 
703
	   -> [MonoBindInfo] -> [Inst]
704
705
706
	   -> TcM ([TyVar], [Inst], TcDictBinds)
-- The returned [TyVar] are all ready to quantify

707
708
generalise dflags top_lvl bind_list sig_fn mono_infos lie_req
  | isMonoGroup dflags bind_list
709
710
  = do	{ extendLIEs lie_req
	; return ([], [], emptyBag) }
711
712

  | isRestrictedGroup dflags bind_list sig_fn 	-- RESTRICTED CASE
713
714
  = 	-- Check signature contexts are empty 
    do	{ checkTc (all is_mono_sig sigs)
715
	  	  (restrictedBindCtxtErr bndrs)
716

717
718
	-- Now simplify with exactly that set of tyvars
	-- We have to squash those Methods
719
	; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
720
						tau_tvs lie_req
721

722
   	-- Check that signature type variables are OK
723
	; final_qtvs <- checkSigsTyVars qtvs sigs
724

725
	; return (final_qtvs, [], binds) }
726

727
728
729
730
  | null sigs	-- UNRESTRICTED CASE, NO TYPE SIGS
  = tcSimplifyInfer doc tau_tvs lie_req

  | otherwise	-- UNRESTRICTED CASE, WITH TYPE SIGS
731
  = do	{ sig_lie <- unifyCtxts sigs	-- sigs is non-empty; sig_lie is zonked
732
733
	; let	-- The "sig_avails" is the stuff available.  We get that from
		-- the context of the type signature, BUT ALSO the lie_avail
734
		-- so that polymorphic recursion works right (see Note [Polymorphic recursion])
735
736
		local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
		sig_avails = sig_lie ++ local_meths
737
		loc = sig_loc (head sigs)
738

739
740
	-- Check that the needed dicts can be
	-- expressed in terms of the signature ones
741
	; (qtvs, binds) <- tcSimplifyInferCheck loc tau_tvs sig_avails lie_req
742
743
	
   	-- Check that signature type variables are OK
744
	; final_qtvs <- checkSigsTyVars qtvs sigs
745

746
	; returnM (final_qtvs, sig_lie, binds) }
747
  where
748
749
    bndrs   = bndrNames mono_infos
    sigs    = [sig | (_, Just sig, _) <- mono_infos]
750
751
752
    get_tvs | isTopLevel top_lvl = tyVarsOfType	 -- See Note [Silly type synonym] in TcType
	    | otherwise		 = exactTyVarsOfType
    tau_tvs = foldr (unionVarSet . get_tvs . getMonoType) emptyVarSet mono_infos
753
    is_mono_sig sig = null (sig_theta sig)
754
    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
755

756
    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
757
		            sig_theta = theta, sig_loc = loc }) mono_id
758
759
      = Method {tci_id = mono_id, tci_oid = poly_id, tci_tys = mkTyVarTys tvs,
		tci_theta = theta, tci_loc = loc}
760
\end{code}
761

762
763
764
unifyCtxts checks that all the signature contexts are the same
The type signatures on a mutually-recursive group of definitions
must all have the same context (or none).
765

766
767
768
769
770
771
772
773
774
The trick here is that all the signatures should have the same
context, and we want to share type variables for that context, so that
all the right hand sides agree a common vocabulary for their type
constraints

We unify them because, with polymorphic recursion, their types
might not otherwise be related.  This is a rather subtle issue.

\begin{code}
775
unifyCtxts :: [TcSigInfo] -> TcM [Inst]
776
-- Post-condition: the returned Insts are full zonked
777
778
unifyCtxts (sig1 : sigs) 	-- Argument is always non-empty
  = do	{ mapM unify_ctxt sigs
779
780
	; theta <- zonkTcThetaType (sig_theta sig1)
	; newDictBndrs (sig_loc sig1) theta }
781
782
783
784
  where
    theta1 = sig_theta sig1
    unify_ctxt :: TcSigInfo -> TcM ()
    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
785
	= setSrcSpan (instLocSpan (sig_loc sig)) 	$
786
	  addErrCtxt (sigContextsCtxt sig1 sig)		$
787
788
789
790
791
792
793
794
795
796
797
	  do { cois <- unifyTheta theta1 theta
	     ; -- Check whether all coercions are identity coercions
	       -- That can happen if we have, say
	       -- 	  f :: C [a]   => ...
	       -- 	  g :: C (F a) => ...
	       -- where F is a type function and (F a ~ [a])
	       -- Then unification might succeed with a coercion.  But it's much
	       -- much simpler to require that such signatures have identical contexts
	       checkTc (all isIdentityCoercion cois)
		       (ptext SLIT("Mutually dependent functions have syntactically distinct contexts"))
	     }
798

799
800
checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
checkSigsTyVars qtvs sigs 
801
802
803
804
805
806
807
808
809
810
811
812
813
814
  = do	{ gbl_tvs <- tcGetGlobalTyVars
	; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs

	; let	-- Sigh.  Make sure that all the tyvars in the type sigs
		-- appear in the returned ty var list, which is what we are
		-- going to generalise over.  Reason: we occasionally get
		-- silly types like
		--	type T a = () -> ()
		--	f :: T a
		--	f () = ()
		-- Here, 'a' won't appear in qtvs, so we have to add it
	 	sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
		all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
	; returnM all_tvs }
815
  where
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
				  sig_theta = theta, sig_tau = tau})
      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))	$
	addErrCtxtM (sigCtxt id tvs theta tau)						$
	do { tvs' <- checkDistinctTyVars tvs
	   ; ifM (any (`elemVarSet` gbl_tvs) tvs')
		 (bleatEscapedTvs gbl_tvs tvs tvs') 
	   ; return tvs' }

checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
-- are still all type variables, and all distinct from each other.  
-- It returns a zonked set of type variables.
-- For example, if the type sig is
--	f :: forall a b. a -> b -> b
-- we want to check that 'a' and 'b' haven't 
--	(a) been unified with a non-tyvar type
--	(b) been unified with each other (all distinct)

checkDistinctTyVars sig_tvs
836
  = do	{ zonked_tvs <- mapM zonkSigTyVar sig_tvs
837
838
839
840
841
842
843
844
	; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
	; return zonked_tvs }
  where
    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
	-- The TyVarEnv maps each zonked type variable back to its
	-- corresponding user-written signature type variable
    check_dup acc (sig_tv, zonked_tv)
	= case lookupVarEnv acc zonked_tv of
845
		Just sig_tv' -> bomb_out sig_tv sig_tv'
846
847
848

		Nothing -> return (extendVarEnv acc zonked_tv sig_tv)

849
    bomb_out sig_tv1 sig_tv2
850
851
852
853
854
855
856
       = do { env0 <- tcInitTidyEnv
	    ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
		  (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
	          msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
		         <+> ptext SLIT("is unified with another quantified type variable") 
		         <+> quotes (ppr tidy_tv2)
	    ; failWithTcM (env2, msg) }
857
       where
858
\end{code}
859

860

861
@getTyVarsToGen@ decides what type variables to generalise over.
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

For a "restricted group" -- see the monomorphism restriction
for a definition -- we bind no dictionaries, and
remove from tyvars_to_gen any constrained type variables

*Don't* simplify dicts at this point, because we aren't going
to generalise over these dicts.  By the time we do simplify them
we may well know more.  For example (this actually came up)
	f :: Array Int Int
	f x = array ... xs where xs = [1,2,3,4,5]
We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
stuff.  If we simplify only at the f-binding (not the xs-binding)
we'll know that the literals are all Ints, and we can just produce
Int literals!

877
878
879
880
Find all the type variables involved in overloading, the
"constrained_tyvars".  These are the ones we *aren't* going to
generalise.  We must be careful about doing this:

881
882
883
884
885
886
887
888
 (a) If we fail to generalise a tyvar which is not actually
	constrained, then it will never, ever get bound, and lands
	up printed out in interface files!  Notorious example:
		instance Eq a => Eq (Foo a b) where ..
	Here, b is not constrained, even though it looks as if it is.
	Another, more common, example is when there's a Method inst in
	the LIE, whose type might very well involve non-overloaded
	type variables.
889
890
  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
	the simple thing instead]
891

892
893
894
895
896
897
898
899
 (b) On the other hand, we mustn't generalise tyvars which are constrained,
	because we are going to pass on out the unmodified LIE, with those
	tyvars in it.  They won't be in scope if we've generalised them.

So we are careful, and do a complete simplification just to find the
constrained tyvars. We don't use any of the results, except to
find which tyvars are constrained.

900
901
902
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The game plan for polymorphic recursion in the code above is 
903

904
905
906
	* Bind any variable for which we have a type signature
	  to an Id with a polymorphic type.  Then when type-checking 
	  the RHSs we'll make a full polymorphic call.
907

908
909
This fine, but if you aren't a bit careful you end up with a horrendous
amount of partial application and (worse) a huge space leak. For example:
910

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
	f :: Eq a => [a] -> [a]
	f xs = ...f...

If we don't take care, after typechecking we get

	f = /\a -> \d::Eq a -> let f' = f a d
			       in
			       \ys:[a] -> ...f'...

Notice the the stupid construction of (f a d), which is of course
identical to the function we're executing.  In this case, the
polymorphic recursion isn't being used (but that's a very common case).
This can lead to a massive space leak, from the following top-level defn
(post-typechecking)

	ff :: [Int] -> [Int]
	ff = f Int dEqInt

Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
f' is another thunk which evaluates to the same thing... and you end
up with a chain of identical values all hung onto by the CAF ff.

	ff = f Int dEqInt

	   = let f' = f Int dEqInt in \ys. ...f'...

	   = let f' = let f' = f Int dEqInt in \ys. ...f'...
		      in \ys. ...f'...

Etc.
941
942
943
944

NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
which would make the space leak go away in this case

945
946
947
948
949
950
Solution: when typechecking the RHSs we always have in hand the
*monomorphic* Ids for each binding.  So we just need to make sure that
if (Method f a d) shows up in the constraints emerging from (...f...)
we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
to the "givens" when simplifying constraints.  That's what the "lies_avail"
is doing.
951

952
953
954
955
956
957
958
959
Then we get

	f = /\a -> \d::Eq a -> letrec
				 fm = \ys:[a] -> ...fm...
			       in
			       fm


960
961
962

%************************************************************************
%*									*
963
		Signatures
964
965
966
%*									*
%************************************************************************

967
Type signatures are tricky.  See Note [Signature skolems] in TcType
968

969
970
971
972
973
974
975
976
977
@tcSigs@ checks the signatures for validity, and returns a list of
{\em freshly-instantiated} signatures.  That is, the types are already
split up, and have fresh type variables installed.  All non-type-signature
"RenamedSigs" are ignored.

The @TcSigInfo@ contains @TcTypes@ because they are unified with
the variable's type, and after that checked to see whether they've
been instantiated.

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Note [Scoped tyvars]
~~~~~~~~~~~~~~~~~~~~
The -XScopedTypeVariables flag brings lexically-scoped type variables
into scope for any explicitly forall-quantified type variables:
	f :: forall a. a -> a
	f x = e
Then 'a' is in scope inside 'e'.

However, we do *not* support this 
  - For pattern bindings e.g
	f :: forall a. a->a
	(f,g) = e

  - For multiple function bindings, unless Opt_RelaxedPolyRec is on
   	f :: forall a. a -> a
	f = g
   	g :: forall b. b -> b
	g = ...f...
    Reason: we use mutable variables for 'a' and 'b', since they may
    unify to each other, and that means the scoped type variable would
    not stand for a completely rigid variable.

    Currently, we simply make Opt_ScopedTypeVariables imply Opt_RelaxedPolyRec
For faster browsing, not all history is shown. View entire blame