Capability.c 24.8 KB
Newer Older
sof's avatar
sof committed
1
/* ---------------------------------------------------------------------------
2
 *
3
 * (c) The GHC Team, 2003-2006
sof's avatar
sof committed
4
5
6
 *
 * Capabilities
 *
sof's avatar
sof committed
7
8
 * A Capability represent the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
sof's avatar
sof committed
9
 * its STG registers, a pointer to its TSO, a nursery etc. During
sof's avatar
sof committed
10
 * STG execution, a pointer to the capabilitity is kept in a
11
 * register (BaseReg; actually it is a pointer to cap->r).
sof's avatar
sof committed
12
 *
13
14
15
 * Only in an THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
16
 *
sof's avatar
sof committed
17
 * --------------------------------------------------------------------------*/
18

sof's avatar
sof committed
19
20
21
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
22
#include "RtsFlags.h"
23
#include "STM.h"
sof's avatar
sof committed
24
#include "OSThreads.h"
sof's avatar
sof committed
25
#include "Capability.h"
26
#include "Schedule.h"
27
#include "Sparks.h"
Simon Marlow's avatar
Simon Marlow committed
28
#include "Trace.h"
sof's avatar
sof committed
29

30
31
32
// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;
sof's avatar
sof committed
33

34
nat n_capabilities;
35
Capability *capabilities = NULL;
sof's avatar
sof committed
36

37
38
39
40
41
// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
Capability *last_free_capability;
42

43
44
45
/* GC indicator, in scope for the scheduler, init'ed to false */
volatile StgWord waiting_for_gc = 0;

46
#if defined(THREADED_RTS)
47
48
49
STATIC_INLINE rtsBool
globalWorkToDo (void)
{
50
    return blackholes_need_checking
51
	|| sched_state >= SCHED_INTERRUPTING
52
53
	;
}
54
#endif
55

56
57
58
#if defined(THREADED_RTS)
STATIC_INLINE rtsBool
anyWorkForMe( Capability *cap, Task *task )
59
{
60
61
62
63
64
65
    if (task->tso != NULL) {
	// A bound task only runs if its thread is on the run queue of
	// the capability on which it was woken up.  Otherwise, we
	// can't be sure that we have the right capability: the thread
	// might be woken up on some other capability, and task->cap
	// could change under our feet.
66
	return !emptyRunQueue(cap) && cap->run_queue_hd->bound == task;
67
    } else {
68
69
70
71
72
73
	// A vanilla worker task runs if either there is a lightweight
	// thread at the head of the run queue, or the run queue is
	// empty and (there are sparks to execute, or there is some
	// other global condition to check, such as threads blocked on
	// blackholes).
	if (emptyRunQueue(cap)) {
74
75
76
	    return !emptySparkPoolCap(cap)
		|| !emptyWakeupQueue(cap)
		|| globalWorkToDo();
77
78
	} else
	    return cap->run_queue_hd->bound == NULL;
79
80
    }
}
81
#endif
82
83
84

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
85
 *
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->return_link == NULL);
    if (cap->returning_tasks_hd) {
	ASSERT(cap->returning_tasks_tl->return_link == NULL);
	cap->returning_tasks_tl->return_link = task;
    } else {
	cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;
102
103
}

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->return_link;
    if (!cap->returning_tasks_hd) {
	cap->returning_tasks_tl = NULL;
    }
    task->return_link = NULL;
    return task;
}
#endif

120
/* ----------------------------------------------------------------------------
121
122
123
124
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */
125
126

static void
127
initCapability( Capability *cap, nat i )
sof's avatar
sof committed
128
{
129
    nat g;
130

131
132
133
134
135
136
137
138
139
140
141
142
143
    cap->no = i;
    cap->in_haskell        = rtsFalse;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->suspended_ccalling_tasks = NULL;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
144
145
    cap->wakeup_queue_hd    = END_TSO_QUEUE;
    cap->wakeup_queue_tl    = END_TSO_QUEUE;
146
147
#endif

sof's avatar
sof committed
148
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
149
    cap->f.stgGCFun        = (F_)__stg_gc_fun;
150

151
    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
152
153
				     RtsFlags.GcFlags.generations,
				     "initCapability");
154
155
156

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
	cap->mut_lists[g] = NULL;
157
    }
158

tharris@microsoft.com's avatar
tharris@microsoft.com committed
159
160
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_invariant_check_queues = END_INVARIANT_CHECK_QUEUE;
161
162
163
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
sof's avatar
sof committed
164
165
}

166
/* ---------------------------------------------------------------------------
sof's avatar
sof committed
167
168
 * Function:  initCapabilities()
 *
169
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
sof's avatar
sof committed
170
 *            we keep a table of them, the size of which is
171
 *            controlled by the user via the RTS flag -N.
sof's avatar
sof committed
172
 *
173
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
174
void
175
initCapabilities( void )
sof's avatar
sof committed
176
{
177
178
#if defined(THREADED_RTS)
    nat i;
179

180
#ifndef REG_Base
Simon Marlow's avatar
Simon Marlow committed
181
182
183
184
185
186
187
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nNodes > 1) {
	errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
	RtsFlags.ParFlags.nNodes = 1;
    }
#endif

188
189
190
191
192
193
194
195
196
197
198
    n_capabilities = RtsFlags.ParFlags.nNodes;

    if (n_capabilities == 1) {
	capabilities = &MainCapability;
	// THREADED_RTS must work on builds that don't have a mutable
	// BaseReg (eg. unregisterised), so in this case
	// capabilities[0] must coincide with &MainCapability.
    } else {
	capabilities = stgMallocBytes(n_capabilities * sizeof(Capability),
				      "initCapabilities");
    }
199

200
    for (i = 0; i < n_capabilities; i++) {
201
	initCapability(&capabilities[i], i);
202
    }
203

Simon Marlow's avatar
Simon Marlow committed
204
    debugTrace(DEBUG_sched, "allocated %d capabilities", n_capabilities);
205
206
207

#else /* !THREADED_RTS */

208
    n_capabilities = 1;
209
    capabilities = &MainCapability;
210
    initCapability(&MainCapability, 0);
211

212
213
#endif

214
215
216
217
    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    last_free_capability = &capabilities[0];
sof's avatar
sof committed
218
219
}

220
/* ----------------------------------------------------------------------------
221
222
223
224
225
226
227
228
229
230
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
231
232
 *
 * ------------------------------------------------------------------------- */
233
234
235

#if defined(THREADED_RTS)
STATIC_INLINE void
236
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
237
{
238
239
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
Simon Marlow's avatar
Simon Marlow committed
240
241
242
243
    trace(TRACE_sched | DEBUG_sched,
	  "passing capability %d to %s %p",
	  cap->no, task->tso ? "bound task" : "worker",
	  (void *)task->id);
244
245
246
247
248
249
250
    ACQUIRE_LOCK(&task->lock);
    task->wakeup = rtsTrue;
    // the wakeup flag is needed because signalCondition() doesn't
    // flag the condition if the thread is already runniing, but we want
    // it to be sticky.
    signalCondition(&task->cond);
    RELEASE_LOCK(&task->lock);
251
}
252
#endif
253

254
/* ----------------------------------------------------------------------------
sof's avatar
sof committed
255
256
 * Function:  releaseCapability(Capability*)
 *
sof's avatar
sof committed
257
258
259
 * Purpose:   Letting go of a capability. Causes a
 *            'returning worker' thread or a 'waiting worker'
 *            to wake up, in that order.
260
261
 * ------------------------------------------------------------------------- */

262
#if defined(THREADED_RTS)
263
void
264
releaseCapability_ (Capability* cap)
265
{
266
267
268
269
    Task *task;

    task = cap->running_task;

270
    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
271
272

    cap->running_task = NULL;
273

274
275
    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
276
277
278
279
    if (cap->returning_tasks_hd != NULL) {
	giveCapabilityToTask(cap,cap->returning_tasks_hd);
	// The Task pops itself from the queue (see waitForReturnCapability())
	return;
280
    }
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    /* if waiting_for_gc was the reason to release the cap: thread
       comes from yieldCap->releaseAndQueueWorker. Unconditionally set
       cap. free and return (see default after the if-protected other
       special cases). Thread will wait on cond.var and re-acquire the
       same cap after GC (GC-triggering cap. calls releaseCap and
       enters the spare_workers case)
    */
    if (waiting_for_gc) {
      last_free_capability = cap; // needed?
      trace(TRACE_sched | DEBUG_sched, 
	    "GC pending, set capability %d free", cap->no);
      return;
    } 


297
298
299
300
301
302
303
304
    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) {
	// Make sure we're not about to try to wake ourselves up
	ASSERT(task != cap->run_queue_hd->bound);
	task = cap->run_queue_hd->bound;
	giveCapabilityToTask(cap,task);
	return;
305
    }
306

307
    if (!cap->spare_workers) {
308
309
310
311
	// Create a worker thread if we don't have one.  If the system
	// is interrupted, we only create a worker task if there
	// are threads that need to be completed.  If the system is
	// shutting down, we never create a new worker.
312
	if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
Simon Marlow's avatar
Simon Marlow committed
313
314
	    debugTrace(DEBUG_sched,
		       "starting new worker on capability %d", cap->no);
315
316
317
	    startWorkerTask(cap, workerStart);
	    return;
	}
318
    }
319

320
321
    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
322
323
    if (!emptyRunQueue(cap) || !emptyWakeupQueue(cap)
	      || !emptySparkPoolCap(cap) || globalWorkToDo()) {
324
325
326
327
328
329
330
	if (cap->spare_workers) {
	    giveCapabilityToTask(cap,cap->spare_workers);
	    // The worker Task pops itself from the queue;
	    return;
	}
    }

331
    last_free_capability = cap;
Simon Marlow's avatar
Simon Marlow committed
332
    trace(TRACE_sched | DEBUG_sched, "freeing capability %d", cap->no);
sof's avatar
sof committed
333
334
}

335
void
336
releaseCapability (Capability* cap USED_IF_THREADS)
337
338
339
340
341
342
343
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap);
    RELEASE_LOCK(&cap->lock);
}

static void
344
releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{
    Task *task;

    ACQUIRE_LOCK(&cap->lock);

    task = cap->running_task;

    // If the current task is a worker, save it on the spare_workers
    // list of this Capability.  A worker can mark itself as stopped,
    // in which case it is not replaced on the spare_worker queue.
    // This happens when the system is shutting down (see
    // Schedule.c:workerStart()).
    // Also, be careful to check that this task hasn't just exited
    // Haskell to do a foreign call (task->suspended_tso).
    if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) {
	task->next = cap->spare_workers;
	cap->spare_workers = task;
    }
    // Bound tasks just float around attached to their TSOs.

    releaseCapability_(cap);

    RELEASE_LOCK(&cap->lock);
}
#endif
sof's avatar
sof committed
370

371
/* ----------------------------------------------------------------------------
372
 * waitForReturnCapability( Task *task )
sof's avatar
sof committed
373
374
 *
 * Purpose:  when an OS thread returns from an external call,
375
376
 * it calls waitForReturnCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
sof's avatar
sof committed
377
 * result of the external call back to the Haskell thread that
sof's avatar
sof committed
378
379
 * made it.
 *
380
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
381
void
382
waitForReturnCapability (Capability **pCap, Task *task)
sof's avatar
sof committed
383
{
384
#if !defined(THREADED_RTS)
385

386
387
388
    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;
389

390
#else
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    Capability *cap = *pCap;

    if (cap == NULL) {
	// Try last_free_capability first
	cap = last_free_capability;
	if (!cap->running_task) {
	    nat i;
	    // otherwise, search for a free capability
	    for (i = 0; i < n_capabilities; i++) {
		cap = &capabilities[i];
		if (!cap->running_task) {
		    break;
		}
	    }
	    // Can't find a free one, use last_free_capability.
	    cap = last_free_capability;
	}

	// record the Capability as the one this Task is now assocated with.
	task->cap = cap;

412
    } else {
413
	ASSERT(task->cap == cap);
414
415
    }

416
    ACQUIRE_LOCK(&cap->lock);
sof's avatar
sof committed
417

Simon Marlow's avatar
Simon Marlow committed
418
    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);
sof's avatar
sof committed
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    if (!cap->running_task) {
	// It's free; just grab it
	cap->running_task = task;
	RELEASE_LOCK(&cap->lock);
    } else {
	newReturningTask(cap,task);
	RELEASE_LOCK(&cap->lock);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

	    // now check whether we should wake up...
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task == NULL) {
		if (cap->returning_tasks_hd != task) {
		    giveCapabilityToTask(cap,cap->returning_tasks_hd);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->running_task = task;
		popReturningTask(cap);
		RELEASE_LOCK(&cap->lock);
		break;
	    }
	    RELEASE_LOCK(&cap->lock);
	}

    }

454
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
455

Simon Marlow's avatar
Simon Marlow committed
456
    trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
457
458
459
460
461
462

    *pCap = cap;
#endif
}

#if defined(THREADED_RTS)
463
/* ----------------------------------------------------------------------------
464
 * yieldCapability
465
 * ------------------------------------------------------------------------- */
sof's avatar
sof committed
466

sof's avatar
sof committed
467
void
468
yieldCapability (Capability** pCap, Task *task)
sof's avatar
sof committed
469
{
470
471
    Capability *cap = *pCap;

472
    // The fast path has no locking, if we don't enter this while loop
473

474
475
476
477
478
479
480
481
    while ( waiting_for_gc
	    /* i.e. another capability triggered HeapOverflow, is busy
	       getting capabilities (stopping their owning tasks) */
	    || cap->returning_tasks_hd != NULL 
	        /* cap reserved for another task */
	    || !anyWorkForMe(cap,task) 
	        /* cap/task have no work */
	    ) {
Simon Marlow's avatar
Simon Marlow committed
482
	debugTrace(DEBUG_sched, "giving up capability %d", cap->no);
483
484

	// We must now release the capability and wait to be woken up
485
	// again.
486
	task->wakeup = rtsFalse;
487
488
489
490
491
492
493
494
495
496
	releaseCapabilityAndQueueWorker(cap);

	for (;;) {
	    ACQUIRE_LOCK(&task->lock);
	    // task->lock held, cap->lock not held
	    if (!task->wakeup) waitCondition(&task->cond, &task->lock);
	    cap = task->cap;
	    task->wakeup = rtsFalse;
	    RELEASE_LOCK(&task->lock);

Simon Marlow's avatar
Simon Marlow committed
497
498
	    debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

499
500
	    ACQUIRE_LOCK(&cap->lock);
	    if (cap->running_task != NULL) {
Simon Marlow's avatar
Simon Marlow committed
501
502
		debugTrace(DEBUG_sched, 
			   "capability %d is owned by another task", cap->no);
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
		RELEASE_LOCK(&cap->lock);
		continue;
	    }

	    if (task->tso == NULL) {
		ASSERT(cap->spare_workers != NULL);
		// if we're not at the front of the queue, release it
		// again.  This is unlikely to happen.
		if (cap->spare_workers != task) {
		    giveCapabilityToTask(cap,cap->spare_workers);
		    RELEASE_LOCK(&cap->lock);
		    continue;
		}
		cap->spare_workers = task->next;
		task->next = NULL;
	    }
	    cap->running_task = task;
	    RELEASE_LOCK(&cap->lock);
	    break;
	}

Simon Marlow's avatar
Simon Marlow committed
524
	trace(TRACE_sched | DEBUG_sched, "resuming capability %d", cap->no);
525
	ASSERT(cap->running_task == task);
526
527
    }

528
    *pCap = cap;
529

530
    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
531

532
    return;
sof's avatar
sof committed
533
534
}

535
536
537
538
539
540
541
542
/* ----------------------------------------------------------------------------
 * Wake up a thread on a Capability.
 *
 * This is used when the current Task is running on a Capability and
 * wishes to wake up a thread on a different Capability.
 * ------------------------------------------------------------------------- */

void
543
544
545
wakeupThreadOnCapability (Capability *my_cap, 
                          Capability *other_cap, 
                          StgTSO *tso)
546
{
547
    ACQUIRE_LOCK(&other_cap->lock);
548

549
550
551
552
553
554
555
556
    // ASSUMES: cap->lock is held (asserted in wakeupThreadOnCapability)
    if (tso->bound) {
	ASSERT(tso->bound->cap == tso->cap);
    	tso->bound->cap = other_cap;
    }
    tso->cap = other_cap;

    ASSERT(tso->bound ? tso->bound->cap == other_cap : 1);
557

558
    if (other_cap->running_task == NULL) {
559
560
561
	// nobody is running this Capability, we can add our thread
	// directly onto the run queue and start up a Task to run it.

562
563
564
565
566
567
568
	other_cap->running_task = myTask(); 
            // precond for releaseCapability_() and appendToRunQueue()

	appendToRunQueue(other_cap,tso);

	trace(TRACE_sched, "resuming capability %d", other_cap->no);
	releaseCapability_(other_cap);
569
    } else {
570
	appendToWakeupQueue(my_cap,other_cap,tso);
571
572
573
574
	// someone is running on this Capability, so it cannot be
	// freed without first checking the wakeup queue (see
	// releaseCapability_).
    }
575

576
    RELEASE_LOCK(&other_cap->lock);
577
578
}

579
/* ----------------------------------------------------------------------------
580
 * prodCapabilities
sof's avatar
sof committed
581
 *
582
583
584
 * Used to indicate that the interrupted flag is now set, or some
 * other global condition that might require waking up a Task on each
 * Capability.
585
586
 * ------------------------------------------------------------------------- */

587
588
589
590
591
592
static void
prodCapabilities(rtsBool all)
{
    nat i;
    Capability *cap;
    Task *task;
593

594
595
596
597
598
    for (i=0; i < n_capabilities; i++) {
	cap = &capabilities[i];
	ACQUIRE_LOCK(&cap->lock);
	if (!cap->running_task) {
	    if (cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
599
		trace(TRACE_sched, "resuming capability %d", cap->no);
600
601
602
603
604
605
606
607
		task = cap->spare_workers;
		ASSERT(!task->stopped);
		giveCapabilityToTask(cap,task);
		if (!all) {
		    RELEASE_LOCK(&cap->lock);
		    return;
		}
	    }
608
	}
609
	RELEASE_LOCK(&cap->lock);
610
    }
611
    return;
sof's avatar
sof committed
612
}
613

614
615
616
617
618
void
prodAllCapabilities (void)
{
    prodCapabilities(rtsTrue);
}
sof's avatar
sof committed
619

620
/* ----------------------------------------------------------------------------
621
622
623
624
625
626
 * prodOneCapability
 *
 * Like prodAllCapabilities, but we only require a single Task to wake
 * up in order to service some global event, such as checking for
 * deadlock after some idle time has passed.
 * ------------------------------------------------------------------------- */
627

628
629
630
631
void
prodOneCapability (void)
{
    prodCapabilities(rtsFalse);
632
}
633
634
635
636
637
638
639
640
641
642
643
644
645

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * shutting_down_scheduler = rtsTrue, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
646
 *
647
 * ------------------------------------------------------------------------- */
648
649

void
650
shutdownCapability (Capability *cap, Task *task, rtsBool safe)
651
{
652
653
    nat i;

654
    ASSERT(sched_state == SCHED_SHUTTING_DOWN);
655
656
657

    task->cap = cap;

658
659
660
661
662
663
664
    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
Simon Marlow's avatar
Simon Marlow committed
665
666
	debugTrace(DEBUG_sched, 
		   "shutting down capability %d, attempt %d", cap->no, i);
667
668
669
	ACQUIRE_LOCK(&cap->lock);
	if (cap->running_task) {
	    RELEASE_LOCK(&cap->lock);
Simon Marlow's avatar
Simon Marlow committed
670
	    debugTrace(DEBUG_sched, "not owner, yielding");
671
672
	    yieldThread();
	    continue;
673
	}
674
	cap->running_task = task;
Simon Marlow's avatar
Simon Marlow committed
675
676
677
678
679
680
681
682
683
684
685
686
687

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched, 
688
                               "worker thread %p has died unexpectedly", (void *)t->id);
Simon Marlow's avatar
Simon Marlow committed
689
690
691
692
693
694
695
696
697
698
                        if (!prev) {
                            cap->spare_workers = t->next;
                        } else {
                            prev->next = t->next;
                        }
                        prev = t;
                }
            }
        }

699
	if (!emptyRunQueue(cap) || cap->spare_workers) {
Simon Marlow's avatar
Simon Marlow committed
700
701
	    debugTrace(DEBUG_sched, 
		       "runnable threads or workers still alive, yielding");
702
703
704
705
	    releaseCapability_(cap); // this will wake up a worker
	    RELEASE_LOCK(&cap->lock);
	    yieldThread();
	    continue;
706
	}
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalling_tasks && safe) {
	    debugTrace(DEBUG_sched, 
		       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
	    RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }
            
Simon Marlow's avatar
Simon Marlow committed
723
	debugTrace(DEBUG_sched, "capability %d is stopped.", cap->no);
724
        freeCapability(cap);
725
726
	RELEASE_LOCK(&cap->lock);
	break;
727
    }
728
729
    // we now have the Capability, its run queue and spare workers
    // list are both empty.
730

731
732
733
734
    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to 
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
735
}
736

737
738
739
740
/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
741
 *
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
 * ------------------------------------------------------------------------- */

rtsBool
tryGrabCapability (Capability *cap, Task *task)
{
    if (cap->running_task != NULL) return rtsFalse;
    ACQUIRE_LOCK(&cap->lock);
    if (cap->running_task != NULL) {
	RELEASE_LOCK(&cap->lock);
	return rtsFalse;
    }
    task->cap = cap;
    cap->running_task = task;
    RELEASE_LOCK(&cap->lock);
    return rtsTrue;
}


760
#endif /* THREADED_RTS */
761

Ian Lynagh's avatar
Ian Lynagh committed
762
763
764
765
766
767
768
void
freeCapability (Capability *cap) {
    stgFree(cap->mut_lists);
#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)
    freeSparkPool(&cap->r.rSparks);
#endif
}
769

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
markSomeCapabilities (evac_fn evac, void *user, nat i0, nat delta)
{
    nat i;
    Capability *cap;
    Task *task;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    for (i = i0; i < n_capabilities; i += delta) {
	cap = &capabilities[i];
	evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_hd);
	evac(user, (StgClosure **)(void *)&cap->wakeup_queue_tl);
#endif
	for (task = cap->suspended_ccalling_tasks; task != NULL; 
	     task=task->next) {
	    debugTrace(DEBUG_sched,
		       "evac'ing suspended TSO %lu", (unsigned long)task->suspended_tso->id);
	    evac(user, (StgClosure **)(void *)&task->suspended_tso);
	}
802
803

#if defined(THREADED_RTS)
804
        traverseSparkQueue (evac, user, cap);
805
#endif
806
    }
807

808
809
810
811
812
813
814
#if !defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&blocked_queue_hd);
    evac(user, (StgClosure **)(void *)&blocked_queue_tl);
    evac(user, (StgClosure **)(void *)&sleeping_queue);
#endif 
}

815
816
817
818
819
820
821
822
823
824
825
826
827
828
// This function is used by the compacting GC to thread all the
// pointers from spark queues.
void
traverseSparkQueues (evac_fn evac USED_IF_THREADS, void *user USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    nat i;
    for (i = 0; i < n_capabilities; i++) {
        traverseSparkQueue (evac, user, &capabilities[i]);
    }
#endif // THREADED_RTS

}

829
830
831
832
833
void
markCapabilities (evac_fn evac, void *user)
{
    markSomeCapabilities(evac, user, 0, 1);
}