SetLevels.lhs 31.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section{SetLevels}

		***************************
			Overview
		***************************

1. We attach binding levels to Core bindings, in preparation for floating
   outwards (@FloatOut@).

2. We also let-ify many expressions (notably case scrutinees), so they
   will have a fighting chance of being floated sensible.

3. We clone the binders of any floatable let-binding, so that when it is
   floated out it will be unique.  (This used to be done by the simplifier
   but the latter now only ensures that there's no shadowing; indeed, even 
   that may not be true.)

   NOTE: this can't be done using the uniqAway idea, because the variable
 	 must be unique in the whole program, not just its current scope,
	 because two variables in different scopes may float out to the
	 same top level place

   NOTE: Very tiresomely, we must apply this substitution to
	 the rules stored inside a variable too.

   We do *not* clone top-level bindings, because some of them must not change,
   but we *do* clone bindings that are heading for the top level

4. In the expression
	case x of wild { p -> ...wild... }
   we substitute x for wild in the RHS of the case alternatives:
	case x of wild { p -> ...x... }
   This means that a sub-expression involving x is not "trapped" inside the RHS.
   And it's not inconvenient because we already have a substitution.

  Note that this is EXACTLY BACKWARDS from the what the simplifier does.
  The simplifier tries to get rid of occurrences of x, in favour of wild,
  in the hope that there will only be one remaining occurrence of x, namely
  the scrutinee of the case, and we can inline it.  

\begin{code}
module SetLevels (
46
	setLevels, 
47
48

	Level(..), tOP_LEVEL,
49
	LevelledBind, LevelledExpr,
50

51
	incMinorLvl, ltMajLvl, ltLvl, isTopLvl, isInlineCtxt
52
53
54
55
56
57
    ) where

#include "HsVersions.h"

import CoreSyn

58
import DynFlags	( FloatOutSwitches(..) )
59
import CoreUtils	( exprType, exprIsTrivial, mkPiTypes )
60
import CoreFVs		-- all of it
61
62
import CoreSubst	( Subst, emptySubst, extendInScope, extendIdSubst,
			  cloneIdBndr, cloneRecIdBndrs )
63
64
import Id		( Id, idType, mkSysLocal, isOneShotLambda,
			  zapDemandIdInfo,
65
66
			  idSpecialisation, idWorkerInfo, setIdInfo
			)
67
import IdInfo		( workerExists, vanillaIdInfo, isEmptySpecInfo )
68
69
70
71
import Var		( Var )
import VarSet
import VarEnv
import Name		( getOccName )
72
import OccName		( occNameString )
73
74
75
import Type		( isUnLiftedType, Type )
import BasicTypes	( TopLevelFlag(..) )
import UniqSupply
76
import Util		( sortLe, isSingleton, count )
77
import Outputable
78
import FastString
79
80
81
82
83
84
85
86
87
\end{code}

%************************************************************************
%*									*
\subsection{Level numbers}
%*									*
%************************************************************************

\begin{code}
88
89
90
data Level = InlineCtxt	-- A level that's used only for
			-- the context parameter ctxt_lvl
	   | Level Int	-- Level number of enclosing lambdas
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
	  	   Int	-- Number of big-lambda and/or case expressions between
			-- here and the nearest enclosing lambda
\end{code}

The {\em level number} on a (type-)lambda-bound variable is the
nesting depth of the (type-)lambda which binds it.  The outermost lambda
has level 1, so (Level 0 0) means that the variable is bound outside any lambda.

On an expression, it's the maximum level number of its free
(type-)variables.  On a let(rec)-bound variable, it's the level of its
RHS.  On a case-bound variable, it's the number of enclosing lambdas.

Top-level variables: level~0.  Those bound on the RHS of a top-level
definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
as ``subscripts'')...
\begin{verbatim}
a_0 = let  b_? = ...  in
	   x_1 = ... b ... in ...
\end{verbatim}

The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
That's meant to be the level number of the enclosing binder in the
final (floated) program.  If the level number of a sub-expression is
less than that of the context, then it might be worth let-binding the
115
116
117
118
sub-expression so that it will indeed float.  

If you can float to level @Level 0 0@ worth doing so because then your
allocation becomes static instead of dynamic.  We always start with
119
context @Level 0 0@.  
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
InlineCtxt
~~~~~~~~~~
@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
to say "don't float anything out of here".  That's exactly what we
want for the body of an INLINE, where we don't want to float anything
out at all.  See notes with lvlMFE below.

But, check this out:

-- At one time I tried the effect of not float anything out of an InlineMe,
-- but it sometimes works badly.  For example, consider PrelArr.done.  It
-- has the form 	__inline (\d. e)
-- where e doesn't mention d.  If we float this to 
--	__inline (let x = e in \d. x)
-- things are bad.  The inliner doesn't even inline it because it doesn't look
-- like a head-normal form.  So it seems a lesser evil to let things float.
-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
-- which discourages floating out.

So the conclusion is: don't do any floating at all inside an InlineMe.
(In the above example, don't float the {x=e} out of the \d.)

One particular case is that of workers: we don't want to float the
call to the worker outside the wrapper, otherwise the worker might get
inlined into the floated expression, and an importing module won't see
the worker at all.

149
150
151
152
\begin{code}
type LevelledExpr  = TaggedExpr Level
type LevelledBind  = TaggedBind Level

153
154
tOP_LEVEL   = Level 0 0
iNLINE_CTXT = InlineCtxt
155
156

incMajorLvl :: Level -> Level
157
-- For InlineCtxt we ignore any inc's; we don't want
158
-- to do any floating at all; see notes above
159
incMajorLvl InlineCtxt		= InlineCtxt
160
161
162
incMajorLvl (Level major minor) = Level (major+1) 0

incMinorLvl :: Level -> Level
163
incMinorLvl InlineCtxt		= InlineCtxt
164
165
166
incMinorLvl (Level major minor) = Level major (minor+1)

maxLvl :: Level -> Level -> Level
167
168
maxLvl InlineCtxt l2  = l2
maxLvl l1  InlineCtxt = l1
169
170
171
172
173
maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
  | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
  | otherwise					   = l2

ltLvl :: Level -> Level -> Bool
174
175
ltLvl any_lvl	 InlineCtxt  = False
ltLvl InlineCtxt (Level _ _) = True
176
177
178
179
180
ltLvl (Level maj1 min1) (Level maj2 min2)
  = (maj1 < maj2) || (maj1 == maj2 && min1 < min2)

ltMajLvl :: Level -> Level -> Bool
    -- Tells if one level belongs to a difft *lambda* level to another
181
182
ltMajLvl any_lvl	InlineCtxt     = False
ltMajLvl InlineCtxt	(Level maj2 _) = 0 < maj2
183
184
185
186
ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2

isTopLvl :: Level -> Bool
isTopLvl (Level 0 0) = True
187
188
189
190
191
isTopLvl other	     = False

isInlineCtxt :: Level -> Bool
isInlineCtxt InlineCtxt = True
isInlineCtxt other	= False
192
193

instance Outputable Level where
194
  ppr InlineCtxt      = text "<INLINE>"
195
196
197
  ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]

instance Eq Level where
198
  InlineCtxt	    == InlineCtxt	 = True
199
  (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2
200
  l1		    == l2		 = False
201
202
\end{code}

203

204
205
206
207
208
209
210
%************************************************************************
%*									*
\subsection{Main level-setting code}
%*									*
%************************************************************************

\begin{code}
211
setLevels :: FloatOutSwitches
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
	  -> [CoreBind]
	  -> UniqSupply
	  -> [LevelledBind]

setLevels float_lams binds us
  = initLvl us (do_them binds)
  where
    -- "do_them"'s main business is to thread the monad along
    -- It gives each top binding the same empty envt, because
    -- things unbound in the envt have level number zero implicitly
    do_them :: [CoreBind] -> LvlM [LevelledBind]

    do_them [] = returnLvl []
    do_them (b:bs)
      = lvlTopBind init_env b	`thenLvl` \ (lvld_bind, _) ->
	do_them bs		`thenLvl` \ lvld_binds ->
    	returnLvl (lvld_bind : lvld_binds)

    init_env = initialEnv float_lams

lvlTopBind env (NonRec binder rhs)
  = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
					-- Rhs can have no free vars!

lvlTopBind env (Rec pairs)
  = lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
\end{code}

%************************************************************************
%*									*
\subsection{Setting expression levels}
%*									*
%************************************************************************

\begin{code}
lvlExpr :: Level		-- ctxt_lvl: Level of enclosing expression
	-> LevelEnv		-- Level of in-scope names/tyvars
	-> CoreExprWithFVs	-- input expression
	-> LvlM LevelledExpr	-- Result expression
\end{code}

The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
binder.  Here's an example

	v = \x -> ...\y -> let r = case (..x..) of
					..x..
			   in ..

When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
the level of @r@, even though it's inside a level-2 @\y@.  It's
important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
--- because it isn't a *maximal* free expression.

If there were another lambda in @r@'s rhs, it would get level-2 as well.

\begin{code}
lvlExpr _ _ (_, AnnType ty)   = returnLvl (Type ty)
lvlExpr _ env (_, AnnVar v)   = returnLvl (lookupVar env v)
lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit)

lvlExpr ctxt_lvl env (_, AnnApp fun arg)
  = lvl_fun fun				`thenLvl` \ fun' ->
    lvlMFE  False ctxt_lvl env arg	`thenLvl` \ arg' ->
    returnLvl (App fun' arg')
  where
278
279
-- gaw 2004
    lvl_fun (_, AnnCase _ _ _ _) = lvlMFE True ctxt_lvl env fun
280
281
282
283
284
    lvl_fun other 	       = lvlExpr ctxt_lvl env fun
	-- We don't do MFE on partial applications generally,
	-- but we do if the function is big and hairy, like a case

lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr)
285
286
-- Don't float anything out of an InlineMe; hence the iNLINE_CTXT
  = lvlExpr iNLINE_CTXT env expr 	`thenLvl` \ expr' ->
287
288
289
290
291
292
    returnLvl (Note InlineMe expr')

lvlExpr ctxt_lvl env (_, AnnNote note expr)
  = lvlExpr ctxt_lvl env expr 		`thenLvl` \ expr' ->
    returnLvl (Note note expr')

293
294
295
296
lvlExpr ctxt_lvl env (_, AnnCast expr co)
  = lvlExpr ctxt_lvl env expr		`thenLvl` \ expr' ->
    returnLvl (Cast expr' co)

297
298
299
300
301
302
303
304
305
-- We don't split adjacent lambdas.  That is, given
--	\x y -> (x+1,y)
-- we don't float to give 
--	\x -> let v = x+y in \y -> (v,y)
-- Why not?  Because partial applications are fairly rare, and splitting
-- lambdas makes them more expensive.

lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs)
  = lvlMFE True new_lvl new_env body	`thenLvl` \ new_body ->
306
    returnLvl (mkLams new_bndrs new_body)
307
  where 
308
    (bndrs, body)	 = collectAnnBndrs expr
309
310
    (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
    new_env 		 = extendLvlEnv env new_bndrs
311
312
313
314
315
316
	-- At one time we called a special verion of collectBinders,
	-- which ignored coercions, because we don't want to split
	-- a lambda like this (\x -> coerce t (\s -> ...))
	-- This used to happen quite a bit in state-transformer programs,
	-- but not nearly so much now non-recursive newtypes are transparent.
	-- [See SetLevels rev 1.50 for a version with this approach.]
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body)
  | isUnLiftedType (idType bndr)
	-- Treat unlifted let-bindings (let x = b in e) just like (case b of x -> e)
	-- That is, leave it exactly where it is
	-- We used to float unlifted bindings too (e.g. to get a cheap primop
	-- outside a lambda (to see how, look at lvlBind in rev 1.58)
	-- but an unrelated change meant that these unlifed bindings
	-- could get to the top level which is bad.  And there's not much point;
	-- unlifted bindings are always cheap, and so hardly worth floating.
  = lvlExpr ctxt_lvl env rhs		`thenLvl` \ rhs' ->
    lvlExpr incd_lvl env' body		`thenLvl` \ body' ->
    returnLvl (Let (NonRec bndr' rhs') body')
  where
    incd_lvl = incMinorLvl ctxt_lvl
    bndr' = TB bndr incd_lvl
    env'  = extendLvlEnv env [bndr']

335
336
337
338
339
lvlExpr ctxt_lvl env (_, AnnLet bind body)
  = lvlBind NotTopLevel ctxt_lvl env bind	`thenLvl` \ (bind', new_env) ->
    lvlExpr ctxt_lvl new_env body		`thenLvl` \ body' ->
    returnLvl (Let bind' body')

340
lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts)
341
342
343
344
345
  = lvlMFE True ctxt_lvl env expr	`thenLvl` \ expr' ->
    let
	alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
    in
    mapLvl (lvl_alt alts_env) alts	`thenLvl` \ alts' ->
346
    returnLvl (Case expr' (TB case_bndr incd_lvl) ty alts')
347
348
349
350
351
352
353
  where
      incd_lvl  = incMinorLvl ctxt_lvl

      lvl_alt alts_env (con, bs, rhs)
	= lvlMFE True incd_lvl new_env rhs	`thenLvl` \ rhs' ->
	  returnLvl (con, bs', rhs')
	where
354
	  bs'     = [ TB b incd_lvl | b <- bs ]
355
356
357
358
359
360
	  new_env = extendLvlEnv alts_env bs'
\end{code}

@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
the expression, so that it can itself be floated.

361
362
363
364
365
366
367
[NOTE: unlifted MFEs]
We don't float unlifted MFEs, which potentially loses big opportunites.
For example:
	\x -> f (h y)
where h :: Int -> Int# is expensive. We'd like to float the (h y) outside
the \x, but we don't because it's unboxed.  Possible solution: box it.

368
369
370
371
372
373
374
375
376
377
\begin{code}
lvlMFE ::  Bool			-- True <=> strict context [body of case or let]
	-> Level		-- Level of innermost enclosing lambda/tylam
	-> LevelEnv		-- Level of in-scope names/tyvars
	-> CoreExprWithFVs	-- input expression
	-> LvlM LevelledExpr	-- Result expression

lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty)
  = returnLvl (Type ty)

378

379
lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
380
  |  isUnLiftedType ty			-- Can't let-bind it; see [NOTE: unlifted MFEs]
381
  || isInlineCtxt ctxt_lvl		-- Don't float out of an __inline__ context
382
  || exprIsTrivial expr			-- Never float if it's trivial
383
384
385
386
387
388
389
  || not good_destination
  = 	-- Don't float it out
    lvlExpr ctxt_lvl env ann_expr

  | otherwise	-- Float it out!
  = lvlFloatRhs abs_vars dest_lvl env ann_expr	`thenLvl` \ expr' ->
    newLvlVar "lvl" abs_vars ty			`thenLvl` \ var ->
390
    returnLvl (Let (NonRec (TB var dest_lvl) expr') 
391
392
393
394
395
396
397
398
399
		   (mkVarApps (Var var) abs_vars))
  where
    expr     = deAnnotate ann_expr
    ty       = exprType expr
    dest_lvl = destLevel env fvs (isFunction ann_expr)
    abs_vars = abstractVars dest_lvl env fvs

	-- A decision to float entails let-binding this thing, and we only do 
	-- that if we'll escape a value lambda, or will go to the top level.
400
401
    good_destination 
	| dest_lvl `ltMajLvl` ctxt_lvl		-- Escapes a value lambda
402
403
404
	= True
	-- OLD CODE: not (exprIsCheap expr) || isTopLvl dest_lvl
	-- 	     see Note [Escaping a value lambda]
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

	| otherwise		-- Does not escape a value lambda
	= isTopLvl dest_lvl 	-- Only float if we are going to the top level
	&& floatConsts env	--   and the floatConsts flag is on
	&& not strict_ctxt	-- Don't float from a strict context	
	  -- We are keen to float something to the top level, even if it does not
	  -- escape a lambda, because then it needs no allocation.  But it's controlled
	  -- by a flag, because doing this too early loses opportunities for RULES
	  -- which (needless to say) are important in some nofib programs
	  -- (gcd is an example).
	  --
	  -- Beware:
	  --	concat = /\ a -> foldr ..a.. (++) []
	  -- was getting turned into
	  --	concat = /\ a -> lvl a
	  --	lvl    = /\ a -> foldr ..a.. (++) []
	  -- which is pretty stupid.  Hence the strict_ctxt test
422
423
\end{code}

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
Note [Escaping a value lambda]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to float even cheap expressions out of value lambdas, 
because that saves allocation.  Consider
	f = \x.  .. (\y.e) ...
Then we'd like to avoid allocating the (\y.e) every time we call f,
(assuming e does not mention x).   

An example where this really makes a difference is simplrun009.

Another reason it's good is because it makes SpecContr fire on functions.
Consider
	f = \x. ....(f (\y.e))....
After floating we get
	lvl = \y.e
	f = \x. ....(f lvl)...
and that is much easier for SpecConstr to generate a robust specialisation for.

The OLD CODE (given where this Note is referred to) prevents floating
of the example above, so I just don't understand the old code.  I
don't understand the old comment either (which appears below).  I
measured the effect on nofib of changing OLD CODE to 'True', and got
zeros everywhere, but a 4% win for 'puzzle'.  Very small 0.5% loss for
'cse'; turns out to be because our arity analysis isn't good enough
simonpj@microsoft.com's avatar
simonpj@microsoft.com committed
448
yet (mentioned in Simon-nofib-notes).
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

OLD comment was:
	 Even if it escapes a value lambda, we only
	 float if it's not cheap (unless it'll get all the
	 way to the top).  I've seen cases where we
	 float dozens of tiny free expressions, which cost
	 more to allocate than to evaluate.
	 NB: exprIsCheap is also true of bottom expressions, which
	     is good; we don't want to share them

	It's only Really Bad to float a cheap expression out of a
	strict context, because that builds a thunk that otherwise
	would never be built.  So another alternative would be to
	add 
		|| (strict_ctxt && not (exprIsBottom expr))
	to the condition above. We should really try this out.

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

%************************************************************************
%*									*
\subsection{Bindings}
%*									*
%************************************************************************

The binding stuff works for top level too.

\begin{code}
lvlBind :: TopLevelFlag		-- Used solely to decide whether to clone
	-> Level		-- Context level; might be Top even for bindings nested in the RHS
				-- of a top level binding
	-> LevelEnv
	-> CoreBindWithFVs
	-> LvlM (LevelledBind, LevelEnv)

lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
484
  | isInlineCtxt ctxt_lvl		-- Don't do anything inside InlineMe
485
  = lvlExpr ctxt_lvl env rhs			`thenLvl` \ rhs' ->
486
    returnLvl (NonRec (TB bndr ctxt_lvl) rhs', env)
487

488
489
490
491
  | null abs_vars
  =	-- No type abstraction; clone existing binder
    lvlExpr dest_lvl env rhs			`thenLvl` \ rhs' ->
    cloneVar top_lvl env bndr ctxt_lvl dest_lvl	`thenLvl` \ (env', bndr') ->
492
    returnLvl (NonRec (TB bndr' dest_lvl) rhs', env') 
493
494
495
496
497

  | otherwise
  = -- Yes, type abstraction; create a new binder, extend substitution, etc
    lvlFloatRhs abs_vars dest_lvl env rhs	`thenLvl` \ rhs' ->
    newPolyBndrs dest_lvl env abs_vars [bndr]	`thenLvl` \ (env', [bndr']) ->
498
    returnLvl (NonRec (TB bndr' dest_lvl) rhs', env')
499
500
501
502

  where
    bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
    abs_vars = abstractVars dest_lvl env bind_fvs
503
    dest_lvl = destLevel env bind_fvs (isFunction rhs)
504
505
506
507
508
\end{code}


\begin{code}
lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
509
510
  | isInlineCtxt ctxt_lvl	-- Don't do anything inside InlineMe
  = mapLvl (lvlExpr ctxt_lvl env) rhss			`thenLvl` \ rhss' ->
511
    returnLvl (Rec ([TB b ctxt_lvl | b <- bndrs] `zip` rhss'), env)
512

513
514
515
  | null abs_vars
  = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl	`thenLvl` \ (new_env, new_bndrs) ->
    mapLvl (lvlExpr ctxt_lvl new_env) rhss		`thenLvl` \ new_rhss ->
516
    returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

  | isSingleton pairs && count isId abs_vars > 1
  = 	-- Special case for self recursion where there are
	-- several variables carried around: build a local loop:	
	--	poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
	-- This just makes the closures a bit smaller.  If we don't do
	-- this, allocation rises significantly on some programs
	--
	-- We could elaborate it for the case where there are several
	-- mutually functions, but it's quite a bit more complicated
	-- 
	-- This all seems a bit ad hoc -- sigh
    let
	(bndr,rhs) = head pairs
	(rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
	rhs_env = extendLvlEnv env abs_vars_w_lvls
    in
    cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl	`thenLvl` \ (rhs_env', new_bndr) ->
    let
536
	(lam_bndrs, rhs_body)     = collectAnnBndrs rhs
537
538
539
540
541
        (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
	body_env 		  = extendLvlEnv rhs_env' new_lam_bndrs
    in
    lvlExpr body_lvl body_env rhs_body		`thenLvl` \ new_rhs_body ->
    newPolyBndrs dest_lvl env abs_vars [bndr]	`thenLvl` \ (poly_env, [poly_bndr]) ->
542
543
544
545
546
    returnLvl (Rec [(TB poly_bndr dest_lvl, 
	       mkLams abs_vars_w_lvls $
	       mkLams new_lam_bndrs $
	       Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)]) 
		   (mkVarApps (Var new_bndr) lam_bndrs))],
547
548
	       poly_env)

549
  | otherwise	-- Non-null abs_vars
550
551
  = newPolyBndrs dest_lvl env abs_vars bndrs		`thenLvl` \ (new_env, new_bndrs) ->
    mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss ->
552
    returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

  where
    (bndrs,rhss) = unzip pairs

	-- Finding the free vars of the binding group is annoying
    bind_fvs	    = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
				    | (bndr, (rhs_fvs,_)) <- pairs])
		      `minusVarSet`
		      mkVarSet bndrs

    dest_lvl = destLevel env bind_fvs (all isFunction rhss)
    abs_vars = abstractVars dest_lvl env bind_fvs

----------------------------------------------------
-- Three help functons for the type-abstraction case

lvlFloatRhs abs_vars dest_lvl env rhs
  = lvlExpr rhs_lvl rhs_env rhs	`thenLvl` \ rhs' ->
    returnLvl (mkLams abs_vars_w_lvls rhs')
  where
    (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
    rhs_env = extendLvlEnv env abs_vars_w_lvls
\end{code}


%************************************************************************
%*									*
\subsection{Deciding floatability}
%*									*
%************************************************************************

\begin{code}
585
lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [TaggedBndr Level])
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
-- Compute the levels for the binders of a lambda group
-- The binders returned are exactly the same as the ones passed,
-- but they are now paired with a level
lvlLamBndrs lvl [] 
  = (lvl, [])

lvlLamBndrs lvl bndrs
  = go  (incMinorLvl lvl)
	False 	-- Havn't bumped major level in this group
	[] bndrs
  where
    go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
	| isId bndr && 			-- Go to the next major level if this is a value binder,
	  not bumped_major && 		-- and we havn't already gone to the next level (one jump per group)
	  not (isOneShotLambda bndr)	-- and it isn't a one-shot lambda
601
	= go new_lvl True (TB bndr new_lvl : rev_lvld_bndrs) bndrs
602
603

	| otherwise
604
	= go old_lvl bumped_major (TB bndr old_lvl : rev_lvld_bndrs) bndrs
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

	where
	  new_lvl = incMajorLvl old_lvl

    go old_lvl _ rev_lvld_bndrs []
	= (old_lvl, reverse rev_lvld_bndrs)
	-- a lambda like this (\x -> coerce t (\s -> ...))
	-- This happens quite a bit in state-transformer programs
\end{code}

\begin{code}
  -- Destintion level is the max Id level of the expression
  -- (We'll abstract the type variables, if any.)
destLevel :: LevelEnv -> VarSet -> Bool -> Level
destLevel env fvs is_function
  |  floatLams env
  && is_function = tOP_LEVEL		-- Send functions to top level; see
					-- the comments with isFunction
  | otherwise    = maxIdLevel env fvs

isFunction :: CoreExprWithFVs -> Bool
-- The idea here is that we want to float *functions* to
-- the top level.  This saves no work, but 
--	(a) it can make the host function body a lot smaller, 
--		and hence inlinable.  
--	(b) it can also save allocation when the function is recursive:
--	    h = \x -> letrec f = \y -> ...f...y...x...
--		      in f x
--     becomes
--	    f = \x y -> ...(f x)...y...x...
--	    h = \x -> f x x
--     No allocation for f now.
-- We may only want to do this if there are sufficiently few free 
-- variables.  We certainly only want to do it for values, and not for
-- constructors.  So the simple thing is just to look for lambdas
isFunction (_, AnnLam b e) | isId b    = True
			   | otherwise = isFunction e
isFunction (_, AnnNote n e)            = isFunction e
isFunction other 		       = False
\end{code}


%************************************************************************
%*									*
\subsection{Free-To-Level Monad}
%*									*
%************************************************************************

\begin{code}
654
type LevelEnv = (FloatOutSwitches,
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
		 VarEnv Level, 			-- Domain is *post-cloned* TyVars and Ids
	         Subst, 			-- Domain is pre-cloned Ids; tracks the in-scope set
						-- 	so that subtitution is capture-avoiding
	         IdEnv ([Var], LevelledExpr))	-- Domain is pre-cloned Ids
	-- We clone let-bound variables so that they are still
	-- distinct when floated out; hence the SubstEnv/IdEnv.
        -- (see point 3 of the module overview comment).
	-- We also use these envs when making a variable polymorphic
	-- because we want to float it out past a big lambda.
	--
	-- The SubstEnv and IdEnv always implement the same mapping, but the
	-- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr
	-- Since the range is always a variable or type application,
	-- there is never any difference between the two, but sadly
	-- the types differ.  The SubstEnv is used when substituting in
	-- a variable's IdInfo; the IdEnv when we find a Var.
	--
	-- In addition the IdEnv records a list of tyvars free in the
	-- type application, just so we don't have to call freeVars on
	-- the type application repeatedly.
	--
	-- The domain of the both envs is *pre-cloned* Ids, though
	--
	-- The domain of the VarEnv Level is the *post-cloned* Ids

680
initialEnv :: FloatOutSwitches -> LevelEnv
681
682
683
initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv)

floatLams :: LevelEnv -> Bool
684
685
686
687
floatLams (FloatOutSw float_lams _, _, _, _) = float_lams

floatConsts :: LevelEnv -> Bool
floatConsts (FloatOutSw _ float_consts, _, _, _) = float_consts
688

689
extendLvlEnv :: LevelEnv -> [TaggedBndr Level] -> LevelEnv
690
691
692
693
694
695
696
-- Used when *not* cloning
extendLvlEnv (float_lams, lvl_env, subst, id_env) prs
  = (float_lams,
     foldl add_lvl lvl_env prs,
     foldl del_subst subst prs,
     foldl del_id id_env prs)
  where
697
698
699
    add_lvl   env (TB v l) = extendVarEnv env v l
    del_subst env (TB v _) = extendInScope env v
    del_id    env (TB v _) = delVarEnv env v
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
  -- We must remove any clone for this variable name in case of
  -- shadowing.  This bit me in the following case
  -- (in nofib/real/gg/Spark.hs):
  -- 
  --   case ds of wild {
  --     ... -> case e of wild {
  --              ... -> ... wild ...
  --            }
  --   }
  -- 
  -- The inside occurrence of @wild@ was being replaced with @ds@,
  -- incorrectly, because the SubstEnv was still lying around.  Ouch!
  -- KSW 2000-07.

-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
-- (see point 4 of the module overview comment)
extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl
  = (float_lams,
     extendVarEnv lvl_env case_bndr lvl,
719
     extendIdSubst subst case_bndr (Var scrut_var),
720
721
722
     extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var))
     
extendCaseBndrLvlEnv env scrut case_bndr lvl
723
  = extendLvlEnv          env [TB case_bndr lvl]
724
725
726
727
728
729
730
731

extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs
  = (float_lams,
     foldl add_lvl   lvl_env bndr_pairs,
     foldl add_subst subst   bndr_pairs,
     foldl add_id    id_env  bndr_pairs)
  where
     add_lvl   env (v,v') = extendVarEnv env v' dest_lvl
732
     add_subst env (v,v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
     add_id    env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)

extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs
  = (float_lams,
     foldl add_lvl   lvl_env bndr_pairs,
     new_subst,
     foldl add_id    id_env  bndr_pairs)
  where
     add_lvl   env (v,v') = extendVarEnv env v' lvl
     add_id    env (v,v') = extendVarEnv env v ([v'], Var v')


maxIdLevel :: LevelEnv -> VarSet -> Level
maxIdLevel (_, lvl_env,_,id_env) var_set
  = foldVarSet max_in tOP_LEVEL var_set
  where
    max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
						Just (abs_vars, _) -> abs_vars
						Nothing		   -> [in_var])

    max_out out_var lvl 
	| isId out_var = case lookupVarEnv lvl_env out_var of
				Just lvl' -> maxLvl lvl' lvl
				Nothing   -> lvl 
	| otherwise    = lvl	-- Ignore tyvars in *maxIdLevel*

lookupVar :: LevelEnv -> Id -> LevelledExpr
lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
				       Just (_, expr) -> expr
				       other	      -> Var v

764
765
766
767
768
abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
	-- Find the variables in fvs, free vars of the target expresion,
	-- whose level is greater than the destination level
	-- These are the ones we are going to abstract out
abstractVars dest_lvl env fvs
769
  = uniq (sortLe le [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv])
770
771
772
  where
	-- Sort the variables so we don't get 
	-- mixed-up tyvars and Ids; it's just messy
773
    v1 `le` v2 = case (isId v1, isId v2) of
774
775
		   (True, False) -> False
		   (False, True) -> True
776
		   other	 -> v1 <= v2	-- Same family
777
778
779
780
781
782
783

    uniq :: [Var] -> [Var]
	-- Remove adjacent duplicates; the sort will have brought them together
    uniq (v1:v2:vs) | v1 == v2  = uniq (v2:vs)
		    | otherwise = v1 : uniq (v2:vs)
    uniq vs = vs

784
absVarsOf :: Level -> LevelEnv -> Var -> [Var]
785
	-- If f is free in the expression, and f maps to poly_f a b c in the
786
787
788
789
	-- current substitution, then we must report a b c as candidate type
	-- variables
absVarsOf dest_lvl (_, lvl_env, _, id_env) v 
  | isId v
790
  = [zap av2 | av1 <- lookup_avs v, av2 <- add_tyvars av1, abstract_me av2]
791
792
793
794
795
796
797
798
799
800
801
802
803

  | otherwise
  = if abstract_me v then [v] else []

  where
    abstract_me v = case lookupVarEnv lvl_env v of
			Just lvl -> dest_lvl `ltLvl` lvl
			Nothing  -> False

    lookup_avs v = case lookupVarEnv id_env v of
			Just (abs_vars, _) -> abs_vars
			Nothing	           -> [v]

804
    add_tyvars v = v : varSetElems (varTypeTyVars v)
805

806
807
808
	-- We are going to lambda-abstract, so nuke any IdInfo,
	-- and add the tyvars of the Id (if necessary)
    zap v | isId v = WARN( workerExists (idWorkerInfo v) ||
809
		           not (isEmptySpecInfo (idSpecialisation v)),
810
811
812
		           text "absVarsOf: discarding info on" <+> ppr v )
		     setIdInfo v vanillaIdInfo
	  | otherwise = v
813
814
815
816
817
818
819
820
821
822
823
824
825
\end{code}

\begin{code}
type LvlM result = UniqSM result

initLvl		= initUs_
thenLvl		= thenUs
returnLvl	= returnUs
mapLvl		= mapUs
\end{code}

\begin{code}
newPolyBndrs dest_lvl env abs_vars bndrs
826
  = getUniquesUs 		`thenLvl` \ uniqs ->
827
828
829
830
831
    let
	new_bndrs = zipWith mk_poly_bndr bndrs uniqs
    in
    returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
  where
832
    mk_poly_bndr bndr uniq = mkSysLocal (mkFastString str) uniq poly_ty
833
			   where
834
			     str     = "poly_" ++ occNameString (getOccName bndr)
835
			     poly_ty = mkPiTypes abs_vars (idType bndr)
836
837
838
839
840
841
842
	

newLvlVar :: String 
	  -> [CoreBndr] -> Type 	-- Abstract wrt these bndrs
	  -> LvlM Id
newLvlVar str vars body_ty 	
  = getUniqueUs	`thenLvl` \ uniq ->
843
    returnUs (mkSysLocal (mkFastString str) uniq (mkPiTypes vars body_ty))
844
845
846
847
848
849
850
851
852
853
854
    
-- The deeply tiresome thing is that we have to apply the substitution
-- to the rules inside each Id.  Grr.  But it matters.

cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id)
cloneVar TopLevel env v ctxt_lvl dest_lvl
  = returnUs (env, v)	-- Don't clone top level things
cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl
  = ASSERT( isId v )
    getUs	`thenLvl` \ us ->
    let
855
      (subst', v1) = cloneIdBndr subst us v
856
857
858
859
860
861
862
863
864
865
866
867
      v2	   = zap_demand ctxt_lvl dest_lvl v1
      env'	   = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
    in
    returnUs (env', v2)

cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id])
cloneRecVars TopLevel env vs ctxt_lvl dest_lvl 
  = returnUs (env, vs)	-- Don't clone top level things
cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl
  = ASSERT( all isId vs )
    getUs 			`thenLvl` \ us ->
    let
868
      (subst', vs1) = cloneRecIdBndrs subst us vs
869
870
871
872
873
874
      vs2	    = map (zap_demand ctxt_lvl dest_lvl) vs1
      env'	    = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
    in
    returnUs (env', vs2)

	-- VERY IMPORTANT: we must zap the demand info 
875
876
	-- if the thing is going to float out past a lambda,
	-- or if it's going to top level (where things can't be strict)
877
zap_demand dest_lvl ctxt_lvl id
878
879
880
  | ctxt_lvl == dest_lvl,
    not (isTopLvl dest_lvl) = id	-- Stays, and not going to top level
  | otherwise		    = zapDemandIdInfo id	-- Floats out
881
882
\end{code}